
1

Quantum information theory (20110401)
Lecturer: Jens Eisert
Chapter 7: Quantum key distribution



2



Contents

7 Quantum key distribution 5
7.1 Elements of cryptography . . . . . . . . . . . . . . . . . . . . . . . . 5

7.1.1 A short history of cryptography . . . . . . . . . . . . . . . . 5
7.1.2 One-time pads . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.1.3 Public key distribution schemes . . . . . . . . . . . . . . . . 7
7.1.4 Quantum computers potentially breaking public key schemes . 8
7.1.5 What quantum key distribution can deliver . . . . . . . . . . 8

7.2 Quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . 9
7.2.1 BB84 quantum key distribution scheme as an example . . . . 9
7.2.2 Security proofs . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2.3 General strategies of security proofs . . . . . . . . . . . . . . 12

7.3 Quantum repeaters for secure long-distance quantum key distribution 13
7.3.1 Entanglement based key distribution schemes . . . . . . . . . 13
7.3.2 Entanglement swapping and distillation . . . . . . . . . . . . 14
7.3.3 Full quantum repeater schemes . . . . . . . . . . . . . . . . . 15

3



4 CONTENTS



Chapter 7

Quantum key distribution

7.1 Elements of cryptography

7.1.1 A short history of cryptography
Ideas of cryptography and secret communication are presumably about as old as mankind
is. There are many reasons why one would like to communicate with a legitimate recip-
ient while making sure at the same time that nobody else listens in to the conversation.
This feature of communication is intricately intertwined with rather obvious features
of human behaviour. For this reason it may not be a huge surprise that the history of
cryptography reads like a crime story in the first place.

Examples of applications of cryptography from the more recent past (viewed from
the perspective of the history of mankind, that is) include the cryptographic encoding
of messages by a scytale, a device used as a cipher by the ancient Greeks and Spartans
during military campaigns, first mentioned by the Greek poet Archilochus, who lived
in the 7th century BC. It already features many aspects of a modern cryptographic
scheme. It consists of a cylinder with a strip of parchment wound around it on which
a message is written. The encryption arises from the fact that both the sender and
the legitimate receiver share the cylinder. Once this is available, one can wind the
parchment around it to generate a perfectly readable message. Without it, the message
seems scrambled. The key point is that while two legitimate parties share the same
object (a cylinder in this case, so a key in more modern terms), illegitimate users would
not have access to this object. While this idea gives rise to a code that can obviously be
broken, it has a security level that is presumably sufficient to reflect combat situations
in the ancient world.

Turning to more recent events, it is well known that the fates of history in times of
the second world war have been deeply intertwined with the history of secure commu-
nication. For example, Admiral Isoroku Yamamoto, the leading military commander
of the Japanese Navy during World War II and the architect for the attack on Pearl
Harbor, announced his advent to the front line base on the island of Bougainville to
boost morale – of course strictly encrypted, that is. Only that it was not sufficiently
encrypted after all. The encryption system used – the Japanese Naval Cipher JN-25D
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6 CHAPTER 7. QUANTUM KEY DISTRIBUTION

in this case – was intercepted and with some effort successfully decrypted by US naval
intelligence units. By the time, Yamamoto was arriving, the US was already there.

Maybe even more prominently, during World War II, efforts of encryption and ef-
forts of deciphering messages had a decisive impact. Submarines obviously make sense
only if their precise location can be concealed. The Enigma machine was the machine
in the focus of a number of pivotal events. It was an electro-mechanical rotor cipher
machine, invented by the German engineer Arthur Scherbius at the end of World War I
and later developed into various variants, that were developed in the early 20th century
to protect commercial, diplomatic and military communication. What the Enigma does,
basically, is to transform each letter into a product of permutations. Unlike the previ-
ously mentioned cryptosystems, it required serious effort to break the code. An early
version of the Enigma was broken by the Polish General Staff’s Cipher Bureau in De-
cember 1932. Later versions used by Nazi Germany could initially not be deciphered;
early on in WW II, the British Government Code and Cypher School at Bletchley Park
built up an extensive cryptanalytic capability to break later versions of the machine.
Alan Turing, a Cambridge University mathematician and logician and the inventor of
the famous paradigmatic Turing machine, provided much of the key insights that even-
tually led to the breaking the naval Enigma, which had a major influence on the naval
war. Once messages sent by submarines could be deciphered, the advantage of sub-
marines was gone, with significant implications on how the war developed. That is to
say, Alan Turing and his team at Bletchley Park had a major contribution to allied vic-
tory (a state of affairs that was later less appreciated when he was very badly treated,
but this is a different matter, intertwined with another historical development).

