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1. Schmidt decomposition (9 Points: 2+1+1+2+4142)

In the lecture, you already saw the Schmidt decomposition of bipartite quantum states
|W) € Hy ® Hs as given by

9= 3 VR 1) 1)

where {‘wjz )} are orthonormal bases of ;.

In this exercise, we will study some useful properties and applications of the Schmidt
decomposition. First, some warm up

a) Find a Schmidt decomposition of the following two qubits states:
1
[¥1) = —=(/00) +01) +[10))
1
[¥2) = 5(]00) +]01) +[10) +[11))

Let us now look at states with the same Schmidt coefficients, that is

0 =S VEI 6, [9) =3 VAl |4

b) Show that | W) and |®) are related by a local unitary, i.e., a unitary of the form
U ®V with U and V unitary. Give that unitary explicitly.

¢) Show that any local unitary transformation leaves the Schmidt coefficients invari-
ant.

d) Determine the reduced density matrices p; = Try |[UNU| and py = Try [T Y P].
How can the Schmidt coefficients be interpreted? What are the Schmidt coeffi-
cients of the maximally entangled state?

e) Use the Schmidt decomposition to show that any bipartite state |¥) can be ex-
pressed as

) = (A®1)[Q),

for a matrix A, where |Q2) is a maximally entangled state.

f) Use the Schmidt decomposition to show that a pure bipartite state [¢) , 5 is a prod-
uct state if and only if the reduced states pa = Trg(|Y)X¢|) and pp = Tra(|¥X|)
are pure.

2. General teleportation schemes (7 Points: 1+2+1+1+2)

In the lecture you saw a teleportation scheme using a maximally entangled state shared
by Alice and Bob. In this exercise we will generalise this setting to teleportation schemes
with higher local dimensions.



We begin by reformulating the qubit teleportation scheme in terms of Bell-basis mea-
surements. The Bell basis for two qubits is given by

1 1
) = —75(100) + 1)), 1) = —(100) = 1),
|@5) = = (|01) + [10)), [®5) = —(|01) — [10)).

V2 V2

a) Show that the Bell basis can be prepared starting from |®g) using local Pauli
operations only.

In the lecture, you saw the scheme in which Alice applies (H®1%%)(CX ®1) to |¢) |Pg)
and then measures in the Z-basis. She then communicates her results, say a,b on the
two registers to Bob, who applies X?Z° as a correction to obtain |1) on his side.

The two schemes are equivalent via the identification of outcomes
00 4> 0,10 <» 1,01 <> 2,11 < 3,

where we used (a).

This reformulation generalises to a d-dimensional teleportation scheme in which Alice

and Bob share a maximally entangled state |w) = id >S4 | ]ii). As above the scheme

is based on measuring in a maximally entangled orthonormal basis set {|W,)}% |, i.e.,
an orthonormal basis for which Tri[| U, XV, || = 1q = Tra[| Vo X Vs |].

There exist several constructions of linearly independent sets {U "‘}le of d? trace-wise
orthogonal unitary operators U* € U(d),

Tr[UTU?) = Tr[UP'U?) = 6,51

for all o and 3. In the following, we just assume the existence of such a set.

b) Show that such a set {U®}%_ gives rise to a maximally entangled basis set by
setting

0,) =U"®1|w).

The maximally entangled state |w) has the following properties, which are impor-
tant for quantum teleportation scheme.

¢) Show that for an arbitrary unitary U € U(d), (U ® 1) |w) = (1 ® UT) |w).

d) Show that for an arbitrary pure state of Alice |¢),, ((¢], ® 1p) |w) = Ld |0*) 5

and (w|(|¢), ® 1p) = \/Lg (¢*| 5, where |¢*) is the complex conjugate of |@)

Now consider the setting in which Alice and Bob share the state |w),5 and Alice

measures her part of the system in the basis {|V,)}aa = to send her state |¢),, to
Bob.

e) Insert the resolution of the identity > |Wo)Wa|,, and use the result from (c)
and (d) to show that [1) ,, |w) 5 = 2> [Wa) 4 @ (U*)5]1) 5. Then, describe

how to perfom d-dimensional quantum teleportation.

. Introduction to graphical calculus with tensor networks (6 Points: 1+14+1+2+1)

As you might have noticed, already for a little number of tensor factors even simple
calculations can become hard to follow quite easily. Hence, an alternative approach
to visualize such calculations was developed. Namely, graphical calculus with tensor
networks, often atributed to Roger Penrose. We will give a short introduction into
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the basics of this calculation technique in this exercise. However, we encourage you
to have a look into https://arxiv.org/pdf/1603.03039.pdf, which gives a nice and
complete overview over tensor networks. For this course, you won’t need most of the
content but it constitutes a good reference where you can find any concept we will use
(in particular, in chapter 1 and 2).

In tensor network notation, a tensor is simply an object that has indices, usually a set
of complex numbers A;, ;. . A tensor with one index is a vector, one with two indices
is a matrix. A tensor with n indices is denoted as a box with n legs, hence we have the
following correspondences

~ |v) € A, ~ (4| € A,
~1eL(H), —(A}—~AcLH),

d
~ ) @) eHOH, ) :Zuw

Sollc

One can think of each unconnected leg carrying a (dual) Hilbert space. Connecting
two legs denotes contraction of the indices, so that for example the matrix product

(AB);; = >, A By, is denoted by B
a) Draw the expectation value (¢| A 1)) as a tensor network.

b) What does the following tensor network represent?

c¢) Prove

D

d) Using tensor networks, prove the following statement from Exercise sheet 1

Tr(papOa ® 1p) = Tr(Trp(pap)Oa) (2)

Hint: recall that any pap can be decomposed in bases of Ha and Hp as pap =
> i Pig |17 @ [RXL.

e) Prove that Tr(A?) = Tr((A ® A)F) using tensor networks. F denotes the flip
operator exchanging the two subsystems, i.e. F: HQH — HQH,|i) ®|j) —
|7) @ ]i).


https://arxiv.org/pdf/1603.03039.pdf

