Freie Universität Berlin **Tutorials on Quantum Information Theory** Winter term 2021/22

Problem Sheet 7 Partial Transpose, Entanglement Witness, and Majorisation

J. Eisert, A. Nietner, F. Arzani, C. Bertoni, R. Suzuki

1. Warm-up: Partial transpose (2 Points)

In the entanglement theory of bi-partite systems the partial transpose criterion plays a prominet role. Let $T: L(\mathcal{H}) \to L(\mathcal{H})$ be the transposition map $X = \sum_{i,j} c_{ij} |i\rangle \langle j| \mapsto X^T = \sum_{i,j} c_{ij} |j\rangle \langle i|$. The partial transpose T_A is defined as the following:

$$T_A : L(\mathcal{H}_A \otimes \mathcal{H}_B) \to L(\mathcal{H}_A \otimes \mathcal{H}_B)$$
$$Y = \sum_{i,j} c_{ijkl} |i\rangle \langle j|_A \otimes |k\rangle \langle l|_B \mapsto Y^{T_A} = \sum_{i,j} c_{ijkl} |j\rangle \langle i|_A \otimes |k\rangle \langle l|_B$$

The partial transpose T_B is defined likewise, i.e., the transposition map on H_B .

- a) For a pure state $\rho_1 = \frac{1}{4}(|0\rangle + |1\rangle)(\langle 0| + \langle 1|)_A \otimes (|0\rangle + |1\rangle)(\langle 0| + \langle 1|)_B$ and a maximally entangled state $\rho_2 = \frac{1}{2}(|00\rangle_{AB} + |11\rangle_{AB})(\langle 00|_{AB} + \langle 11|_{AB}))$, find the partial transpose T^A of them. Then, calculate eigenvalues of each transposed matrix, and compare two cases.
- 2. Constructing entanglement witness from the partial transpose (10 Points: 1+2+2+2+2+1)

In the lecture, we saw that every separable bi-partite quantum state has a positive partial transpose, which means that the positivity is an entanglement criterion. First, we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state $\rho = \sum_{i} p_j(\rho_{Ai} \otimes \rho_{Bi})$, all eigenvalues of ρ^{T_A} are greater than or equal to 0, i.e., $\rho^{T_A} \ge 0$.

In general, the opposite direction is not true. However, if we restrict a quantum state to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$ is separable if it has a positive partial transpose.

Hint: Prove the contraposition: if $|\psi\rangle$ is entangled, $(|\psi\rangle \langle \psi|)^{T_A}$ has at least one negative eigenvalue. To this end, use Schmidt decomposition.

Recall that an entanglement witness is an observable W with the following conditions: (i) $\operatorname{Tr}(W\rho) \geq 0$ for all separable states σ and (ii) there exists an entangled state ρ satisfying $\operatorname{Tr}(W\rho) < 0$.

c) Consider an entangled state ρ . Let $|\mu\rangle$ be an eigenvector of ρ^{T_A} whose eigenvalue is negative. Then show that $W = (|\mu\rangle \langle \mu|)^{T_A}$ is an entanglement witness and $|\mu\rangle$ is an entangled state.

As an application of this witness, we consider the following setting. In our (fictitious) lab, we are trying to prepare a two-qubit state $|\psi\rangle \in \mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$. We use a simple model for what is actually happening in the lab, namely that we prepare a state with some noise

$$\rho(p) \coloneqq p \, |\psi\rangle \langle \psi| + (1-p) \frac{\mathbb{1}}{4}.$$

Our goal is to have an observable witness that decides whether $\rho(p)$ is entangled or not. To this end, we will use the fact that for two-qubits system there exist no entangled. positive partial transpose (PPT) states. Therefore, the partial transpose T^A will always detect entanglement of $\rho(p)$.

d) Assume $|\psi\rangle = a |01\rangle_{AB} + b |10\rangle_{AB}$. Calculate eigenvalues of $\rho(p)^{T_B}$, and determine the values of p depending on a, b such that $\rho(p)$ is entangled.

Hint: Use the fact that $\rho(p)$ is entangled if and only if $\rho(p)^{T_B} \not\geq 0$.

