Freie Universität Berlin Tutorials on Quantum Information Theory Winter term 2021/22

Problem Sheet 5 Channel representations and Norms for matrices part II

J. Eisert, A. Nietner, F. Arzani, C. Bertoni, S. Suzuki

1. Equivalence between representations of quantum channels (11 Points: 1+1+2+1+2+2+1+1)

The aim of this exercise is to establish a duality between quantum channels and quantum states. To this end, let

$$|\Omega\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |i,i\rangle \tag{1}$$

be the maximally mixed state on a bipartite system $\mathcal{H}_d \otimes \mathcal{H}_d$ and denote by $\Omega = |\Omega\rangle\langle\Omega|$ its corresponding density matrix. Then define the Choi-Jamiołkowski map as

$$J: L(L(\mathcal{X}), L(\mathcal{Y})) \to L(\mathcal{X} \otimes \mathcal{Y}) :: T \mapsto (T \otimes \mathbb{1})(\Omega)$$
⁽²⁾

with Ω now the maximally entangled state in $\mathcal{X} \otimes \mathcal{X}$ and $\mathbb{1}$ the identity on $X \otimes X^*$. Throughout let d be the dimension of \mathcal{X} .

We will show that J as a map from the completely positive tracepreserving (CPTP) maps to the set of quantum states on a bipartite system $\mathcal{X} \otimes \mathcal{Y}$ with the restriction $\operatorname{Tr}_{\mathcal{Y}} \rho = \mathbb{1}/d$ is a bijection.

- a) Use the criterion for positivity from the lecture and show that for a CPTP map T from operators on \mathcal{X} to operators on \mathcal{Y} , $J(T) \in \mathcal{D}(\mathcal{X} \otimes \mathcal{Y})$ is indeed a density matrix on the joined system.
- b) Use the diagrammatic notation to first draw the action of T on a density matrix $\rho \in L(\mathcal{X})$. Then use that intuition to draw the Choi-state J(T) in diagrammatic notation. (Hint: you can represent T diagrammatically as

$$T = \boxed{T} \tag{3}$$

where the two bottom legs can be thought as corresponding to the "input" space $L(\mathcal{X}) \simeq \mathcal{X} \otimes \mathcal{X}^*$ and similarly for the two top legs. It may be convenient to think about how the density matrix Ω is expressed graphically.)

- c) Show that J is injective. (Hint: Do so by showing that for any J(T) in the image of J you can define a \tilde{T} that maps $X \in L(\mathcal{X})$ to $\tilde{T}(X) = d \operatorname{Tr}_{\mathcal{X}} [J(T)(\mathbb{1}_{\mathcal{Y}} \otimes X^T)]$. If you use this hint, explain what this implies?).
- d) Before we show surjectivity of J we want to get used to some concepts from the lecture: determine a set of Kraus operators representing T (Hint: use the matrix representation of pure states on a bipartite system from two weeks ago together with the eigendecomposition of ρ_T .).
- e) Assuming dim(\mathcal{X}) = dim(\mathcal{Y}), show that J is surjective. (Hint: Assume a given ρ with the restriction mentioned above and use the previous exercise to construct a CPTP map T such that $J(T) = \rho$.).

Let $\rho_T \in \mathcal{Y} \otimes \mathcal{X}$ be the Choi-Jamiołkowski state corresponding to the quantum channel T.

f) Determine a unitary U_T representing T via the Stinespring representation.

Now, let U_T be a unitary representing T in the Stinespring representation.

g) Determine the Choi-Jamiołkowski state representing T from U_T .

The rank of a quantum channel is defined as the rank of its Choi matrix.

h) Show that a quantum channel with rank r can be represented as a Stinespring dilation using an auxiliary system of dimension r.

2. Examples of quantum channels (9 Points: 1+4+2+2)

Now we are ready to look at some examples of quantum channels acting on qubits, i.e., $\mathcal{H} = \mathbb{C}^2$. The following maps are important so-called noise channels

$$F_{\epsilon}(A) \coloneqq \epsilon XAX + (1 - \epsilon)A$$
$$D_{\epsilon}(A) \coloneqq \epsilon \operatorname{Tr}[A] \frac{1}{d} + (1 - \epsilon)A$$
$$A_{\epsilon}(A) \coloneqq \epsilon \operatorname{Tr}[A] |0\rangle \langle 0| + (1 - \epsilon)A,$$

where $\epsilon \in [0, 1]$.

a) For each channel, show that it is CPT.

Next, we represent each quantum channel in different three ways, discussed in the previous exercise.

- b) For each channel with fixed $\epsilon = 1$, give its Choi-Jamiołkowski state, a Kraus representation and a Stinespring representation.
- c) Generalise the previous results to an arbitrary $\epsilon \in [0, 1]$. (Hint: First compute the respective representations for $\epsilon = 0$ and then reason for the Choi state on the one hand, and for the Kraus and Stinespring representations on the other hand how to combine the $\epsilon = 0$ and = 1 cases into an arbitrary ϵ case.)
- d) For arbitrary $\epsilon \in [0, 1]$ compute the action of each channel on the inputs $|0\rangle\langle 0|$ and $\rho = 1/2$. What is the physical interpretation of each channel?