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Chapter 2

Elements of quantum
(information) theory

This is a course on quantum information theory, but it cannot hurt to brush up the ba-
sics of quantum theory, given that we will make heavy use of it. In this description,
qubits and Pauli operators will feature. Therefore, in this chapter, we will be concerned
with quantum mechanics as a physical theory. Every physical theory is supposed to
make predictions on future measurement outcomes when performing experiments with
a well-defined physical system that is initially prepared in the same way. The predic-
tions of quantum mechanics are of a statistical nature: The theory is utterly silent about
specific measurement outcomes. It will rather provide probabilities for obtaining cer-
tain outcomes. Conversely, to obtain evidence into the correctness of a prediction, one
needs to perform many experiments under identical conditions. Then, by investigating
relative frequencies of measurement outcomes, one can estimate probabilities. At the
heart of the formalism are notions of expectation values. This is no shortcoming of the
theory: This intrinsic randomness is actually a deep structure element of quantum me-
chanics that is there to stay: Bell’s theorem shows that there cannot be an underlying
classical statistical picture that can be held responsible to explain the randomness of
quantum mechanics. That is to say, we have to ask ourselves how to capture states –
the collection of information summarizing all information required to make future pre-
dictions – how observables – the quantities that can be measured. Also, we will think
about how systems evolve in time. We will also see how composite quantum systems
can be captured – very important in quantum information theory – and learn about the
Schmidt decomposition.

2.1 Quantum states and observables

2.1.1 Pure quantum states of qubits and qudits
Classical bits can take the values 0 and 1 only. This is the commonly used basic
unit of information, reflecting an on and off state of a basic cell. The analog of the
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6 CHAPTER 2. ELEMENTS OF QUANTUM (INFORMATION) THEORY

classical bit is the simplest quantum system, the quantum bit or in short qubit. This is
the heart of the matter why quantum systems are more powerful than classical systems
when it comes to applications in information processing. One can still identify 0 and
1 with basis vectors |0〉 and |1〉 of a complex vector space C2, but it state space is
considerably bigger than that of classical bits. Quantum systems are associated with a
Hilbert space, a complex Hilbert space is a vector space equipped with a scalar product
that is complete with respect to the norm induced by the its scalar product. For a qubit,
this vector space is C2.

State vectors: Pure quantum states are described by normalized state vectors |ψ〉 ∈
H from a complex Hilbert space.

Such state vectors are general superpositions

|ψ〉 = α|0〉+ β|1〉 (2.1)

of basis vectors |0〉 and |1〉, with complex α, β, normalized as

|α|2 + |β|2 = 1. (2.2)

This example already shows that qubits cannot only be pointing up or down in quantum
mechanics. They can be in an arbitrary superposition of pointing up or down. The
associated Hilbert space is simply H = C2. The scalar product between two state
vectors is written as 〈ψ|φ〉. Normalization means that the standard vector norm takes a
unit value, which in turn is equivalent with

〈ψ|ψ〉 = 1. (2.3)

The vector 〈ψ| ∈ H∗ is a dual vector. Jokingly referring to the term bracket, one also
calls dual vectors “bras” and vectors “kets”. Matrix elements of operators A take the
form 〈ψ|A|φ〉. For every Hilbert space of a d-dimensional quantum system, referred to
as qudit in the context of quantum information, one can pick a basis

B = {|0〉, . . . , |d− 1〉}. (2.4)

In this basis, every state vector can be expressed as

|ψ〉 =
d−1∑
j=0

cj |j〉. (2.5)

The complex numbers c0, . . . , cd−1 are called coefficients. The basis is normalized and
complete, which means that

〈j|k〉 = δj,k, (2.6)
d−1∑
j=0

|j〉〈j| = 1. (2.7)

All this applies to so-called finite-dimensional quantum systems, where d is an integer.
We will see that qudits with a prime dimension d take a particularly important role.
This has to do with the fact that Zd is a finite field.
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2.1.2 Mixed quantum states of qubits
As we know, pure states are not sufficient to capture all possible preparations. This is
also true classically: More generally, we should consider the situation in which the bit
takes the values 0 and 1 only with some probabilities p0 and p1, respectively. More
formally put, the state space of a classical bit is the straight line segment, reflecting a
“mixture” or a convex combination 0 and 1. If the probability of having 0 is p0 and that
of having one 1 is p1, then the state of the system is given by a vector (p0, p1) ∈ R2

with
p0, p1 ≥ 0 (2.8)

normalized as
p0 + p1 = 1. (2.9)

This may be a bit of an overloaded way of putting it: But this is a convex set, a simplex
in fact, and (1, 0) and (0, 1) – corresponding to 0 and 1 – are the extreme points of this
set. Probabilistic mixtures take values in the interior of the set.