- e) Use the eigenvector corresponding to a negative eigenvalue of $(\rho(p))^{T_B}$ in order to derive an entanglement witness \mathcal{W} for $\rho(p)$.
- f) Show that, in fact, the witness \mathcal{W} detects all entangled states of the form $\rho(p)$.

3. Majorisation and transforming quantum states by local unitaries. (8 Points: 2+2+2+2)

In this problem we will look at the task of transforming a given copy of a pure bipartite quantum state $|\psi\rangle$ to another quantum state $|\phi\rangle$ using LOCC. The question is: Under which conditions is the transition $|\psi\rangle \xrightarrow{\text{LOCC}} |\phi\rangle$ possible?

The key to the answer of this question is the concept of majorisation. We say that a vector $x \in \mathbb{R}^n$ majorises $y \in \mathbb{R}^n$ (denoted by $x \succ y$) if for all $k = 1, \ldots, n, \sum_{j=1}^k x_j^{\downarrow} \ge \sum_{j=1}^k y_j^{\downarrow}$ and $\sum_{j=1}^n x_j^{\downarrow} = \sum_{j=1}^n y_j^{\downarrow}$. Here, x^{\downarrow} denotes the sorted version of x, i.e., a permutation of the elements of x such that $x_1^{\downarrow} \ge x_2^{\downarrow} \ge \ldots \ge x_n^{\downarrow}$. From now on, let x and y be non-negative vectors.

a) Show that $x = (\frac{2}{3}, \frac{1}{3}, 0)^T$ majorises $y = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})^T$.

One can show that $x \prec y$ if and only if $x = \sum_j p_j \prod_j y$ for a probability distribution p and permutation matrices \prod_j (Please accept this equation.). By Birkhoff's theorem, which lies at the heart of majorisation theory, that statement is equivalent to saying that $x \prec y$ if and only if x = Dy for some doubly stochastic matrix D^1 .

For two Hermitian operators $X, Y \in L(C^d)$ we say that $X \prec Y$ if $\lambda(X) \prec \lambda(Y)$, where $\lambda(A)$ is the spectrum of a matrix A.

b) Show that $X \prec Y$ if and only if there exists a probability distribution p and unitary matrices U_i such that

$$X = \sum_{j} p_{j} U_{j} Y U_{j}^{\dagger}.$$

Hint: For "only if" direction, do eigenvalue decomposition as $X = U\Lambda_X U^{\dagger}$ and $Y = V\Lambda_Y V^{\dagger}$, and use the fact " $\lambda(X) \prec \lambda(Y)$ if and only if $\lambda(X) = \sum_j p_j \Pi_j \lambda(Y)$ ". For "if" direction, use again eigenvalue decomposition and the fact " $\lambda(X) \prec \lambda(Y)$ if and only if $\lambda(X) = D\lambda(Y)$ for some doubly stochastic matrix D".

We are now ready to prove the (surprising!) theorem: $|\psi\rangle \xrightarrow{\text{LOCC}} |\phi\rangle$ if and only if $\text{Tr}_B[|\psi\rangle\langle\psi|] \prec \text{Tr}_B[|\phi\rangle\langle\phi|]$. (We encourage you to have a look into https://arxiv. org/pdf/quant-ph/9811053.pdf, which is the original paper of the thorem.)

c) Show the "only if" direction using the previous result. You can suppose that LOCC is realised by a measurement on Alice's side and a corresponding unitary

¹A matrix D is called doubly stochastic if $\forall i, jD_{ij} \ge 0$ and $\forall i \sum_{j} D_{ij} = \sum_{j} D_{ji} = 1$, i.e., all rows and columns are probability distributions.

on Bob's side. In other words, from Alice's point of view it must be the case that $_2^{\ 2}$

$$M_j \operatorname{Tr}_B[|\psi\rangle \langle \psi|] M_j^{\dagger} = p_j \operatorname{Tr}_B[|\phi\rangle \langle \phi|].$$

Hint: Use the polar decomposition of $M_j \sqrt{\text{Tr}_B[|\psi\rangle\langle\psi|]}$.

d) Now show the "if" direction by proceeding analogously.

²This is because the transition from $|\psi\rangle$ to $|\phi\rangle$ comes about as a post-measurement state with probability p_j .