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1. On the Kraus representation of quantum channels(10 points : 1 + 2 + 2 + 2
+ 1 + 1 + 1)
Recall that a map C : L (H1)→ L (H2) is a proper quantum channel if and only if it is
completely positive and trace preserving, which is equivalent to

C : ρ 7→
∑
k

EkρE
†
k (1)

for some Kraus operators Ek such that
∑

k E
†
kEk = I. In the following, we investigate

the operational meaning of Kraus operators. For simplicity, we restrict ourselves to
quantum channels with the same input and output space L(X ). Suppose we apply a
unitary U to the joint system and environment in the state ρ⊗|0〉〈0| ∈ L(X⊗Z), where
|0〉 ∈ Z is some reference state, and then we measure system Z in the computational
basis.

a) Show that the action of any unitary on the joint system can be written as

U(ρ⊗ |0〉〈0|)U † =
∑
kl

EkρE
†
l ⊗ |k〉 〈l| ,

with respect to the basis {|i〉}i on the second system for a set of operators {Ek}.
b) Now, we perform a von-Neumann (that is, projective) measurement on Z in the

same basis. Determine the post-measurement state conditioned on outcome i.

c) What is the probability of obtaining outcome i? What does this entail for the
operators Ek?

d) Give the corresponding operational interpretation of the Kraus operators Ek and
the unitary U .

e) Now, suppose we want to implement a projective measurement on X via a global
unitary and a projective measurement on Z. Consider the unitaries U ∈ U(X ⊗Z)
on the joint system that give rise to this situation. What conditions do they have
to satisfy?

Hint: the measurement needs to collapse the state of the first system as well.

f) Can you think of an example for the case of X and Z being each a qubit?

We will show one last property of the Kraus representation

g) Let {Ki}Ni=1 and {K̃j}Ni=1 be two sets of linear operators in L(X ,Z) fulfilling the
completeness relation of Kraus operators. Show that if the two sets are related
by a unitary transformations U ∈ U(N) such that K̃i =

∑
j UijKj, the channels

represented by the sets coincide.

2. From `p to Schatten norms, to trace distance (10 points: 1 + 1 + 1 + 1 + 1 +
1 + 1 + 1 + 1 + 1 )
In quantum information we deal with a handful of different matrix spaces such as the
set of quantum states and also quantum channels. For quantitative statements we
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have to equip these spaces with distance measures. Depending on the application and
context different distance measures have the desired operational meaning.

A prominent role is played by the so called Schatten p-norms. But to set the stage we
first introduce their analogue on vector spaces, namely `p-norms. For 1 ≤ p < ∞ the
`p-norm on the complex vector space Cn is defined as

|| • ||`p : x 7→ ||x||`p :=

(
n∑

i=1

|xi|p
) 1

p

,

and the `∞-norm as

|| • ||`∞ : x 7→ ||x||`∞ := lim
p→∞
||x||`p .

a) Show that || • ||`∞ = max1≤i≤n |xi|.

It is not hard (although tedious) to show that || • ||`p satisfies all properties of a norm
(it is positive definite, absolutely homogeneous, subadditive aka triangle inequality).
Schatten p-norms are defined for linear operators acting on a (finite-dimensional) vector
space V in a similar manner, namely

‖•‖p : L (V)→ [0,∞)

O 7→ ‖O‖p = (Tr [|O|p])
1
p

where |O| =
√
O†O.

b) Show that ‖O‖p = ||σO||`p where σO = (σO (1) , . . . , σO (n)) are the singular values
of O.

Hint: start by writing the singular value decomposition O = UΣV in Dirac (bra-
ket) notation, then write O†O and apply the definition of p norm.

A notable special case is p = 1, that is ‖O‖1 = Tr [|O|]c, which turns out to give a useful
measure of distinguishability between quantum states, called trace distance ‖ρ− σ‖1.
The remaining exercises of this sheet will focus on this.

c) Show that 0 ≤ ‖ρ− σ‖1 ≤ 2 for any pair of density matrices.

In the following, we will prove that the normalized trace distance provides an achievable
upper bound for the probability of obtaining the same outcome if any measurement
(POVM) is performed on ρ vs σ. Suppose Alice flips a coin and, depending on the
result, sends either ρ or σ to Bob. Bob wants to perform a measurement that will tell
him which one of the two states he has. To this end, he implements a POVM with two
operators, M0 and M1, such that the outcome 0 means the state is ρ and the outcome
1 means the state is σ.

d) Show that the probability that Bob successfully determines which state he has is

Psuccess =
1

2
(1 + Tr[M0(ρ− σ)]) (2)

The trace distance measures the optimal probability of distinguishing the states,
in equations this reads

1

2
‖ρ− σ‖1 = max

0≤M≤I
Tr [M (ρ− σ)] . (3)

We will prove this in a few steps.
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e) Write |ρ− σ| in terms of the the positive and negative parts of ρ− σ, P and Q.

f) Show that Tr [P ] = Tr [Q] .

g) Consider the projector on the support of P , ΠP . Use the previous three points to
show that Tr [ΠP (ρ− σ)] = 1

2
‖ρ− σ‖1 .

Hint: try to write each side in terms of Tr [P ].

We are almost done: ΠP achieves our upper bound. We just need to show that ΠP is
also the optimal POVM element:

h) Show that any positive operator M such that M ≤ I will obey

Tr [M (ρ− σ)] ≤ 1

2
‖ρ− σ‖1 = Tr [ΠP (ρ− σ)] . (4)

Hint: use again ρ− σ = P −Q and inequalities for the trace of positive operators
we’ve seen in a previous sheet.

As a concluding remark, to make the connection with the first exercise we note
that this statement can be turned into statements for the distinguishability of
quantum channels.

Finally, we can give an operational interpretation to orthogonal states: the follow-
ing points are to show that Bob can perfectly distinguish ρ and σ if and only if
they are orthogonal, i.e. Tr(ρσ) = 0.

i) Show that if Tr(ρσ) = 0, then ||ρ − σ||1 = 2. Hint: first, show that Tr(ρσ) =
0 =⇒ ρσ = 0

j) Conversely, show that ||ρ− σ||1 = 2 implies Tr(ρσ) = 0. What does this imply for
the probability of distinguishing ρ and σ?

Hint: recall that ||ρ − σ||1 = 2 Tr(ΠP (ρ − σ)), use this to show that Tr(ΠPρ) = 1
and Tr(ΠPσ) = 0.
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