Similarly, pure quantum states are not all there is in quantum mechanics. More
generally, one needs to consider mixed states. A most paradigmatic situation is one in
which one prepares |0〉 with some probability p0 and |1〉 with probability p1 = 1− p0.
There is no state vector that reflects this situation. For this, we need to resort to density
operators. The state space of a qubit is no longer a straight line segment, but can be
represented as a ball, the Bloch ball. It generalizes probability distributions to matrices

ρ =

[
p0 c
c∗ p1

]
∈ C2×2. (2.10)

Eq. (2.8) is being replaced by the constraint that ρ is positive semi-definite,

ρ ≥ 0, (2.11)

that it is normalized as
tr(ρ) = 1. (2.12)

Such a matrix ρ is called density matrix or simply the quantum state of the qubit. Since
this density matrix is obviously Hermitian, its main diagonal elements are clearly real,
and they are positive by virtue of Eq. (2.11). In fact, due to Eq. (2.12), they can be
identified with a classical probability distribution (p0, p1). In fact, diagonal density
operators can be identified with finite probability distributions.
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But there is more to a quantum state: There is now an off-diagonal element c ∈ C
of ρ. This may be innocent looking, but makes a big difference. One can no longer
interpret a quantum state as a classical alternative. It is not in a probabilistic mixture of
0 or 1. In fact, the off-diagonal blocks signify a superposition, the qubit can be in “0 and
1 at the same time”. It is common for quantum systems to be in such superpositions,
even if our everyday intuition may find this alien or strange. The extreme points are
precisely the pure states that we know from elementary quantum mechanics. Again,
these extreme points can be written as complex vectors

|ψ〉 = α|0〉+ β|1〉 (2.13)

with α, β ∈ C satisfying |α|2 + |β|2 = 1. The respective rank-1 projections onto
|0〉 and |1〉 are then given by |0〉〈0| and |1〉〈1|. These basis vectors are isomorphic to
density operators as

|0〉 h |0〉〈0| h
[

1 0
0 0

]
, |1〉 h |1〉〈1| h

[
0 0
0 1

]
. (2.14)

It is both common to use the vector notation for pure states (i.e., extreme points of the
set) as well as density matrices. It will depend on the context what is more natural
to use. So indeed, a qubit has a larger state space than a simple bit, reflecting the
superposition principle that is not present classically in the same fashion. This already
points to the direction that we can use the qubit for the encoding of information in a
different way than classically, even though there are some subtleties involved.

This is a good moment to discuss a number of examples. Let us go back to our
initial situation discussed at the beginning of the chapter, of preparing |0〉 or |1〉 with
equal probability. We can now easily associate this with a density operator

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (2.15)

We can write this in matrix form – remember that operators and their matrix represen-
tation are identified with each other throughout the script

ρ =

[
1
2 0
0 1

2

]
. (2.16)

We have that
tr(ρ2) =

1

4
+

1

4
=

1

2
< 1. (2.17)

This in fact the minimum value tr(ρ2) can take for a system with H = C2. The pure
state ρ = |0〉〈0| in turn is represented as

ρ =

[
1 0
0 0

]
, (2.18)

obviously satisfying tr(ρ) = 1. Generally, if we have probabilities p0 and p1 to prepare
|0〉〉 and |1〉, we have the density operator

ρ =

[
p0 0
0 p1

]
. (2.19)
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But of course, we are not forced to take the standard basis. The situation of having
prepared |+〉 and |−〉 with equal probabilities is captured as

ρ =
1

2
|+〉〈+|+ 1

2
|−〉〈−|. (2.20)

This is

ρ =
1

4
((|0〉+ |1〉)(〈0|+ 〈1|)) + 1

4
((|0〉 − |1〉)(〈0| − 〈1|))

=
1

2
|0〉〈0|+ 1

2
|1〉〈1|, (2.21)

with matrix representation

ρ =

[
1
2 0
0 1

2

]
. (2.22)

There is a cute observation that is important at this point: There are many different
ways of preparing the same density operator

2.1.3 Quantum state spaces as convex sets
In the same way, general density operators or quantum states are positive semi-definite
matrices over this complex vectors space Cd of dimension d.

