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Chapter 10

Quantum computational models

10.1 Adiabatic quantum computing
So far, we have encountered the circuit model for quantum computing, and have made
it look as if it was the only model for quantum computing. It is not. There is a large
class of models for quantum computing. At the end, all a model for quantum com-
puting needs to be able to produce is an efficient simulation of any other model for
quantum computation. And the latter holds true in particular for the circuit model for
quantum computation. A particularly intriguing other model for quantum computing
is the so-called model of adiabatic quantum computing. In 2000, Farhi, Goldstone,
Gutmann, and Sipser introduced a new concept to the study of quantum algorithms,
based on the adiabatic theorem of quantum mechanics. The idea is the following: let
f : {0, 1}N −→ R be a cost function of which we would like to find the global min-
imum, assumed in x ∈ {0, 1}N . In fact, any local combinatorical search problem can
be formulated in this form. For simplicity, suppose that this global minimum is unique.
Introducing the problem Hamiltonian

HT =
∑

z∈{0,1}N
f(z)|z〉〈z|, (10.1)

the problem of finding the x ∈ {0, 1}N where f attains its minimum amounts to iden-
tifying the eigenvector |x〉 of HT corresponding to the smallest eigenvalue f(x), i.e.,
the ground state energy associated with HT . But how does one find the ground state in
the first place? The key idea is to consider another Hamiltonian H0, with the property
that the system can easily be prepared in its ground state, which is again assumed to be
unique. One then interpolates between the two Hamiltonians, for example linearly

H(t) =
t

T
HT +

(
1− t

T

)
H0, (10.2)

with t ∈ [0, T ], where T is the run time of the adiabatic quantum algorithm. This
Hamiltonian governs the time evolution of the quantum state of the system from time
t = 0 until t = T . According to the Schrödinger equation, the state vector evolves
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6 CHAPTER 10. QUANTUM COMPUTATIONAL MODELS

as i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. In a last step one performs a measurement in the compu-
tational basis. If one obtains the outcome associated with |x〉, then the measurement
result is just x, the minimal value of the function f . In this case the probabilistic algo-
rithm is successful, which happens with the success probability p = |〈x|Ψ(T )〉|2.

What are the requirements for such an algorithm to work, i.e., to result in x with
a large success probability? The answer to this question is provided by the quantum
adiabatic theorem: If the Hamiltonian H(t) exhibits a non-zero spectral gap between
the smallest and the second-to-smallest eigenvalue for all t ∈ [0, T ], then the final state
vector |Ψ(T )〉 will be close to the state vector |x〉 corresponding to the ground state
of HT , if the interpolation happens sufficiently slowly, meaning that T is sufficiently
large. The initial state is then said to be adiabatically transferred to arbitrary accuracy
into the desired ground state of the problem Hamiltonian, which encodes the solution to
the problem. The typical problem of encountering local minima that are distinct from
the global minimum can in principle not even occur. This kind of quantum algorithm
is referred to as an adiabatic algorithm.

Needless to say, the question is how large the time T has to be chosen. Let us
denote with

∆ = min
t∈[0,T ]

(E
(0)
t − E

(1)
t ) (10.3)

the minimal spectral gap over the time interval [0, T ] between the smallestE(0)
t and the

second-to-smallest eigenvalue E(1)
t of H(t), associated with eigenvectors |Ψ(0)

t 〉 and
|Ψ(1)
t 〉, respectively, and with

Θ = T max
t∈[0,T ]

|〈Ψ(1)
t |∂tH(t)|Ψ(0)

t 〉| = max
t∈[0,T ]

|〈Ψ(1)
t |HT −H0|Ψ(0)

t 〉. (10.4)

Then, according to the quantum adiabatic theorem, the success probability satisfies

p = |〈Ψ(0)
T |Ψ(T )〉|2 ≥ 1− ε2 (10.5)

if
Tε ≥ Θ

∆2
. (10.6)

