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Chapter 12

Non-universal quantum
computers

12.1 Quantum simulators
So far, we have discussed universal quantum computers. But then, quantum computers
as we have them are not quite universal. They are smallish (the largest qubit device
available embodies 433 qubits), they have limited control, and are still rather noisy.
One speaks of noisy intermediate scale quantum (NISQ) devices. What can such de-
vices do after all? The answer to this is not quite known, and is for good reason a topic
of intense study and research. But we have a look at some aspects thereof. The first
application is that of a quantum simulation. Simulation is a core task, and a substan-
tial fraction of modern supercomputers is dedicated to simulating quantum materials.
It makes a lot of sense, therefore, to ask the question whether quantum systems can
simulate other quantum systems with smaller resource requirements. This turns out to
be true, at least in principle. The idea of a quantum simulator is indeed a compelling
one.

Quantum simulators come in several flavours. One distinguishes static quantum
simulators probing static such as ground state properties from dynamical quantum sim-
ulators. The latter probe dynamical properties that can be probed in a time evolution
of the type

〈O(t)〉 = tr(e−itHρ(0)eitHO), (12.1)

where

H =

N∑
j=1

hj (12.2)

is typically a local Hamiltonian acting on a lattice involving n sites of local dimension
d, equipped with a Hilbert spaceH = (Cd)⊗N . Local here means that each of the terms
{hj} acts on a small number of sites only, usually nearest neighbours. The observable
O is commonly local as well, such as a local Pauli matrix, say,O = Z acting on a single
site. We have seen that local Hamiltonian evolution is in principle BQP complete, so
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one can think of quantum computation in this fashion. But this is not how one usually
thinks about such quantum simulators. Instead, one is interested in learning properties
of strongly correlated quantum systems, beyond classical capabilities.

12.1.1 Analog quantum simulators

In analog quantum simulation, one recreates, mimicks, the exact Hamiltonian of the
original system, but under precisely controlled conditions. This is much less of a ridicu-
lous idea than it may first appear. In fact, in systems of cold atoms in optical lattices or
with trapped ions one can recreate interacting systems very precisely, and also probe
them in the laboratory. One can also probe properties under enormous precision that
would be out of reach for the real quantum material. To elaborate the specific architec-
tures that allow for analog quantum simulation is interesting in its own right and could
be the topic of a course on its own.

The fact that time evolution is BQP complete here comes in as an advantage: One
cannot devise universal classical simulation algorithms of quantum dynamics. There-
fore, classical simulation algorithms such as quantum Monte Carlo Methods, density
functional theory or tensor network methods soon reach their limitations. But analog
quantum simulators do not face such restrictions: In this way, one can argue that ana-
log quantum simulators allow to probe questions, e.g., in quantum statistical physics,
already as of today beyond the means of classical supercomputers, in the sense that
with the best known classical algorithms, one cannot reliably keep track of quantum
dynamics. This is an enormously interesting field of research.

12.1.2 Digital quantum simulators

Digital quantum simulators require basically quantum computers. In the dynamical
reading, one slices time evolution into stroboscopic time slices and approximates the
continuous time evolution by a number of small time evolution steps approximated by
a gate-based quantum computer. The formula at the heart of the matter is here the
Trotter formula.

Trotter formula: For any two Hermitian operators A and B, one has

eA+B = lim
n→∞

(
eA/neB/n

)n
. (12.3)

This can be made a functioning quantum algorithm. Here, time is chopped into n
small time steps, and one keeps track of time evolution in a stroboscopic fashion. For
two Hamiltonian termsH1 andH2, with ‖H1‖ ≤ K and ‖H2‖ ≤ K (this upper bound
of the operator norm captures the coupling strength and can be set to unity to give time
a unit), one has

e−iH1e−iH2) = e−i(H1+H2) +O(K2). (12.4)
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Pushing this idea further, for local terms h1, . . . , hn of a local Hamiltonian

H =

N∑
j=1

hj (12.5)

one finds

e−ih1 . . . e−ihN = e−i(h1+h2+···+hN +O(N3K2), (12.6)

if for all j, ‖hj‖ ≤ K. For a constant C > 0 such that the number of steps n is lower
bounded as

n > CN3(Kt)2/ε, (12.7)

one has

‖(e−ih1t/n . . . e−ihN t/n)2 − e−iHt‖ ≤ ε. (12.8)

This sense of approximation is the right one: If two unitaries are close in operator norm,
the respective quantum states will be close in trace norm. Hence, in this fashion, one
can approximate time evolution under local Hamiltonians to arbitrary precision. This
gives rise to an algorithm to approximate continuous time evolution of local Hamil-
tonians with an effort of O(poly(N)(‖H‖t)2/ε): The time evolution is slices into
pieces that can be gate decomposed on a quantum computer. This is the most basic
of all digital quantum simulation schemes. It has been further developed into higher
order schemes that have a favourable error scaling, linear combination of unitaries ap-
proaches, an idea called qubitization and randomized schemes. It is a flourishing topic
of research still.