These examples are mentioned only to highlight how the history of cryptography –
as a history of code making and code breaking – is intimately intertwined with impor-
tant events in history. By no means is this supposed to mean that the use of cryptogra-
phy is confined to the military realm. Quite to the contrary, the use of cryptography is
permeant to many aspects of our modern lives, in fact, it is ubiquitous. Whenever one
uses WhatsApp, https, or any instance of internet banking, one resorts to a crypto-
graphic scheme. Secure communication has become a pillar of how we communicate.

7.1.2 One-time pads
Getting more concrete: One can communicate securely if two parties share the same
key. In retrospect this may seem obvious, at the same time it used to be far from clear.
The one-time pad was developed by Gilbert Vernam in 1917, proving that there is an
absolutely secure coding scheme which is secure against eavesdroppers with unlimited
computational power. In the one-time pad, a plaintext is encoded making use of a secret
key (a pad, for that matter) that has the same length as the plaintext itself. The very
same key is also employed by the legitimate receiver to decode the message. Given
that one makes use of the key only once, the encryption scheme is absolutely secure,
a statement that has later been proven by Claude Shannon. In modern cryptographic
systems (such as the Data Encryption Standard (DES) and the Advanced Encryption
Standard (AES)) now used widely, shorter keys are being made use of to encrypt longer
messages, for obvious pragmatic reasons. Such an approach uses fewer resources, but
at the same time is not to the same extent provably secure as the one-time pad is. In
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any case, ultimately, at the heart of the matter is how to establish a secure key in the
first place.

7.1.3 Public key distribution schemes

The most commonly used scheme is based on so-called public key cryptographic pro-
tocols, prominently the famous RSA scheme named after Ron Rivest, Adi Shamir, and
Leonard Adleman. This ingenious idea has actually been invented twice, once by RSA
and once by James H. Ellis. Ellis was a British engineer and cryptographer who in
1970 also invented a public key distribution scheme while working at the Government
Communications Headquarters (GCHQ) in Cheltenham. At the time his results were
kept secret; they became available only later after the embargo had been lifted. In pub-
lic key distribution schemes, a message receiver, now and later on referred to as Bob,
prepares two different cryptographic keys. One that is public and one that is private.
Subsequently, Bob broadcasts the public key through an authenticated channel so that
everyone who listens to this channel can acquire a copy of the public key. There is no
requirement whatsoever to keep this public key secret. The original sender of the mes-
sage, referred to as Alice, encodes her message with the public key from Bob and then
sends out the encrypted message through a public insecure channel. The algorithm is
set up in such a fashion so that the message encrypted with the public key can only be
decrypted in conjunction with the private key.

Public key systems are widely used, basically any cryptographic scheme one en-
counters in electronic communication is based on a public key cryptographic scheme.
The RSA scheme is practically secure, with a security level depending on the key
length. Unfortunately, its security has not been proven. It rests on the existence of
one-way functions: The multiplication is in P, while factoring is contained in NP.

The RSA algorithm involves basically four steps: key generation, key distribution,
encryption and decryption. The core idea is the observation that it is practically pos-
sible to identify three very large positive integers e, d and n with the property that the
modular exponentiation for all integers m with 0 ≤ m < n satisfies

(me)d = m(modn) (7.1)

and that even knowing e and n or even m it can be extremely difficult to find d. RSA
involves a public key and a private key. e basically takes the role of the public key,
d is kept as the private key exponent. Primality test, the decision problem that asks
whether a given number is a prime number or not, used to be in NP, until a probabilistic
algorithm in BPP became known, and later the algorithm was de-randomized to an
algorithm in P (look for the Miller-Rabin primality test and Solovay-Strassen primality
test). A proof of P = NP would indeed prove that one-way functions do not exist,
shaking the basis on which RSA rests. This would imply that there cannot be proven
security in public key distribution schemes. However, the precise practical implications
would depend on the specifics of the argument. For example, if the proof of P = NP

was not constructive, then this proof would not give advice on how to actually break
the key.
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7.1.4 Quantum computers potentially breaking public key schemes