The quantity Θ is typically polynomially bounded in N for the problems one is
interested in, so the crucial issue is the behaviour of the minimal gap ∆. Time com-
plexity is now quantified in terms of the run time T of the adiabatic algorithm. If one
knew the spectrum of H(t) at all times, then one could immediately see how fast the
algorithm can be performed. Roughly speaking, the larger the gap, the faster the algo-
rithm can be implemented. The problem is that the spectrum of H(t), which can be
represented as a 2N ×2N matrix, is in general unknown. Even to find lower bounds for
the minimal spectral gap is extraordinarily difficult, unless a certain symmetry highly
simplifies the problem of finding the spectrum. After all, in order for the Hamiltonian
to be ‘reasonable’, it is required that it is local, i.e., it is a sum of operators that act only
on a bounded number of qubits in N . This is a very natural restriction, as it means that
the physical interactions involve always only a finite number of quantum systems. Note
that an indication whether the chosen run time T for an adiabatic algorithm was appro-
priate, one may start with the initial Hamiltonian and prepare the system in its ground
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state, interpolate to the problem Hamiltonian and – using the same interpolation – back
to the original Hamiltonian. A necessary condition for the algorithm to have been suc-
cessful is that finally, the system is to a good approximation in the ground state of
the initial Hamiltonian. This is a method that should be accessible to an experimental
implementation.

Adiabatic algorithms are known to reproduce the quadratic speedup in the Grover
algorithm for unstructured search problems. But adiabatic algorithms can also be ap-
plied to other instances of search problems: Adiabatic algorithms have been compared
with simulated annealing algorithms, finding settings in which the quantum adiabatic
algorithm succeeded in polynomial time, but for simulated annealing exponential time
was necessary. There is after all some numerical evidence that for structured NP hard
problems like MAX CLIQUE and 3-SAT, it may well be that adiabatic algorithms
offer an exponential speedup over the best classical algorithm, again, assuming that
P 6= NP . In fact, it can be shown that adiabatic algorithms can be efficiently sim-
ulated on a quantum computer based on the quantum circuit model, provided that the
Hamiltonian is local in the above sense (see also the subsequent section). Hence, when-
ever an efficient adiabatic algorithm can be found for a specific problem, this implies
an efficient quantum algorithm. The concept of adiabatic algorithms may be a key tool
to establish new algorithms beyond the hidden subgroup problem framework.

10.2 Measurement-based quantum computing
This section is taken from M. A. Nielsen, quant-ph/0504097, with small modifications.
Mike holds the copyright for this explanation, but it is quite beautiful.

10.2.1 Cluster states
A cluster-state computation begins with the preparation of a special entangled many-
qubit quantum state, known as a cluster state, followed by an adaptive sequence of
single-qubit measurements, which process the cluster, and finally read-out of the com-
putation’s result from the remaining qubits. We now discuss each of these steps in
detail.

The term “cluster state” refers not to a single quantum state, but rather to a family
of quantum states. The idea is that to any graph G on n vertices we can define an
associated n-qubit cluster state, by first associating to each vertex a corresponding
qubit, and then applying a graph-dependent preparation procedure to the qubits, as
described below. As an example, the following graph represents a six-qubit cluster
state, The cluster state associated to the graph may be defined as the result of applying
the following preparation procedure.
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Cluster states:

1. Prepare each of the n qubits in the state vector |+〉 = (|0〉+ |1〉)/
√

2.

2. Apply controlled-PHASE gates between qubits whose corresponding graph
vertices are connected.

Note that controlled-PHASE gates commute with one another, so we do not need
to specify the order in which the gates are applied. Also, although we have described
the preparation of the cluster in terms of applying quantum gates, later in the paper we
briefly describe how to prepare clusters using measurements alone, and so the cluster-
state model may be regarded as a truly measurement-only model of quantum computa-
tion.

Note that the states we have called cluster states are sometimes also known as graph
states. Originally, the term “cluster state” was introduced by Raussendorf and Briegel
to refer to the case where the graph G is a two-dimensional square lattice. This was the
class of states which they showed could be used as a substrate for quantum computa-
tion. The term “graph state” originally referred to the family of states associated with
more general graphs G. This distinction was blurred by the introduction of schemes
for quantum computing based on Raussendorf and Briegel’s ideas, but using different
graphs.