General quantum states: A general quantum state of a d-dimensional quantum
system is given by an operator ρ over the vector space Cd that is positive semi-
definite and normalized as

ρ ≥ 0, tr(ρ) = 1. (2.23)

The convex set of such operators is referred to as the state space S(H) ⊂ Cd×d.

It goes without saying that ρ ≥ 0 already implies that

ρ = ρ† (2.24)

is Hermitian. It means that its eigenvalues are real and non-negative. The familiar state
vectors correspond to the pure states of this set.

Pure quantum states: The extreme points satisfy tr(ρ2) = 1 and correspond to
vectors reflecting pure states, they can be written as

ρ = |ψ〉〈ψ| (2.25)

vectors |ψ〉 ∈ H in that vector space, normalized as 〈ψ|ψ〉 = 1.

The set S(H) is indeed a convex set: If ρ1 ∈ S(H) and ρ2 ∈ S(H), then the
straight line segment

λρ1 + (1− λ)ρ2 ∈ S(H) (2.26)
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is again contained in state space. That is to say, the mixing (i.e., the convex com-
bination) of two quantum states ρ1 and ρ2 gives again rise to a valid quantum state.
The interpretation of mixing is basically the same as that of convex combinations of
probability distributions. If we prepare ρi (pure or mixed) with probability pi, for
i = 1, . . . , n, we obtain the mixed quantum state

ρ =

n∑
i=1

piρi. (2.27)

But again, only the physical quantum state ρ has any significance, and not the particular
ensemble.

2.1.4 Observables and expectation values
Quantities that can be measured in experiments are called, unsurprisingly, observables.
They are associated with Hermitian operators A, meaning that

A = A†. (2.28)

Their eigenvalues (or rather spectral values, but let us not be too mathematically pedan-
tic at this point) are possible outcomes of (idealized projective) measurements. The fact
that observables are Hermitian implies the property that their eigenvalues (or spectral
values) are real, which is a nice feature if one wants to interpret them as measurement
outcomes.

Observables: Observable are Hermitian operations in a Hilbert space.

For pure states represented as state vectors |ψ〉, expectation values of such observ-
ables for systems prepared in pure states are given as

〈A〉 = 〈ψ|A|ψ〉. (2.29)

From this, it is also obvious how to compute expectation values for general mixed
states. Writing ρ as

ρ =

n∑
i=1

pi|ψi〉〈ψi| (2.30)

and exploiting the linearity of the trace and the property that the trace is preserved
under cyclic permutations, we find for the expectation value

〈A〉 =

n∑
i=1

pi〈ψ|A|ψ〉 (2.31)

=

n∑
i=1

pitr(A|ψi〉〈ψi)

= tr(A

n∑
i=1

pi|ψi〉〈ψi)

= tr(Aρ). (2.32)
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This insight is worth a box.

Expectation values: Expectation values of observables A of systems prepared in
quantum states ρ are given by 〈A〉 = tr(Aρ).

As we know, such expectation values make predictions about relative frequencies
in experiments. An important family of observables that plays an important role in
quantum infomation theory for good reason is that of the Pauli matrices.

Pauli matrices: The Pauli matrices are given by

X = |0〉〈1|+ |1〉〈0| =
[

0 1
1 0

]
, (2.33)

Y = −i|0〉〈1|+ i|1〉〈0| =
[

0 −i
i 0

]
, (2.34)

Z = |0〉〈0| − |1〉〈1| =
[

1 0
0 −1

]
, (2.35)

1 = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
, (2.36)

The identity is commonly included in the collection of Pauli matrices. It is also
now obvious how to compute their expectation values. The expectation value of Z of a
system prepared in |ψ〉 = α|0〉+ β|1〉, for example, is simply given by

〈ψ|Z|ψ〉 = |α|2 − |β|2. (2.37)

The Pauli operators are not only observables, but also unitary operators.
It now also becomes clear what the significance is of quantum state spaces being no

simplices: Since all expectation values of observables are computed as 〈A〉 = tr(Aρ),
we get exactly same same value for all observables in case of