In any case, there is no denying that the lack of provable security poses a significant
security risk. RSA itself was a highly unexpected discovery, and one should hence not
rule out the possibility that someone could find an efficient factoring algorithm and
thus compromise most public cryptographic systems. What is more, a quantum com-
puter can solve factoring in polynomial time (Shor’s algorithm provides a quantum
algorithm for factoring the runtime of which scales polynomially in the length of the
input - it is in BQP in the language of computational complexity). Large-scale quan-
tum computers do not exist yet, but the development is fast. In 2016, IBM made a
16 qubit cloud quantum computer publicly available as a cloud service based on su-
perconducting circuits, which has been characterized using randomized benchmarking
and developed into a 50 qubit machine in 2018. More recently still, Google announced
the 128 qubit Brizzlecone chip, based on a similar architecture. These devices are still
way too small (and too noisy) to pose a security risk. But their development is fast and
the case for quantum computing is open. And indeed, large-scale quantum computers
could break essentially all RSA based cryptographic schemes used today over night.

7.1.5 What quantum key distribution can deliver

Quantum key distribution is different. Its security on the level of the scheme is math-
ematically proven. Its security is based on very fundamental physical laws of nature.
These are the laws of quantum mechanics. Quantum mechanics is the theory of the
world at the small scale: That of atoms, ions and light quanta. But since the macro-
scopic world is ultimately built from such building blocks, it equally applies to the
macroscopic world: It is the best physical theory of nature that we have today. In quan-
tum key distribution, one envisions to make use of constituents in which the quantum
features are most manifest. Practically speaking, one sends single photons (excitations
of light modes), weak pulses or Gaussian light through fibres (the same kind of fibres
that are used by the Telekom) or free space, even via satellites.

Ultimately, the security is rooted in structure elements of quantum mechanics: One
cannot learn about the unknown quantum state of a quantum systems without disturbing
the state. There are trade-offs: One can perform a gentle measurement, learn very little
and at the same time disturb very little. And one can do hard projective measurements.
But there is no way one can obtain some information about an unknown quantum
state without changing the same state to some extent. An implication of this feature is
that quantum information cannot be copied or cloned, as one commonly says in this
context. It is impossible to build a machine that takes a physical system in an unknown
quantum state and produces two quantum systems in the very same state. If one could
do disturbance-free measurements, that would be possible, but the no cloning feature
of quantum mechanics forbids that. We will see that this is a simple consequence of
the linearity of quantum mechanical laws. Quantum key distribution is no far-fetched
dream: It is already reality. One can commercially buy quantum cryptographic devices:
The company IDQuantique is only one out of many offering such products. It has been
one of the early successes of the field of quantum cryptography to implement a BB84
scheme (the simplest and most used scheme for quantum key distribution that we will
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discuss soon) making use of an installed optical fibre cable linking Geneva and Nyon
over 23 km through Lake Geneva in 1995, at remarkably low quantum bit error rates.
This effort basically started the development of long-distance quantum key distribution.
In the meantime, satellite-based quantum key distribution is being pursued.

Why is not all modern cryptography done via quantum key distribution and it is still
a market niche? This has various reasons. The core reason is that reliable quantum key
distribution over arbitrary distances is still hindered by serious technological obstacles.
One needs to build so-called quantum repeaters to compensate for losses, in order to
maintain security in the presence of realistically high noise levels. There is significant
progress in this direction, but fully fledged quantum repeaters have not been imple-
mented yet. This means that quantum key distribution is still confined to relatively
short distances. Then, it is a marketing issue: The market may well grow a lot if people
realize that the security claim in quantum key distribution is very different from that in
public key distribution. Such processes take time. The BMBF (Bundesministerium für
Bildung und Forschung) has “bug-proof communication” on its web page as one of the
strategic aims, and indeed, there is a large scale project on realizing quantum repeaters
by the BMBF, called Q.Link-X (which we are part of). It should be clear that quantum
key distribution is no science fiction, but an important technology of tomorrow.

7.2 Quantum key distribution

7.2.1 BB84 quantum key distribution scheme as an example
We now turn to our first cryptographic application. This scheme, the famous BB84
scheme for quantum key distribution, was the historically first scheme for quantum key
distribution, featuring in its name the initial letters of Bennett and Brassard, the names
of its inventors. It is built on earlier work by Wiesner on quantum money and conjugate
coding. It is both an ingenious scheme that lives up to the expectations of a modern
quantum key distribution scheme and it also serves as a nice example of the quantum
formalism laid out above.1 It is based on the iterated use of single qubits only, so the
state spaces we need to consider are merely S(C2). Interestingly, rigorous security
proofs were only found more than a decade later.