Once the cluster state is prepared, the next step in the computation is to perform a
sequence of processing measurements on the state. These measurements satisfy: (1)
they are single-qubit measurements; (2) the choice of measurement basis may depend
on the outcomes of earlier measurements, i.e., feedforward of classical measurement
results is allowed; and (3) measurement results may be processed by a classical com-
puter to assist in the feedforward, so the choice of basis may be a complicated function
of earlier measurement results. Note that for the cluster-state computation to be effi-
cient we must constrain the classical computation to be of polynomial size.

The output of the cluster-state computation may be defined in two different ways,
both useful. The first is to regard the computation as having a quantum state as output,
namely, the quantum state of the qubits which remain when the sequence of process-
ing measurements has terminated. The second definition is to add a set of read-out
measurements, a sequence of single-qubit measurements applied to the qubits which
remain when the processing measurements are complete. In this case the output of the
computation is a classical bit string.

A concrete example of these ideas is the following cluster-state computation:
Labels indicate qubits on which processing measurements occur, while unlabeled

qubits are those which remain as the output of the computation when the processing
measurements are complete. Note that the qubits are labeled by a positive integer n and
a single-qubit unitary, which we refer to generically as U ; here U = HZ±αj

, HZ±βj
.

The n label indicates the time-ordering of the processing measurements, with qubits
having the same label capable of being measured in either order, or simultaneously.
The time order is important, because it determines which measurement results can
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be fedforward to control later measurement bases. The U label indicates the basis
in which the qubit is measured, denoting a rotation by the unitary U , followed by a
computational basis measurement. Equivalently, a single-qubit measurement in the
basis {U†|0〉, U†|1〉} is performed. The ± notation in HZ±α2

and HZ±β2
indicates

that the choice of sign depends on the outcomes of earlier measurements, in a manner
to be specified separately. We’ll give an example of how this works later.

10.2.2 Simulating quantum circuits in the cluster-state model
We now explain how quantum circuits can be simulated using a cluster-state compu-
tation. The key idea underlying the simulation is a simple circuit identity, sometimes
known as one-bit teleportation,

|ψ〉 • H

|+〉 • XmH|ψ〉

(10.7)

Here, m is the outcome (zero or one) of the computational basis measurement on the
first qubit. This identity may be verified by expanding |ψ〉 = α|0〉+ β|1〉, so the state
vector after the controlled-PHASE and Hadamard gates is α|+,+〉 + β|−,−〉, by the
gate definitions given earlier. This state may be re-expressed as (|0〉 ⊗H|ψ〉 + |1〉 ⊗
XH|ψ〉)/

√
2, from which the result follows.

The identity of (10.7) is easily generalized to the following identity

|ψ〉 • HZθ

|+〉 • XmHZθ|ψ〉

(10.8)

The proof is to note that Zθ commutes with the controlled-PHASE gate, and thus the
output of the circuit is the same as would have been output from the circuit in Equa-
tion (10.7) had Zθ|ψ〉 been input, instead of |ψ〉.

The proof of (10.8) is elementary, but the result is nonetheless remarkable. Observe
that although the first qubit is measured, no quantum information is lost, for no matter
what the measurement outcome, the posterior state vector of the second qubit is related
by a known unitary transformation to the original input, |ψ〉.

It is tempting to regard this as unsurprising. After all, suppose we replaced the
controlled-PHASE gate by a SWAP gate, which merely interchanges the state of the two
qubits. Then we would not expect a measurement on the first qubit to destroy any
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quantum information, since all the quantum information would have been transferred
from qubit one to qubit two before the measurement on qubit one.

However, this is not what happens, as can be seen from the fact that by varying the
basis in which the first qubit is measured, i.e., by varying θ, we can vary the unitary
transformation effected on the second qubit, without destroying any quantum informa-
tion. This may be regarded as a generalization of the EPR effect, and may also be
viewed as an instance of a quantum error-correcting code.

We can use (10.8) to explain how cluster-state computation can simulate quantum
circuits. We begin by explaining how to simulate a single-qubit circuit of the form

|+〉 HZα1 HZα2 (10.9)

This apparently trivial case contains the most important ideas used in the general case.
Note that we assume the qubit starts in the |+〉 state vector, and that single-qubit gates
are of the form HZα. These assumptions are made for convenience, and do not cause
any loss of generality, since it is clear that an arbitrary single-qubit circuit can be sim-
ulated using the ability to simulate these operations.

