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In the circuit picture of quantum computation that you have seen in the course until now,
algorithms are carried out by applying unitaries to “static” qubit registers. Measurement
based quantum computing (MBQC) is an alternative paradigm of quantum computation
wherein unitary evolution is the by-product of measurements performed on parts of entangled
states. The whole process can still be described by a circuit, a fact that we will use to derive
some fundamental results in the following. However, the shift in perspective has important
implications for physical implementations.

1. Gate teleportation (12 points: 4+2+2+1+3)

The fundamental primitive of MBQC is called gate teleportation, a simple version of
which can be demonstrated in the following circuit:

|ψ〉 • H m

|0〉 H •

(1)

Here, the entangling gate is a controlled-Z acting on a two-qubit state as CZ |ab〉 =
(−1)ab |ab〉.

a) Suppose that in the above circuit we measure the first register in the Z eigenbasis.
Write the resulting state on the remaining subsystem in terms of the input state,
depending on the measurement outcome m (you can neglect the normalization
constant)1.

b) Imagine taking the output state of the second wire, denoted |ψ′ (m1)〉, following
a measurement with outcome m1, and feeding it back to a similar circuit, with
measurement outcome m2. Can you write the output state in terms of |ψ〉? Hint:
you shouldn’t need to do any calculation.

A key insight in MBQC is that if we want to repeat the above process n times we can
prepare an entangled n-qubit resource state |Γ〉 beforehand, independent of the input
state |ψ〉. |Γ〉 can be depicted as a one-dimensional strip of pair-wise entangled qubits,
called a 1-d cluster state. We can then entangle |ψ〉 to the first qubit of the strip and
subsequently only perform measurements (and possibly single-qubit Pauli corrections to
remove the dependency of the output on measurement outcomes). Since 〈Z = ±1|H =
〈X = ±1|, you can convince yourself that in circuit 1 after the CZ the first qubit is
effectively measured in theX basis. In the following point, we consider theH gates right
before the computational basis measurement as “part of an X measurement process”.

c) Draw a sketch of the circuit resulting from the n-fold repetition of the citcuit
in Eq. 1 and write an expression for the resource state |Γ〉 (Hint: CZ gates on
different qubits all commute and isolate all measurements at the end of the circuit.)

1In the context of MBQC, the measurements are often assumed to be “destructive”, in the sense that the measured
qubits are consumed by the measurement process and therefore not included in the description of what happens
next. This reflects the physical reality where qubits might for example be encoded in travelling photons which
are absorbed by a detector during the measurement.
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d) Consider Rz(θ) = exp(−i θ
2
Z) and define Xθ = Rz(θ)

†XRz(θ). Show that

XθR
†
z (θ)H |Z = m〉 = (−1)mR†z (θ)H |Z = m〉 . (2)

e) Consider the following circuit

|ψ〉 • Rz(θ) H m

|0〉 H •

(3)

where the measurement is in the computational basis. What is the observable that
is effectively measured on the first qubit after the CZ? And what is the output
state of the circuit, depending on the measurement outcome? Hint: the Rz (θ)
commutes with CZ.

Since we get the Hadamard gate “for free” according to circuit 1, this result, together
with the results in previous sheets shows us that a 1-d cluster state and single-qubit
measurements are sufficient to perform an arbitrary single-qubit operation. The result
is furthermore deterministic if we can operate corrective X operations depending on
measurement outcomes.

2. Universal Quantum Computation with Cluster States 8 Points: 3 + 1 + 2 + 2

In this exercise we consider a two dimensional cluster state where qubits are arranged
in a rectangular grid

where nodes are qubit registers. This state can be obtained by preparing each qubit in
the |+〉 state and applying CZ operations between qubits connected by an edge. This
general procedure can be used to produce states represented by any graph, which are
simply called graph states. Cluster states, described by a rectangular grid, lie at the
core of measurement based quantum computation (MBQC) because, given one such
state, one can perform any quantum computation with single qubit measurements (in
various bases), provided the rectangular patch is large enough. In the present exercise,
we will sketch a proof of this fact. According to the previous exercise, it is sufficient
to show that we can perform two-qubit gates. To this end, let us start with some
definitions.

The stabilizer formalism is once again useful to compactly describe what is going on.
The stabilizer generators of an arbitrary graph state |Γ〉, with Γ some graph, are given
by

S = {Xa

∏
i∼a

Zi | a ∈ Γ}, (4)
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where i ∼ a denotes the set of qubits adjacent (connected) to qubit a. In paticular, it
holds that Sa |Γ〉 = |Γ〉 ∀Sa ∈ S.

a) Consider the graph state represented by

Write down the stabilizer generators of this state according to Eq. 10 and check
that they indeed stabilize the state. Hint: write the stabilizer of the state by
conjugating the ones of the |+ + +〉 state by the appropriate CZs.

We now use stabilizers to prove two useful tricks that allow us to easily modify the
shape of a 2-d cluster state. Remember that when we have a stabilizer state with
stabilizer generators {Sj} and we want to measure some Pauli operator O, we can
represent the action of a measurement as follows: if O commutes with all stabilizers,
the measurement result is predetermined and the state is unchanged (being already an
eigenstate of O. If O does not commute with some stabilizers, we can find a set of
generators such that only one generator, say S1, anti-commutes with O. This set can
be found by multiplying some of the generators together. Following the measurement,
we replace S1 with (−1)mO, where m is the measurement outcome.

b) Consider again the graph state represented by

Show that measuring the second qubit in the X basis the stabilizers of the post-
measurement state on the first and third qubit are those of a two-qubit cluster,
apart for a Hadamard on either the first or the third qubit and measurement-
dependent phases. Hint: start by finding a set of generators such that only one
anti-commutes with the measurement. Multiply then the post-measurement stabi-
lizers to remove unwanted dependencies on operators acting on the measured qubit.

The above result shows that we can “shorten” wires to connect initially distant qubits
on the lattice. The second equivalence is obtained multiplying Z1X2Z3 by ±X2.

c) Consider now the 3× 3 square cluster state

Show that measuring Z on the central node effectively disentangles it from the
rest of the state, leaving the other qubits in a graph state.

These two tricks can be generalized to show that, given a 2D cluster state, one can “cut
out” any 2D regular grid and obtain the graph state needed to implement some circuit
by single qubit measurements on appropriate sites. This justifies using the graph shape
in the following point.

Finally, we turn to the CNOT gate. We can apply the CNOT gate in the MBQC
scheme by using the following graph state.

d) Consider the following graph state:
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Show that the following measurements implement a CNOT gate between the twoin-
put states |ψ〉 and |φ〉 up to local pauli corrections:

Hint: There are two ways to prove this. Either, one explicitly calculates the output
of the full circuit corresponding to the preparation and the measurements or one
uses the stabilizer formalism where one only has to keep track how the stabilizers
of the graph state change during the measurements. You might also have a look at
https://arxiv.org/pdf/quant-ph/0301052.pdf.
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