In the BB84 protocol, Alice sends a string of qubits to Bob, prepared one by one,
and hence in a product state. She prepares either states that are eigenstates of Pauli Z
or she prepares eigenstates of Pauli X . That is to say, she prepares orthogonal states
taken from two non-orthogonal bases. Specifically, the protocol proceeds as follows.

• Alice picks an i.i.d. random bit string a ∈ {0, 1}n.

• Alice picks a second i.i.d. random bit string b ∈ {0, 1}n. At this point, she does
not reveal either of the two bit strings.

• Alice now prepares quantum states of single qubits that she sends to Bob. The
basis picked will depend on b: If bi = 0, she prepares the i-th state in the Z

1The recollection of how the BB84 scheme came about is an interesting story in its own right. Note also
that Bennett, a theoretical physicist, actually implemented a first experimental demonstration of the scheme
himself, using a setup that is still standing on his desk in his office at the IBM Watson Center.
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basis with eigenvectors {|0〉, |1〉}, if bi = 1, she prepares states in the X basis
with eigenvectors {|+〉, |−〉}. That is to say, for the following values (bj , aj) she
prepares

(0, 0) : |0〉, (7.2)
(0, 1) : |1〉, (7.3)
(1, 0) : |+〉, (7.4)
(1, 1) : |−〉. (7.5)

Note that |0〉, |1〉 ∈ C2 are orthogonal, and so are |+〉, |−〉 ∈ C2, but the respec-
tive bases are not orthogonal to each other.

• These states are sent to Bob via a quantum channel.

• Bob picks an i.i.d. random bit string c ∈ {0, 1}n.

• Depending on the value cj , Bob measures in the Z basis (cj = 0) or the X basis
(cj = 1).

• If the basis picked by Bob is the same one as the one Alice picked, so if for a
value j one has cj = bj , then the outcome of the measurement will be deter-
ministic: Bob will receive the measurement outcome dj . If no eavesdropper is
present, dj = aj with certainty, following the above rule for quantum measure-
ments.

• If in contrast the basis picked is different, so if for a value j one has cj 6= bj ,
then he will receive an i.i.d. random number, not correlated with aj . At this
point, Bob cannot judge, however, which is the case, since at this point, Bob has
not received any classical information from Alice yet.

• Alice and Bob communicate classically over the bases used, so they reveal the
bit strings b and c. The string a is not revealed at any time, however.

• Alice and Bob discard all cases j for which cj 6= bj . This will happen in ex-
pectation in half the cases. They end up with a bit string I of expected length
n/2.

• They take the measurement outcomes and values aj , j ∈ I .

• In order to determine the presence of an eavesdropper, Alice and Bob now com-
pare a predetermined subset J ⊂ I of the bit string I established. According to
the quantum mechanical rules, the values dj = aj should follow, if no third party
(an “eavesdropper”, commonly referred to as Eve) was present. If an eavesdrop-
per has gained any information about the quantum states sent, this must introduce
errors in Bob’s measurements. Other environmental conditions can give rise to
errors of the same type. If the rate of bits differing in J is p > p0, they will abort
the key and try again, possibly with a different quantum channel, as the security
of the key can not be guaranteed under these circumstances. The threshold value
p0 is chosen so that the number of bits available to the eavesdropper Eve is less
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than this number, privacy amplification can be used to reduce Eve’s knowledge
of the key to an arbitrarily small amount at the cost of reducing the length of the
key.

The remaining bit string I\J is the raw key. Why does this give rise to a secure
key? We will look at security proofs later. The point is that by the time the quan-
tum systems are being sent, Eve has no chance to guess the correct basis any better
than making random choices. In this way, she has to introduce errors to the quantum
state with high probability. In case she guessed right, she will get the right outcome,
as |〈0|0〉| = |〈1|1〉| = 1. In the other cases, however, she will get uniformly random
outcomes, as |〈+|0〉| = |〈−|1〉| = 1/2. Of course, she is not forced to precisely do
such measurements, as she is free in her choices. However, this will not help her. This
is a consequence of a very basic theorem we will encounter later. By the time the
measurement bases are revealed, it is too late, and she cannot make use of that infor-
mation any more. It is the key point of quantum key distribution that this idea does
not only work if Eve sticks to performing von-Neumann measurements in the given
basis. It works if Eve performs arbitrary measurements, even ones that are entangled
over all invocations of the preparations, and making unrealistic assumptions about her.
She might even have a quantum computer at her disposal, allowing for arbitrary coher-
ent manipulation of all qubits sent. Still, asymptotically, she will not gain information
about the key.