ρ =

n∑
j=1

pj |ψj〉〈ψj | =
m∑
k=1

qk|φk〉〈φk|, (2.38)

even if all of the probabilities {pj} and {qk} as well as all state vectors {|ψj〉} and
{|φk〉} are different. In fact, now even n = m has to hold. What matters for all
outcomes in all experiments is the density operator, not the mixed ensemble we have
started with. Sometimes, people use notions of the kind, “the system is in some pure
state vector |ψj〉, j = 1, . . . , n, we simply do not know which one”. Such reasoning
is not quite precise and can be plain wrong, in which case it is referred to as preferred
ensemble fallacy.
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2.1.5 Diagonalization and traces

Observables can always be diagonalized. After all, unitary operators are precisely those
that map one orthonormal basis onto another one. They are very important for all that
is to come.1

Diagonalization: Every Hermitian A ∈ Cd×d can be diagonalized in that there
exists a unitary operator U ∈ U(d) (satisfying UU† = U†U = 1) and a diagonal
matrix D so that

A = UDU†. (2.39)

That is to say, when expressed in the appropriate basis, every Hermitian operator
takes a diagonal form in the matrix representation. General operators in Hilbert spaces
can, needless to say, be expressed in this basis, as

A =

d−1∑
j,k=0

〈j|A|k〉|j〉〈k|. (2.40)

Their trace is given by

tr[A] =
d−1∑
j=0

〈j|A|j〉. (2.41)

The trace is independent of the choice of the basis, as a moment of thought reveals.
The trace also has a further important property that we have actually already made use
of above. For arbitrary operators A, B, and C, one has

tr(ABC) = tr(CAB), (2.42)

for cyclic permutations of the operators.

2.2 Measurement postulate

The measurement postulate has to give an answer to the following questions: What are
the outcomes of a measurement? What is the probability of obtaining this? What is
the state immediately after the measurement? The measurement postulate settles these
questions for so-called von-Neumann measurements. We will soon turn to a slightly
more general picture that we need a lot in quantum information.

1It may be worth noting that the d× d unitaries form a group, the group U(d).
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Measurement postulate: Let A be an observable with spectral decomposition

A =
∑
k

λkPk, (2.43)

where
Pk =

∑
EVλk

|ψk〉〈ψk|. (2.44)

That is, the Pk = P 2
k are the projections onto the eigenspaces to eigenvalue λk. The

possible measurement outcomes are λj . The probability of obtaining for obtaining
the outcome related to λk is

pk = tr[ρPk]. (2.45)

The state immediately after the measurement is

ρ′k =
PkρPk

tr[PkρPk]
=
PkρPk
tr[ρPk]

. (2.46)

2.3 Unitary time evolution

2.3.1 Schrödinger dynamics
When we prepare a quantum system in some state ρ, how does it evolve in time? The
answer to this question is given by the Schrödinger equation. It is given in the form of
a differential equation. For state vectors, we know the following expression capturing
Schrödinger dynamics generated by some Hamiltonian H ,

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (2.47)

from which we immediately find the following von-Neumann equation.

Von-Neumann equation: General quantum states evolve as

i~
∂

∂t
ρ(t) = [H, ρ(t)]. (2.48)

Making use of the unitary time evolution operator

U(t) = e−iHt/~, (2.49)

valid for time-independent Hamiltonians, we can capture time evolution also as fol-
lows. Since it is unitary, it satisfies

U(t)U†(t) = U†(t)U(t) = 1. (2.50)
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Obviously, U(0) = 1.

Time evolution: The time evolution of a closed quantum systems from time t1 to
t2 > t1 is captured by a time evolution of state vectors as

|ψ(t2)〉 = U(t2 − t1)|ψ(t1)〉. (2.51)

General states, so density operators, evolve according to

ρ(t2) = U(t2 − t1)ρ(t1)U†(t2 − t1). (2.52)

This type of time evolution is referred to as time evolution in the Schrödinger pic-
ture, in which observables are kept constant and quantum states evolve. It can also
make sense to refer to a picture in which states following preparations are kept con-
stant and observables evolve. This picture is referred to as Heisenberg picture. Of
course, the predictions in both pictures are identical. One way of putting time evolu-
tion, therefore, is to say that states at different times are unitarily equivalent, and all the
Schrödiger equation does is to rotate the frame.

