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1. Warm-up: Partial transpose (2 Points)
In the entanglement theory of bi-partite systems the partial transpose criterion plays a
prominet role. Let T': L(H) — L(H) be the transposition map X =}, . ¢;; |i) (j] =
X" =37, ¢ij|g) (i]. The partial transpose Ty is defined as the following:

Ty:L(Ha®Hp) — L(HA® Hp)
- . . Ta . .
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The partial transpose T'g is defined likewise, i.e., the transposition map on Hp.

a) For a pure state p; = 1(]0) + |1))((0] + (1])a ® (|0) + [1))((0] + (1])s and a
maximally entangled state p, = $(|00),,5 + |11) ,5)((00] ;5 + (11]4p), find the
partial transpose T of them. Then, calculate eigenvalues of each transposed
matrix, and compare two cases.

2. Constructing entanglement witness from the partial transpose (10 Points:
14+2424242+1)
In the lecture, we saw that every separable bi-partite quantum state has a positive
partial transpose, which means that the positivity is an entanglement criterion. First,
we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state p = >, p;(pai®psi),
all eigenvalues of p?4 are greater than or equal to 0, i.e., pT4 > 0.

In general, the opposite direction is not true. However, if we restrict a quantum state
to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state |1)) € C? @ C? is separable if it has a positive
partial transpose.

Hint: Prove the contraposition: if |1) is entangled, (|¢) (¢ |)T™4 has at least one
negative eigenvalue. To this end, use Schmidt decomposition.

Recall that an entanglement witness is an observable W with the following conditions:
(i) Tr(Wp) > 0 for all separable states o and (ii) there exists an entangled state p
satisfying Tr(Wp) < 0.

c) Consider an entangled state p. Let |u) be an eigenvector of p4 whose eigenvalue
is negative. Then show that W = (|u) (u|)™ is an entanglement witness and |u)
is an entangled state.

As an application of this witness, we consider the following setting. In our (fictitious)
lab, we are trying to prepare a two-qubit state |1)) € H = C* ® C2. We use a simple
model for what is actually happening in the lab, namely that we prepare a state with
some noise

p(p) = plXy|+ (1 —p)%-



Our goal is to have an observable witness that decides whether p(p) is entangled or not.
To this end, we will use the fact that for two-qubits system there exist no entangled.
positive partial transpose (PPT) states. Therefore, the partial transpose T will always
detect entanglement of p(p).

d) Assume |¢) = a|01),5;+b]10) 5. Calculate eigenvalues of p(p)’#, and determine
the values of p depending on a, b such that p(p) is entangled.

Hint: Use the fact that p(p) is entangled if and only if p(p)™ # 0.

e) Use the eigenvector corresponding to a negative eigenvalue of (p(p))’® in order to
derive an entanglement witness W for p(p).

f) Show that, in fact, the witness W detects all entangled states of the form p(p).

3. Majorisation and transforming quantum states by local unitaries. (8 Points:
242+42+42)

In this problem we will look at the task of transforming a given copy of a pure bipartite

quantum state 1) to another quantum state |¢) using LOCC. The question is: Under

which conditions is the transition |1) Loce, |¢) possible?

The key to the answer of this question is the concept of majorisation. We say that a
vector x € R"™ majorises y € R" (denoted by x > y) if for all k =1,... n, Zle a:j >

E§=1 yj and Z?Zl xj = 2?21 yj Here, z* denotes the sorted version of z, ie., a

permutation of the elements of x such that x% > x% > ... > x% From now on, let x
and y be non-negative vectors.
a) Show that z = (2, 5,0)” majorises y = (3,3, 3)"

One can show that x < y if and only if z = ) ; pjll;y for a probability distribution
p and permutation matrices II; (Please accept this equation.). By Birkhoff’s theorem,
which lies at the heart of majorisation theory, that statement is equivalent to saying
that z < y if and only if z = Dy for some doubly stochastic matrix D[f}

For two Hermitian operators X,Y € L(C?) we say that X <Y if A(X) < A(Y), where
A(A) is the spectrum of a matrix A.

b) Show that X < Y if and only if there exists a probability distribution p and
unitary matrices U; such that

X =) pUyu).

J

Hint: For “only if” direction, do eigenvalue decomposition as X = UAxU' and
Y = VAyVT, and use the fact "A\(X) < MN(Y) if and only if \(X) = > piIGAY) 7
For 7if” direction, use again eigenvalue decomposition and the fact "A\(X) < A(Y)
if and only if \(X) = DY) for some doubly stochastic matriz D”.

We are now ready to prove the (surprising!) theorem: [¢)) Loce, |¢) if and only if

Trgl|v) (¥]] < Trp[|¢)Xo|]. (We encourage you to have a look into https://arxiv.
org/pdf/quant-ph/9811053.pdf, which is the original paper of the thorem.)

¢) Show the ”only if” direction using the previous result. You can suppose that
LOCC is realised by a measurement on Alice’s side and a corresponding unitary

'A matrix D is called doubly stochastic if Vi, jD;; > 0 and Vi Zj D;; = Zj D;; =1, i.e., all rows and columns are
probability distributions.


https://arxiv.org/pdf/quant-ph/9811053.pdf
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on Bob’s side. In other words, from Alice’s point of view it must be the case that

B

M;Tep|) (¢ []M] = piTep[|¢) (41].

Hint: Use the polar decomposition of M;+/Trg[|v)v]].
d) Now show the ”if” direction by proceeding analogously.

2This is because the transition from |t) to |¢) comes about as a post-measurement state with probability p;.
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