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1. On Shannon entropy... (5 points: 1+2+2)

To begin with let us first show some simple properties of entropies, in particular, of the
mutual information.

Recall the definition of the Shannon entropies for random variables X, Y which take
values in X ,Y and are distributed according to probability distributions p, q over X
and Y , respectively.

H(X) = −
∑
x∈X

p(x) log p(x) (Shannon entropy) (1)

H(X|Y ) = H(X, Y )−H(Y ) =
∑
x∈X

p(x)H(Y |X = x) (Conditional entropy) (2)

a) Show that 0 ≤ H(X) ≤ log |X |, where the first equality holds iff there is an x ∈ X
for which p(x) = 1 and the second inequality holds iff p(x) = 1/|X | for all x.

b) Show that the Shannon entropy is subadditive, i.e., that H(X, Y ) ≤ H(X)+H(Y )
with equality if X and Y are independent..

Hint: Show that H(X, Y )−H(X)−H(Y ) ≤ 0 using that log2 x ln 2 = lnx ≤ x−1.

c) Show that H(Y |X) ≥ 0 equality if and only if Y is a (deterministic) function of
X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x)

2. ... and the von-Neumann entropy (9 points: 1+2+2+2+1+1)

For any state ρ ∈ D(H) with dimH = d the von-Neumann entropy is defined as
S(ρ) = −Tr(ρ log ρ). Throughout this problem, if the global state being referred to is
clear, we will denote entropies of the reduced states using the corresponding Hilbert
space as an argument, e.g. the entropy of a state ρAB reduced on subsystem A is
denoted S(A).

a) Show that 0 ≤ S(ρ) with equality if and only if ρ is pure. (One can also show the
upper bound S(ρ) ≤ log d.)

b) Show that the von-Neumann entropy is subadditive in the sense that if two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B),
with equality if ρAB = ρA ⊗ ρB.

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum
state σ and that for two matrices A and B, log(A⊗B) = log(A)⊗1 + 1⊗ log(B).

c) Suppose that p = (pi)i is a probability vector and the states ρi are mutually
orthogonal. Show that

S

(∑
i

piρi

)
= H(p) +

∑
i

piS(ρi).

1



and use this result to infer that

S

(∑
i

piρi ⊗ |i〉〈i|

)
= H(p) +

∑
i

piS(ρi),

where 〈i|j〉 = δij and the ρi are arbitrary quantum states.

d) Use the results from b) and c) to infer that the von-Neumann entropy S is concave,
that is, S(

∑
i piρi) ≥

∑
i piS(ρi) for a probability distribution {pi}.

e) let ΩAB be the maximally entangled state on two Hilbert spaces of equal dimension
d, i.e. Ω = |Ω〉 〈Ω| with

|Ω〉 =
1√
d

d∑
i=1

|ii〉 . (3)

Compute S(A|B). What do you conclude?

f) Let ρAB be a bipartite state. Use the result of point c) to show that if ρA is
separable, i.e. ρAB =

∑
i piσ

i
A ⊗ τ iB where σi and τ i are states, then S(A|B) ≥ 0.

3. Local operations and classical communication (LOCC). (6 points: 2+2+1+1)

At the heart of entanglement theory lies the notion of LOCC. To see why, imagine
two parties that are a large distance apart from each other, say, Alice is in Berlin and
Bob in New York. While they may obtain access to shared entanglement from a third
party, it is unreasonable to assume that they are able to perform global operations on
the state they share. On the other hand, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

The goal of this problem is to show that if Alice and Bob are in far away labs, and share
a state, any measurement on Alice’s part of the state can be simulated as follows: Bob
performs a measurement on his side and communicates the result to Alice, who performs
a local unitary tranformation. This can be proven for POVMs, but for simplicity we
will restrict ourselves to projective measurements.

Consider a bipartite state |ψ〉AB with Schmidt decomposition |ψ〉AB =
∑

i

√
λi |ai〉 |bi〉and

a projective measurement Π = {ΠA
i }i acting on Alice’s Hilbert space.

a) Expand ΠA
i in the Schmidt basis and define a projective measurement Γ = {ΓB

i }i
on Bob’s system such that the probability pBk that Bob observes result k when
measuring Γ is the same as the probability pAk that Alice observes result k when
measuring Π.

b) Determine the post measurement states
∣∣φA

j

〉
after Alice measures Π and obtains

result j, and
∣∣φB

j

〉
after Bob measures Γ and obtains result j. (both of these states

are defined on the whole Hilbert space AB, the superscripts serve to identify who
performed the measurement).

c) Show that
∣∣φA

j

〉
and

∣∣φB
j

〉
are equivalent up to local unitary transformations.

d) Describe the LOCC protocol.

2