The cluster-state computation used to simulate circuit (10.9) is

By definition, this cluster-state computation has an output equal to the output of the
following quantum circuit1:

|+〉 • HZα1

|+〉 • • HZ±α2

|+〉 •

(10.10)

Equivalently, we can delay the operations on the second and third qubits until after the
measurement on the first qubit is complete:

|+〉 • HZα1

|+〉 • • HZ±α2

|+〉 •

(10.11)

1Note that the double vertical lines emanating from the meter on the top qubit indicate classical feedfor-
ward and control of later operations. We use this and similar notations often later in the paper.
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To determine the output, observe that the two highlighted boxes are both of the form
of (10.8), and thus the output of the circuit is Xm2HZ±α2X

m1HZα1|+〉, where m1

andm2 are the outputs of the measurements on the first and second qubits, respectively.
Observe that feedforward can be used to choose the sign of ±α2 so that Z±α2

Xm1 =
Xm1Zα2

. We also have HXm1 = Zm1H , and thus the output may be rewritten as
Xm2Zm1HZα2

HZα1|+〉, which, up to the known Pauli matrix Xm2Zm1 , is identical
to the output of the conventional single-qubit quantum circuit (10.9).

This example generalizes easily to larger single-qubit circuits containing gates of
the form HZα. The general proof strategy is: (1) rewrite the cluster-state computa-
tion in terms of an equivalent quantum circuit; (2) reinterpret the quantum circuit as a
sequence of circuits of the form (10.8); (3) in the resulting expression for the output
state, commute operators of the form Xm all the way to the left, using feedforward to
choose signs on the terms of the form Z±α to ensure that after commutation they are
of the form Zα. The result is a state which, up to a known Pauli matrix, is equivalent
to the output of the single-qubit quantum circuit.

These ideas generalize also to multi-qubit quantum circuits. For example, the cir-
cuit: can be simulated using the above cluster-state computation. The proof of this

equivalence follows exactly the same lines as in the single-qubit case, and is only no-
tationally more complicated. We omit the details, and suggest the interested reader fill
them in.

Summing up, we have shown how the cluster-state model of computation can be
used to efficiently simulate any quantum circuit whose inputs are all |+〉 state vectors,
and whose gates are either controlled-PHASE gates, or gates of the form HZα. This set
of resources is universal for quantum computation, and thus the cluster-state model is
capable of efficiently simulating any quantum circuit. Conversely, it is straightforward
to see that any cluster-state computation may be efficiently simulated in the quantum
circuit model, and thus the two models are computationally equivalent.

10.2.3 A few final words

For many years, the cluster state based model was the only model for measurement-
based quantum computing known. This is for good reason, as it is not quite obvious
how to devise a model that is not based on commuting quantum gates. That said, later,
many models have been found, including ones based on ground states of gapped local
Hamiltonians. One can even find full computational phases of matter so that within
every point in a phase of matter, one can do measurement-based quantum computing.
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10.3 Other models of quantum computing
There are other models of quantum computing, other than adiabatic quantum comput-
ing and measurement-based quantum computing. One only has to be able to efficiently
simulate the circuit model of quantum computing. There is the Hamiltonian model
of quantum computing, where one measures a qubit after performing a unitary time
evolution, with O acting on a single qubit only,

p = tr(e−itHρeitH(O ⊗ I)), (10.12)

for a suitable t > 0, where
H =

∑
j

hj (10.13)

is a local Hamiltonian, i.e., a sum of terms each of which acts on a small number
of qubits only. Even more compelling could be the dissipative model for quantum
computing in which one performs a suitable dissipative map and estimates for a suitable
t > 0

p = tr(etL(ρ)(O ⊗ I)), (10.14)

where the Liouvillian is given by

L(ρ) = −i[H, ρ] +
∑
j

(
L†jρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLjρ

)
. (10.15)

Here, again, each of the terms {Lj}, referred to as Lindblad operators, are local and act
on a small number of qubits only. The first part is the familiar part of the Schrödinger
time evolution. The latter is a Markovian master equation capturing dissipative dynam-
ics. This is interesting, as dissipation is usually seen as an enemy of coherent quantum
evolution, and not a friend. So even with controlled dissipative dynamics alone, one
can in principle realize a quantum computer.


