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Chapter 12

Non-universal quantum
computers

12.1 Quantum simulators

So far, we have discussed universal quantum computers. But then, quantum computers
as we have them are not quite universal. They are smallish, have limited control, and are
noisy. One speaks of noisy intermediate scale quantum (NISQ) devices. What can such
devices do? The answer to this is not quite known, but we have a look at some aspects
thereof. The first application is that of a quantum simulation. Quantum simulators
come in several flavours. One distinguishes static quantum simulators probing static
such as ground state properties from dynamical quantum simulators. The latter probe
dynamical properties that can be probed in a time evolution of the type

〈O(t)〉 = tr(e−itHρ(0)eitHO), (12.1)

where

H =

N∑
j=1

hj (12.2)

is typically a local Hamiltonian acting on a lattice involving n sites of local dimension
d, equipped with a Hilbert spaceH = (Cd)⊗N . Local here means that each of the terms
{hj} acts on a small number of sites only, usually nearest neighbours. The observable
O is commonly local as well, such as a local Pauli matrix, say,O = Z acting on a single
site. We have seen that local Hamiltonian evolution is in principle BQP complete, so
one can think of quantum computation in this fashion. But this is not how one usually
thinks about such quantum simulators. Instead, one is interested in learning properties
of strongly correlated quantum systems, beyond classical capabilities.
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12.1.1 Analog quantum simulators
In analog quantum simulation, one recreates, mimicks, the exact Hamiltonian of the
original system, but under precisely controlled conditions. This is much less of a ridicu-
lous idea than it may first appear. In fact, in systems of cold atoms in optical lattices or
with trapped ions one can recreate interacting systems very precisely, and also probe
them in the laboratory. The fact that time evolution is BQP complete here comes in as
an advantage: One cannot devise universal classical simulation algorithms of quantum
dynamics. Therefore, classical simulation algorithms such as quantum Monte Carlo
Methods, density functional theory or tensor network methods soon reach their limi-
tations. But analog quantum simulators do not face such restrictions. This is an enor-
mously interesting field of research.

12.1.2 Digital quantum simulators
Digital quantum simulators require basically quantum computers. In the dynamical
reading, one slices time evolution into stroboscopic time slices and approximates the
continuous time evolution by a number of small time evolution steps approximated by
a gate-based quantum computer. The formula at the heart of the matter is here the
Trotter formula.

Trotter formula: For any two Hermitian operators A and B, one has

eA+B = lim
n→∞

(
eA/neB/n

)n
. (12.3)

This can be made a functioning quantum algorithm. For two Hamiltonian termsH1

and H2, with ‖H1‖ ≤ K and ‖H2‖ ≤ K one has

e−iH1e−iH2) = e−i(H1+H2) +O(K2). (12.4)

Pushing this idea further, for local terms h1, . . . , hn of a Hamiltonian

H =

N∑
j=1

hj (12.5)

one finds
e−ih1 . . . e−ihn) = e−i(h1+h2+···+hn) +O(n3K2), (12.6)

if for all j, ‖hj‖ ≤ K. For a constant C > 0 such that the number of steps is lower
bounded as

n > CN3(Kt)2/ε, (12.7)

one has
‖(e−ih1t/n . . . e−ihN t/n)2 − e−iHt‖ ≤ ε. (12.8)

This gives rise to an algorithm to approximate continuous time evolution of local
Hamiltonians with an effort ofO(polylog(N)(‖H‖t)2/ε): The time evolution is slices
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into pieces that can be gate decomposed on a quantum computer. This is the most basic
of all digital quantum simulation schemes. It has been further developed into higher
order schemes that have a favourable error scaling, linear combination of unitaries ap-
proaches, an idea called qubitization and randomized schemes. It is a flourishing topic
of research still.