2.3.2 Unitary operations
There is an important shift in mindset, however, that is commonly made in quantum
information theory compared to that of common introductory courses: In the latter, one
usually sees the HamiltonianH as the fundamental object, and one aims for identifying
how the system naturally evolves in time. We are still dealing with the same quantum
mechanics, but one looks at the problem differently. One sees

ρ 7→ UρU† (2.53)

as a unitary operation of a quantum state ρ. Physically speaking, this is of course
reflecting nothing but unitary time evolution: But one sees U as the central object,
which could then have been generated from a Hamiltonian as U = eiHt for some
time t ≥ 0. One often abstracts from these Hamiltonians, however, and thinks of
manipulating a given state with a unitary. We will later encounter quantum gates are
particularly important instances of basic unitary primitives. Since the Pauli operators
are unitary, the constitute important examples in this respect.

2.4 Composite quantum systems

2.4.1 Tensor products
How do we describe composite quantum systems in quantum theory? Clearly, the
formalism must have an answer to that. We think of a particle having several degrees
of freedom. Or we aim at describing several different particles at once. How do we
capture this situation? Composition of degrees of freedom is incorporated by the tensor



2.4. COMPOSITE QUANTUM SYSTEMS 15

products in quantum mechanics. Let us assume that we have one degree of freedom
associated with a d1-dimensional Hilbert space

H1 = span{|0〉, . . . , |d1 − 1〉}. (2.54)

We then consider another, second degree of freedom, coming along with a d2-dimen-
sional Hilbert space

H2 = span{|0〉, . . . , |d2 − 1〉}. (2.55)

These spaces could, for example, capture all superpositions of two qubit degrees of
freedom of two particles described by quantum mechanics. The Hilbert space of the
joint system is then given by the tensor product2

H = H1 ⊗H2. (2.59)

It is spanned by the orthonormal basis vectors

{|j〉 ⊗ |k〉 : j = 0, . . . , d1 − 1; k = 0, . . . , d2 − 1} . (2.60)

Such basis elements of tensor products are sometimes also written as

{|j, k〉 : j = 0, . . . , d1 − 1; k = 0, . . . , d2 − 1} . (2.61)

This looks more complicated than it is: While an arbitrary superposition of a state
vector fromH1 can be written as

|ψ1〉 =
d1−1∑
j=0

αj |j〉 (2.62)

and an arbitrary superposition of a state vector fromH2 is

|ψ2〉 =
d2−1∑
j=0

βj |j〉, (2.63)

an arbitrary state vector taken from the composite Hilbert spaceH = H1⊗H2 is given
by

|ψ〉 =
d1−1∑
j=0

d2−1∑
k=0

γj,k|j〉 ⊗ |k〉, (2.64)

as a linear combination of all new basis vectors, with all γj,k ∈ C. If you think at this
point that it may be confusing that such general state vectors contain ones that are no

2Basic linear algebraic properties of the tensor product are taken for granted in this course. E.g., tensor
products satisfy

|ψ〉 ⊗ |ω〉+ |φ〉 ⊗ |ω〉 = (|ψ〉+ |φ〉)⊗ |ω〉, (2.56)

|ω〉 ⊗ |ψ〉+ |ω〉 ⊗ |φ〉 = |ω〉 ⊗ (|ψ〉+ |φ〉), (2.57)

α|ψ〉 ⊗ |φ〉 = (α|ψ〉)⊗ |φ〉 = |ψ〉 ⊗ (α|φ〉) (2.58)

for α ∈ C and |ψ〉, φ〉, |ω〉 being state vector of their respective vector spaces.
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longer a product between the respective Hilbert spaces: Indeed, it is, and we will come
to the profound implications of this later. Again:

Hilbert spaces of composite quantum systems: The Hilbert space of the compos-
ite quantum systems the parts being associated with Hilbert spaces H1 and H2 is
given by the tensor product

H = H1 ⊗H2. (2.65)

2.4.2 Qubit registers
A particularly important situation, unsurprisingly, is the one where we have several
or many qubits at hand: They could be quantum registers in a protocol in quantum
metrology, quantum key distribution. Or they could serve as computational registers of
a quantum computer. This situation is captured by the n-fold tensor product.

Qubit registers: The Hilbert space of n qubits is given by (C2)⊗n = C2⊗· · ·⊗C2.

