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1. More stabilizers (15 Points: 3+4+1+4+2+1 )

Because the stabilizer formalism introduced in the previous sheet is so important in
quantum computation (and quantum error correction, as you will see later in the
course), the present problem is again devoted to this . We will start by proving an
important property of stabilizer sets, then compute stabilizers for some familiar states
and finally introduce a very powerful vector notation to work with Pauli strings and
Clifford transformations.

a) Let S ⊂ Pn be a subgroup of strings from the Pauli group such that sisj = sjsi
for all si, sj ∈ S which is generated by d independent elements1. Show that the
subspace stabilized by S has dimension dim = 2n−d. (Hint: Think about how to
write the projector onto the stabilized subspace in terms of a generating set and
use that dim equals the trace of the projector)

b) Let

|ψ〉 =
|00〉+ |11〉√

2
(1)

be the standard Bell state, |GHZn〉 be the n qubit GHZ state

|GHZn〉 =
|00 . . . 0〉+ |11 . . . 1〉√

2
(2)

and let |φ〉 be the 3 qubit parity state

〈x1, x2, x3 |φ〉 =

{
1√
2
3 , if x1 + x2 + x3 = 0 mod 2

0 , else.
(3)

Write down a set of stabilizers for |ψ〉, |GHZn〉 and |φ〉. Next find a set of
stabilizers for the state

|χ〉 =
|1〉 ⊗ |GHZn−2〉 ⊗ |0〉+ |0〉 ⊗ |GHZn−2〉 ⊗ |1〉√

2
(4)

Note that every Pauli string, and hence every stabilizer, can be represented (up to a
phase) by a so called check vector. This is a 2n dimensional binary vector x = (u,v)
constructed as follows. Start with the all-zero vector. If the stabilizer has an X at the
i’th site change the i’th entry to a 1. Likewise if the stabilizer has a Z at the i’th site
change the n+i’th entry to a 1. If the i’th postition of the stabilizer is a Y , change both
i’th and the n+ i’th entries to a 1. The overall phase can be encoded in an additional
degree of freedom. In summary, a general n-qubit Pauli string s can be written

s = eiφ (Xu1
1 Z

v1
1 ⊗ · · · ⊗Xun

n Zvn
n ) (5)

for some x = (u,v) and φ ∈ [0, 2π).

1Remember that the generators γ1, . . . , γd of a group G are group elements such that any g ∈ G can be obtained as
a product of some γjs and their inverses. Independent generators are such that none of them can be obtained as
a product of the others, even up to a phase (you can always obtain an independent set by removing dependent
elements).
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c) Write down the check vectors for the stabilizers of a generating set of stabilizers
associated to |GHZn〉.

d) Compute HXH and HZH for H the Hadamard matrix. Let Si = XiXi+1 for
i = 1, . . . n − 1 and let Sn =

∏
i Zi. Use the first part of this exercise in order to

compute

H⊗nSiH
⊗n (6)

for all i and write down the corresponding check vectors.

Since the Clifford group maps Pauli strings to Pauli strings, we can represent the
transformation s 7→ CsC† (modulo phases) as a transformation of the check vector
x corresponding to s. As it turns out, such transformation is linear and therefore
represented by a 2n × 2n binary matrix M . In other words, we have s 7→ CsC† ⇒
x 7→Mx.

e) Show that the map s 7→ CsC† is indeed linear. Write down the matrix M corre-
sponding to the action of H⊗n on a Pauli string (neglecting the effect of phases).

Incorporating the phases in this formalism for the general case is beyond the scope of
the present sheet. In the last point below we look at a specific example.

f) Explain how the phase φ transform when a general Pauli string s is conjugated by
H⊗n as s 7→ HsH. (Hint : In addition to the previous cases of H conjugating X
and Z consider the action of H when conjugating Y .)

2. Universal gate set (6 points (2+1+2+1))

The aim of this exercise is to show that the gate set {CNOT,H, T} is universal, i.e. we
can approximate any gate to an arbitrary degree of accuracy just by using these three
gates. The strategy is to show that we can use H and T to generate any single qubit
gate, and the conclusion follows from the insight that CNOT along with arbitrary one
qubit gates is universal. For the sake of ease we will use a slightly modified convention
for the T gate throughout the exercise. This is, we use the definition

T =

(
e−iπ/8 0

0 eiπ/8

)
. (7)

Convince yourself that this is just the standard definition of the T gate modified by a
phase factor e−iπ/8.

We will start by showing that any unitary U can be written as

U = eiαRz(β)Ry(γ)Rz(δ) (8)

where Rz(θ) = e−i
θ
2
Z =

(
eiθ/2 0

0 e−iθ/2

)
, Ry(θ) = e−i

θ
2
Y =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
.

a) Let U ∈ U(2) be a one qubit unitary, show that there exist real numbers x, y, z, t
such that

U =

(
ei(x−y−t) cos z −ei(x−y+t) sin z
ei(x+y−t) sin z ei(x+y+t) cos z

)
(9)

b) Show that any one qubit unitary U can be expressed as

U = eiαRz(β)Ry(γ)Rz(δ) (10)
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for some real numbers α, β, γ, δ.

It is possible, but tedious, to show that we can find an analogous decomposition
using any pair of linearly independent axes n̂ and m̂.

We will now see how to approximate an arbitrary single-qubit rotation around
two linearly independent axes by using the Hadamard gate and the T gate. A
single-qubit rotation can be written as R−→n (θ) ≡ exp(−iθ−→n · −→σ /2) = cos(θ/2)1−
isin(θ/2)(nxX+nyY +nzZ), and any single qubit gate can be written as a rotation
around some axis.

c) Calculate THTH, and find θ and −→n = (nx, ny, nz) with respect to it.

Hint: Use that T = e−iπ/8Z and HTH = e−iπ/8X .

Observe that the θ
2π

in the previous point is an irrational number.

d) Show that you can approximate an arbitrary rotation about the axis −→n in the
previous point by some product of the operators H and T .

Let us define another rotation about an axis −→m as R−→m(θ) = HR−→n (θ)H. Because H is
a rotation about X + Z axis, the axis −→m is not equal to −→n . Then from the points (b)
we can generate an arbitrary single-qubit unitary by R−→m and R−→n .

3