7.2.2 Security proofs
Quantum key distribution offers the claim of secure key distribution in the presence of
an eavesdropped that is attributed unlimited, even unrealistic, resources. Historically,
however, before full security proofs were available, particular kinds of attacks were
considered.

• Intercept-resend attack: The simplest type of a possible attack is the intercept-
resend attack, in which Eve performs projective measurements, makes use of the



12 CHAPTER 7. QUANTUM KEY DISTRIBUTION

measurement outcome, and prepares a new quantum system in a suitable state.
It is easy to see that the BB84 scheme is secure against such intercept-resend
attacks.

• Individual attacks: In this type of attack, Eve performs generalized measure-
ments as laid out above, but interacts with each qubit (or other quantum system)
in the channel separately and independently. Invoking the above Stinespring
dilation, physically, this means Eve lets the quantum system transmitted inter-
act with an auxiliary system each which is subsequently measured in a von-
Neumann measurement. The intercept-resend attack is an instance of such an at-
tack. Generally, individual attacks are the most realistic ones given present tech-
nology. Photon number splitting attacks in quantum optical schemes in which
weak pulses are being sent are specifically important instances of such individual
attacks.

• Collective attacks: This is a yet more general kind of attack. Here, Eve again
performs generalized measurement. Again, she prepares independent auxiliary
systems which interact with the quantum systems transmitted. But now she can
perform a joint measurement on the collection of auxiliary systems.

• Coherent attacks: This is an attack that is in no way limited in what Even is
allowed to do.

Any attack will give rise to errors in the transmission. This the quantum bit error rate
Q ≥ 0 captures the rate of errors in transmission. A key quantity used in security
proofs is that of the quantum mutual information between Alice and Bob, as well as
Alice and Eve and Bob and Eve. The quantum mutual information of a bipartite state
defined onH = HA ⊗HB is given by

I(A : B) = S(ρA ⊗ ρB)− S(ρ). (7.6)

This quantity captures correlations in quantum states (both classical and quantum cor-
relations, i.e., entanglement), taking a zero value for product states.

7.2.3 General strategies of security proofs
Historically, the discussion of security of quantum key distribution protocols centred
around the discussion of specific attacks. While this is instructive, it falls short of the
actual promise of quantum key distribution. The first security proofs that considered
an unbounded adversary (and hence coherent attacks) were given more than a decade
after the introduction of the first schemes. Work by Preskill and Shor is noteworthy
in this respect, in that it takes a very physical approach and links the theory of secu-
rity of quantum key distribution to that of quantum error correction and entanglement
distillation explained above.

Only again much later, it was noticed that the security criterion used so far may well
be insufficient: It does guarantees that an eavesdropper cannot guess the key, so in this
sense the scheme is secure. But this is only true of the key is not used subsequently. If
part of the key is ultimately leaked to an eavesdropper (e.g., when it is used to encrypt a
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message that is known to her), the rest may become insecure. Based on these insights,
a more stringent security criterion for quantum key distribution has been introduced,
concomitant with new security proofs. If ρK,E is he joint state of the final key generated
and the quantum information gathered by an eavesdropper Eve, then this state must
be close to an ideal key τK which is perfectly uniform and is independent from the
adversary’s information ρE , as

(1− pabort)D(ρK,E , τK ⊗ ρE) ≤ ε (7.7)

where pabort is the probability that the protocol aborts, D(., .) is again the trace-norm
distance and ε ∈ [0, 1] is a small real number.

7.3 Quantum repeaters for secure long-distance quan-
tum key distribution

7.3.1 Entanglement based key distribution schemes

In Section 7.2.1 we have encountered the BB84 scheme as a scheme for quantum key
distribution in which quantum systems are being prepared and then sent through a
quantum channel. It is the most important and still most practical scheme for quantum
key distribution. Having said that, there are many other schemes for quantum key
distribution. One way of categorizing them is into prepare-and-measure schemes (such
as the original BB84 scheme) and into entanglement-based schemes. The latter type
of scheme at first sight seems quite distinctly different: One first prepares an entangled
state, to then – once distributed – performs local measurements to establish a key.
However, a moment of thought reveals that this is something very similar: In fact,
every prepare-and-measure scheme can be seen as an equivalent to an entanglement
based scheme. Take the maximally entangled state vector of two qubits

|Ω〉 =
1√
2

(|0, 1〉 − |1, 0〉). (7.8)