That is to say, arbitrary state vectors of n qubits can be written as

|ψ〉 = α0,...,0,0|0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉+ α0,...,0,1|0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉 (2.66)
+ . . . α1,...,1,1|1〉 ⊗ · · · ⊗ |1〉 ⊗ |1〉.

A basis ofH is

B := {|i1〉 ⊗ · · · ⊗ |in−1〉 ⊗ |in〉, i1, . . . , in ∈ {0, 1}} . (2.67)

Since the many tensor products can be clumsy, one often writes |0, . . . , 0, 0〉 instead of
|0〉⊗ · · ·⊗ |0〉⊗ |0〉. Again, an arbitrary superposition of basis vectors as in Eq. (2.66)
is a legitimate state vector corresponding to a pure state. This reflects the situation
that a collection of qubits can – in a sense – be in “all classical alternatives at once”.
This idea is also at the heart of quantum computing, in that a register is simultaneously
manipulated in a superposition state reflecting several inputs “at once”. The precise
functioning is subtle and more complicated than that, but this statement already creates
the right mental image to see what this is about. We come back to this at the end of this
section. Similarly, an arbitrary linear operator can be decomposed as

O =
∑
j,k

cj,kAj ⊗Bk, (2.68)

with operators {Aj} and {Bk} on H1 and B1, respectively. We will frequently en-
counter, e.g., tensor products of Pauli operators, such as

X ⊗X, Y ⊗ Z, (2.69)

over (C2)⊗2 for two qubits. We will see that the tensor products of Pauli operators
equipped with the right pre-factors form a group, the Pauli group, which is important in
many aspects of quantum information theory, in particular for quantum error correction
in quantum computing.
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2.4.3 Partial traces
We have encountered the trace, but a concept that is also important in quantum informa-
tion theory is the partial trace. This is particular important for the concept of a reduced
quantum state: It is the quantum mechanical analog of a marginal distribution. It is the
quantum state that one associates to a system if one decides to ignore another part of
the quantum system. Surely, one has to find a consistent assignment. The reduced state
does that.

Formally speaking, in a composite quantum systems with Hilbert spaces H1 and
H2 with bases B1 and B2 = {|0〉, . . . , |d − 1〉}, and an operator O on H = H1 ⊗H2

has the partial trace “to 1” or “tracing out 2” given by

tr2(A) =

d−1∑
j=0

(1⊗ 〈j|)O(1⊗ |j〉). (2.70)

Is is just that: A partial trace over only one tensor factor. Note that while the definition
depends on a specific choice of a basis in B2, it is easy to see that the partial trace
is invariant under the specific basis chosen. Again, particularly important are reduced
states

ρ1 := tr2(ρ) (2.71)

of quantum states ρ of a composite quantum system. It is also clear that any expectation
value of any observable A acting only in the first tensor factor 1 can be computed from
the reduced state only: A moment of thought reveals that

tr(Aρ1) = tr((A⊗ 1)(ρ)). (2.72)

In the light of this observation, the intuition of ignoring a part of a composite quantum
system is most manifest. Let us consider an example. The reduced state of a pure state
|ψ〉〈ψ| with state vector

|ψ〉 = (|0, 0〉+ |1, 1〉)/
√
2 (2.73)

of the first tensor factor is given by

tr2|ψ〉〈ψ| =
1

2
(1⊗ 〈0|)(|0, 0〉+ |1, 1〉)(〈0, 0|+ 〈1, 1|)(1⊗ |0〉) (2.74)

+
1

2
(1⊗ 〈1|)(|0, 0〉+ |1, 1〉)(〈0, 0|+ 〈1, 1|)(1⊗ |1〉)

=
1

2
(|0〉〈0|+ |1〉〈1|). (2.75)

Interestingly, this is no longer a pure state: In fact, it is maximally mixed, the state that
is in the centre of the Bloch ball. This is a purely quantum phenomenon, reflecting
entanglement: Reduced states of pure states can be mixed.

