
Freie Universität Berlin
Tutorials on Quantum Information Theory

Winter term 2021/22

Problem Sheet 7
Partial Transpose, Entanglement Witness, and Majorisation

J. Eisert, A. Nietner, F. Arzani, C. Bertoni, R. Suzuki

1. Warm-up: Partial transpose (2 Points)
In the entanglement theory of bi-partite systems the partial transpose criterion plays a
prominet role. Let T : L(H) → L(H) be the transposition map X =

∑
i,j cij |i⟩ ⟨j | 7→

XT =
∑

i,j cij |j⟩ ⟨i|. The partial transpose TA is defined as the following:

TA : L(HA ⊗HB) → L(HA ⊗HB)

Y =
∑
i,j

cijkl |i⟩ ⟨j |A ⊗ |k⟩ ⟨l|B 7→ Y TA =
∑
i,j

cijkl |j⟩ ⟨i|A ⊗ |k⟩ ⟨l|B

The partial transpose TB is defined likewise, i.e., the transposition map on HB.

a) For a pure state ρ1 = 1
4
(|0⟩ + |1⟩)(⟨0| + ⟨1|)A ⊗ (|0⟩ + |1⟩)(⟨0| + ⟨1|)B and a

maximally entangled state ρ2 = 1
2
(|00⟩AB + |11⟩AB)(⟨00|AB + ⟨11|AB), find the

partial transpose TA of them. Then, calculate eigenvalues of each transposed
matrix, and compare two cases.

2. Constructing entanglement witness from the partial transpose (10 Points:
1+2+2+2+2+1)
In the lecture, we saw that every separable bi-partite quantum state has a positive
partial transpose, which means that the positivity is an entanglement criterion. First,
we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state ρ =
∑

i pj(ρAi⊗ρBi),
all eigenvalues of ρTA are greater than or equal to 0, i.e., ρTA ≥ 0.

In general, the opposite direction is not true. However, if we restrict a quantum state
to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state |ψ⟩ ∈ Cd ⊗ Cd is separable if it has a positive
partial transpose.

Hint: Prove the contraposition: if |ψ⟩ is entangled, (|ψ⟩ ⟨ψ |)TA has at least one
negative eigenvalue. To this end, use Schmidt decomposition.

Recall that an entanglement witness is an observable W with the following conditions:
(i) Tr(Wρ) ≥ 0 for all separable states σ and (ii) there exists an entangled state ρ
satisfying Tr(Wρ) < 0.

c) Consider an entangled state ρ. Let |µ⟩ be an eigenvector of ρTA whose eigenvalue
is negative. Then show that W = (|µ⟩ ⟨µ|)TA is an entanglement witness and |µ⟩
is an entangled state.

As an application of this witness, we consider the following setting. In our (fictitious)
lab, we are trying to prepare a two-qubit state |ψ⟩ ∈ H = C2 ⊗ C2. We use a simple
model for what is actually happening in the lab, namely that we prepare a state with
some noise

ρ(p) := p |ψ⟩⟨ψ |+ (1− p)
1
4
.
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Our goal is to have an observable witness that decides whether ρ(p) is entangled or not.
To this end, we will use the fact that for two-qubits system there exist no entangled.
positive partial transpose (PPT) states. Therefore, the partial transpose TA will always
detect entanglement of ρ(p).

d) Assume |ψ⟩ = a |01⟩AB+b |10⟩AB. Calculate eigenvalues of ρ(p)
TB , and determine

the values of p depending on a, b such that ρ(p) is entangled.

Hint: Use the fact that ρ(p) is entangled if and only if ρ(p)TB ≱ 0.

e) Use the eigenvector corresponding to a negative eigenvalue of (ρ(p))TB in order to
derive an entanglement witness W for ρ(p).

f) Show that, in fact, the witness W detects all entangled states of the form ρ(p).

3. Majorisation and transforming quantum states by local unitaries. (8 Points:
2+2+2+2)

In this problem we will look at the task of transforming a given copy of a pure bipartite
quantum state |ψ⟩ to another quantum state |ϕ⟩ using LOCC. The question is: Under

which conditions is the transition |ψ⟩ LOCC−−−→ |ϕ⟩ possible?
The key to the answer of this question is the concept of majorisation. We say that a
vector x ∈ Rn majorises y ∈ Rn (denoted by x ≻ y) if for all k = 1, . . . , n,

∑k
j=1 x

↓
j ≥∑k

j=1 y
↓
j and

∑n
j=1 x

↓
j =

∑n
j=1 y

↓
j . Here, x↓ denotes the sorted version of x, i.e., a

permutation of the elements of x such that x↓1 ≥ x↓2 ≥ . . . ≥ x↓n. From now on, let x
and y be non-negative vectors.

a) Show that x = (2
3
, 1
3
, 0)T majorises y = (1

3
, 1
3
, 1
3
)T .

One can show that x ≺ y if and only if x =
∑

j pjΠjy for a probability distribution

p and permutation matrices Πj (Please accept this equation.). By Birkhoff’s theorem,
which lies at the heart of majorisation theory, that statement is equivalent to saying
that x ≺ y if and only if x = Dy for some doubly stochastic matrix D1.

For two Hermitian operators X, Y ∈ L(Cd) we say that X ≺ Y if λ(X) ≺ λ(Y ), where
λ(A) is the spectrum of a matrix A.

b) Show that X ≺ Y if and only if there exists a probability distribution p and
unitary matrices Uj such that

X =
∑
j

pjUjY U
†
j .

Hint: For ”only if” direction, do eigenvalue decomposition as X = UΛXU
† and

Y = V ΛY V
†, and use the fact ”λ(X) ≺ λ(Y ) if and only if λ(X) =

∑
j pjΠjλ(Y )”.

For ”if” direction, use again eigenvalue decomposition and the fact ”λ(X) ≺ λ(Y )
if and only if λ(X) = Dλ(Y ) for some doubly stochastic matrix D”.

We are now ready to prove the (surprising!) theorem: |ψ⟩ LOCC−−−→ |ϕ⟩ if and only if
TrB[|ψ⟩ ⟨ψ |] ≺ TrB[|ϕ⟩⟨ϕ|]. (We encourage you to have a look into https://arxiv.

org/pdf/quant-ph/9811053.pdf, which is the original paper of the thorem.)

c) Show the ”only if” direction using the previous result. You can suppose that
LOCC is realised by a measurement on Alice’s side and a corresponding unitary

1A matrix D is called doubly stochastic if ∀i, jDij ≥ 0 and ∀i
∑

j Dij =
∑

j Dji = 1, i.e., all rows and columns are
probability distributions.
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on Bob’s side. In other words, from Alice’s point of view it must be the case that
2

MjTrB[|ψ⟩ ⟨ψ |]M †
j = pjTrB[|ϕ⟩ ⟨ϕ|].

Hint: Use the polar decomposition of Mj

√
TrB[|ψ⟩⟨ψ |].

d) Now show the ”if” direction by proceeding analogously.

2This is because the transition from |ψ⟩ to |ϕ⟩ comes about as a post-measurement state with probability pj .
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