If Alice on one side performs a Z measurement and obtains 0 as her outcome, Bob’s
system will be in |1〉. Similarly, upon a 1 outcome, Bob’s system will projected to
be in |0〉. That is to say, the measurement on Alice’s side is effectively like a (non-
deterministic) preparation of a quantum state on Bob’s side. Since the state vector is
UU -invariant, i.e., (U ⊗ U)|Ω〉 = |Ω〉 for all U ∈ U(2), the same holds true for X
measurements, and in fact any other measurement in the same basis on both sides. If
Alice projects her system into |+〉, Bob will see |−〉, and if she encounters |−〉, Bob
will have |+〉. Again, this can be seen as a probabilistic preparation. This connection
between prepare-and-measure schemes has long been observed. In fact, a precondition
for security in any scheme, including prepare-and-measure schemes, is the presence of
entanglement in the equivalent entanglement (or correlation) based scheme.
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7.3.2 Entanglement swapping and distillation

However, there is an important conceptual difference: In prepare-and-measure schemes,
there is little one can do about losses when sending quantum systems through quantum
channels. In entanglement based schemes, one can do something about it. Accepting
this, the key question is: How can one establish a maximally entangled state between
arbitrary distances in the first place? This is possible by means of quantum repeaters.
They consist of two steps:

• First, they involve entanglement distillation. We have discussed this above: This
is an LOCC protocol aimed at extracting maximally entangled states. In effect,
both parties will end up with fewer, almost maximally entangled states. Entan-
glement has been “distilled”, in a similar way as one can extract high percentage
alcohol from a liquid in which alcohol is only present in a dilute form. These
maximally entangled states can be used in subsequent steps. This is a highly
interesting procedure: Entanglement, so intrinsic quantum correlations, are here
manipulated like an interconvertible resource.

• Then there are steps of entanglement swapping. This step is maybe even more
intricate and interesting. Think of two maximally entangled states shared by
Alice and Bob on the one hand and Bob and Charlie on the other hand. So let us
start from

|ψ〉 = |Ω〉A,B1
⊗ |Ω〉B2,C , (7.9)

with again

|Ω〉 = (|0, 0〉+ |1, 1〉)/
√

2. (7.10)

That is to say, Bob holds two halves of maximally entangled states. The two
copies will not have any shared history. Now Bob can perform a projective
measurement, projecting the state vector into

(1A ⊗ 〈Ω|B1,B2 ⊗ 1C)|ψ〉 =
1√
2
|Ω〉A,C . (7.11)

That is to say, after the projective measurement, A and C are in a maximally
entangled state, even though these particles have no joint history whatsoever.
The entanglement has been “swapped”. Of course, in a projective measurement,
this would only work in a probabilistic fashion. However, a moment of thought
reveals that this can be made deterministic, in that for each outcome of a joint
measurement on B1 and B2, one can find a Pauli correction on A and C so that
deterministically, |Ω〉A,C is reached. The reason for this is ultimately that

{(1⊗ 1)|Ω〉, (X ⊗ 1)|Ω〉, (Y ⊗ 1)|Ω〉, (Z ⊗ 1)|Ω〉} (7.12)

for Pauli operatorsX,Y, Z,1 constitute a basis of the maximally entangled states
on C2 ⊗ C2.
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7.3.3 Full quantum repeater schemes
A quantum repeater now makes use of such such steps in a hierarchical, tree-like fash-
ion. It involves steps of entanglement distillation between neighbours, followed by
entanglement swapping steps. There are many variants of such quantum repeaters, as
well as numerous suggestions for experimental realizations thereof. In fact, the reliable
realization of quantum repeaters is the key obstacle on the path to secure quantum key
distribution over arbitrary distances – while near-distance quantum key distribution is
perfectly feasible. The trouble is that notions of entanglement distillation and entangle-
ment swapping are generally assumed to rely on quantum memories that store quan-
tum information reliably. Since quantum information has to be transmitted via light
(other quantum systems are hardly feasible for this task), and quantum information is
stored in matter qubits, one needs coherent frequency converters (to align the respec-
tive frequencies) and needs to map quantum states of light onto atoms, ions, or atomic
ensembles. Then, it has to be read out, but needless to say, all coherently again at neg-
ligible losses. This still constitutes a technological road block, even though progress is
fast. In fact, surprising as this may sound, each of the above mentioned components
has already been achieved in experiments. Once this road block is overcome, secure
quantum communication over arbitrary distances is feasible.