2.4.4 Schmidt decomposition for bi-partite pure quantum states
We end this chapter with a particularly useful insight into pure states of systems com-
posed of two parts. Such systems are called bi-partite quantum systems. Since they are
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often seen as reflecting distributed quantum systems that can be locally manipulated
by two experimentalists, Alice and Bob, say, the subsystems are commonly labeled A
and B instead of 1 and 2. This situation is indeed highly instructive and important and
we look at this in great detail. We consider bi-partite systems of dimension d each. A
product basis of its Hilbert spaceH = HA ⊗HB is given by

B = {|j, k〉, j, k = 0, . . . , d− 1}. (2.76)

A pure state vector can be written as

|ψ〉 =
d−1∑
j,k=0

cj,k|j, k〉, (2.77)

as we know. This set of state vectors includes product states that can be written as

|ψ〉 = |φ〉 ⊗ |ω〉. (2.78)

E.g., a product of basis vectors |ψ〉 = |0, 0〉 would be such a product state vector. Such
states do not feature any correlations once one performs measurement on the respective
parts: The probability distribution generated in this fashion will feature no correlations.
Other vectors that are not products will feature correlations and are called entangled.
We will hear a lot more about entanglement. These are quantum correlations that in
a precise sense have no classical analog. It also means that probability distributions
arising from measurements will be correlated. For our purposes important is the fact
that there exists a basis such that the state vector takes a particularly simple form.

Schmidt decomposition: For every state vector |ψ〉 ∈ Cd ⊗ Cd there exists bases
CA = {|aj〉} and CB = {|bj〉} ofHA andHB , respectively, such that

|ψ〉 =
d−1∑
j=0

√
λj |aj , bj〉, (2.79)

with λj ≥ 0 for all j = 0, . . . , d− 1 and

|ψ〉 = (U ⊗ V )
d−1∑
j,k=0

cj,k|j, k〉,
d−1∑
j=0

λj = 1. (2.80)

The interesting feature of this form is that the double sum is now replaced by a
single sum: It is a normal form every pure state vector can be brought into. Note also
that since going from one local basis to another is reflected by a unitary basis change by
virtue of unitaries U and V acting on the respective tensor factors, the above statement
can also be equivalently phrased in terms of the existence of such U, V ∈ U(d) such
that

(U ⊗ V )|ψ〉 =
d−1∑
j=0

√
λj |j, j〉 (2.81)
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Since the Schmidt form is a normal form, all the “non-local content” can be read off
from it. For example, a maximally entangled pure state is one for which the reduced
state to A is a maximally mixed state,

tr2(|ψ〉〈ψ|) =
1

d
1. (2.82)

This can again be simply read off the Schmidt decomposition.

Schmidt form of maximally entangled state vectors: A maximally entangled
state vector is one for which

λj =
1

d
(2.83)

for all j = 0, . . . , d− 1, a product state vector satisfies λ0 = 1 and λ1, . . . , λd−1 =
0.

The proof of the Schmidt decomposition is a simple application of the singular
value decomposition. Let us first state it in general terms.

Singular value decomposition: For any A ∈ Cd1×d2 , there exist U ∈ U(d1) and
V ∈ U(d2) such that

UAV = D (2.84)

where D is a non-negative real diagonal matrix.

The entries of D are called singular values. For positive semi-definite Hermitian
matrices, these are nothing but the eigenvalues. For general Hermitian matrices, they
are the absolute values of the eigenvalues. But singular values make sense for arbitrary
matrices, and they are hugely important, to say the least. We will come back to them
later. We are now prepared to prove the Schmidt decomposition. Let C ∈ Cd×d be
the matrix composed of the coefficients {cj,k} in Eq. (2.80). By virtue of the singular
value decomposition, there exist U, V ∈ U(d) such that

C = UDV, (2.85)

where

D = diag(
√
λ0, . . . ,

√
λd−1). (2.86)

Note the reversed roles of U and U† as well as of V and V †, but this simplifies our
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notation. We therefore find

d−1∑
j,k=0

cj,k|j, k〉 =
∑
j,k,l,m

Uj,lDl,mVm,k|j, k〉 (2.87)

=
∑
j,k,l

Uj,l
√
λlVl,k|j, k〉

=

d−1∑
l=0

√
λl

d−1∑
j=0

Uj,l|j〉

⊗(d−1∑
k=0

Vl,k|k〉

)

=

d−1∑
l=0

√
λl|al〉 ⊗ |bl〉. (2.88)

Here, we have used that if U ∈ U(d), then also the Hermitian conjugates U† ∈ U(d)
and the transpose UT = U(d) are unitary. Hence, it is easy to see that the {|al〉} and
|bl〉 indeed constitute bases.