12.2 Variational quantum computers

12.2.1 Variational quantum eigensolvers

Quantum computers exist, with system sizes up to N = 72 qubits. This is too little
to perform the Shor algorithm for reasonable system sizes including quantum error
correction. But is still good enough to tackle interesting problem. One such approach
is to use quantum computers in hybrid algorithms in which a quantum computer is
only a part of a larger classical algorithm. This classical algorithm takes data from
measurements from the quantum circuits, alters the control parameters and accordingly
prepares states and alters the variational quantum circuits along the way. The quantum
part at the heart of the algorithm is a short quantum circuit

(θ) := (θ1, . . . , θp) 7→ U(θ1, . . . , θp) (12.9)

defined by real variational parameters (θ1, . . . , θp). In variational quantum eigen-
solvers, one hence basically solves the following problem.
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Variational quantum eigensolvers: They aim at approximately finding a solution
to

Emin = min〈ψ(θ)|H|ψ(θ)〉, (12.10)

where
|ψ(θ)〉 := U(θ1, . . . , θp)|0, . . . , 0〉. (12.11)

This may look like a simpler an enterprise that it actually is in practice. After all,
one has to find good variational sets so that one can expect a good approximation in
the first place. This is not obvious, and one has to find a good compromise between
expressivity and depth of the involved circuits. This applies, e.g., to problems in quan-
tum chemistry where one has to find good representations to start with. Then, one has
to find strategies of finding good updates

(θ1, . . . , θp) 7→ (θ′1, . . . , θ
′
p). (12.12)

Indeed, one can estimate gradients by taking measurements and performing updates
based on that. Using ideas such as parameter shift rules help reducing the number of
expectation values one needs to measure to find good updates.

12.2.2 Quantum approximate optimization algorithm
Quantum approximate optimization goes a step further. It aims at finding good approx-
imations to combinatorical optimization problems, such as MaxCUT. Such problems
are often NP-hard in worst case complexity. Still, one hopes to find good approxima-
tions with quantum algorithms. The goal is to find an approximate solution to a cost
function

f : {0, 1}n → R+
0 . (12.13)

Such a cost function can be encoded in a HamiltonianHf , so that finding the maximum
of f amounts to finding the ground state energy

Emin := min〈ψ|Hf |ψ〉, (12.14)

of Hf over all quantum states. One aims at finding a binary string that achieves an
approximation ratio r for

f(z)

fmax
≥ r (12.15)

for all z ∈ {0, 1}n, for the optimal solution being

fmax := max
z∈{0,1}n

f(z). (12.16)

One does not expect to get an exact solution: The problem being NP-hard in worst case
complexity means that an exact solution is also out of reach for a quantum computer.
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But one aims at realizing an approximate solution. This is achieved by initially prepar-
ing a product state described by a state vector |+〉⊗N and by applying a sequence of
steps

e−iγjHf (12.17)

for j = 1, . . . , p, implementing the encoding Hamiltonian, followed by products of
local Pauli X rotations

(e−iβjX)⊗N , (12.18)

that “kick the state out of the Pauli-Z basis”. At the end of the day, after p steps,
this sequence is followed by an estimation of the expectation value 〈Hf 〉 by virtue of
repeated measurements. The variational parameters (γ1, . . . , γp, β1, . . . , βp) are opti-
mized to minimize 〈Hf 〉. The entire state vector before the measurement is hence

(e−iβpX)⊗Ne−iγpHf . . . (e−iβ1X)⊗Ne−iγ1Hf |+〉⊗N . (12.19)

The variational parameters are again chosen using similar strategies as above. Similar
issues of expressivity and classical control appear as well. This algorithm is called
quantum approximate optimization algorithm. It is much studied, for good reason. At
the same time, there is evidence that with too short circuits, no quantum speedup can be
attained. Since one cannot expect an exact solution, people are also deeply concerned
with what improvements one can precisely expect over classical algorithms. One has
to be aware of the fact that one can also find good classical efficient approximations,
for example, by so-called convex relaxations of the original combinatorical problem.

12.2.3 Closing remarks
These are highly interesting and exploratory fields that receive a lot of attention. Sim-
ilar ideas are being considered in quantum-assisted machine learning. At the end of
the day, the key question is to what extent one can realize a quantum advantage, so in
what way such near-term algorithms can achieve computational tasks outperforming
classical algorithms for the same task.