12.2 Variational quantum computers

12.2.1 Variational quantum eigensolvers

Quantum computers exist, with system sizes up to N = 433 (as of 2023) qubits. To
add insult to injury, these are still comparably noisy and not quantum error corrected.
This is too little to perform the Shor algorithm for reasonable system sizes including
quantum error correction. But is still good enough to tackle interesting problem. One
such approach is to use quantum computers in hybrid algorithms in which a quantum
computer is only a part of a larger classical algorithm. This classical algorithm takes
data from measurements from the quantum circuits, alters the control parameters and
accordingly prepares states and alters the variational quantum circuits along the way.
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The quantum part at the heart of the algorithm is a short quantum circuit

θ := (θ1, . . . , θp) 7→ U(θ1, . . . , θp) (12.9)

defined by real variational parameters (θ1, . . . , θp). These can be seen as “knobs” in
an experiment, as parameters of quantum gates that can be freely chosen by the exper-
imenter. In variational quantum eigensolvers, one hence basically solves the following
problem.

Variational quantum eigensolvers: They aim at approximately finding a solution
to

Emin = min〈ψ(θ)|H|ψ(θ)〉, (12.10)

where
|ψ(θ)〉 := U(θ1, . . . , θp)|0, . . . , 0〉. (12.11)

This may look like a simpler an enterprise that it actually is in practice. After all,
one has to find good variational sets so that one can expect a good approximation in
the first place. This is not obvious, and one has to find a good compromise between
expressivity and depth of the involved circuits. This applies, e.g., to problems in quan-
tum chemistry where one has to find good representations to start with. Then, one has
to find strategies of finding good updates

(θ1, . . . , θp) 7→ (θ′1, . . . , θ
′
p). (12.12)

How to optimally do this is an interesting question in its own right.

• Indeed, one can estimate gradients by taking measurements and performing up-
dates based on that. One can also acquire higher order information, such as
elements of Hessians. Natively, this approach requires many measurements.
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• Using ideas such as parameter shift rules help reducing the number of expecta-
tion values one needs to measure to find good updates. These are rules based on
instances of symmetries that exploit that certain functional values can be evalu-
ated by taking measurements at shifted values. To find good strategies of classi-
cal control is still a subject of intense research.

12.2.2 Quantum approximate optimization algorithm

Quantum approximate optimization goes a step further. It aims at finding good approx-
imations to combinatorical optimization problems, such as MaxCUT. Such problems
are often NP-hard in worst case complexity. Still, one hopes to find good approxima-
tions with quantum algorithms. The goal is to find an approximate solution to a cost
function

f : {0, 1}n → R+
0 . (12.13)

Such a cost function can be encoded in a HamiltonianHf , so that finding the maximum
of f amounts to finding the ground state energy

Emin := min〈ψ|Hf |ψ〉, (12.14)

of Hf over all quantum states. One aims at finding a binary string that achieves an
approximation ratio r for

f(z)

fmax
≥ r (12.15)

for all z ∈ {0, 1}n, for the optimal solution being

fmax := max
z∈{0,1}n

f(z). (12.16)

One does not expect to get an exact solution: The problem being NP-hard in worst case
complexity means that an exact solution is also out of reach for a quantum computer.
But one aims at realizing an approximate solution. This is achieved by initially prepar-
ing a product state described by a state vector |+〉⊗N and by applying a sequence of
steps

e−iγjHf (12.17)

for j = 1, . . . , p, implementing the encoding Hamiltonian, followed by products of
local Pauli X rotations

(e−iβjX)⊗N , (12.18)

that “kick the state out of the Pauli-Z basis”. At the end of the day, after p steps,
this sequence is followed by an estimation of the expectation value 〈Hf 〉 by virtue
of repeated measurements. The variational parameters are again chosen using similar
strategies as above. Similar issues of expressivity and classical control appear as well.
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Quantum approximate optimization algorithm (QAOA): The entire state vec-
tor before the measurement in the quantum approximate optimization algorithm
involving N qubits is given by

(e−iβpX)⊗Ne−iγpHf . . . (e−iβ1X)⊗Ne−iγ1Hf |+〉⊗N . (12.19)

The variational parameters (γ1, . . . , γp, β1, . . . , βp) are optimized in order to mini-
mize 〈Hf 〉, the expectation value of a fictitious Hamiltonian.

12.2.3 Further thoughts on quantum approximate optimization

It is important to note that the quantum approximate optimization algorithm can be seen
as a particular instance of a variational quantum eigensolver, just that a specific choice
has been made for the variational quantum circuit. At the same time, one can argue
that the algorithm is inspired by discrete time adiabatic quantum computations. This
algorithm is much studied, for good reason. At the same time, there is evidence that
with too short circuits, no quantum speedup can be attained. For example, it has been
shown that for p = 1, for a single step version, classical algorithms can achieve the
same performance as the single step QAOA on the combinatorial optimization prob-
lem MAX-3-LIN-2. Since one cannot expect an exact solution, people are also deeply
concerned with what improvements one can precisely expect over classical algorithms.
One has to be aware of the fact that one can also find good classical efficient approx-
imations, for example, by so-called convex relaxations of the original combinatorial
problem (leading to semi-definite problems discussed above). It is an interesting and
intense question for ongoing research in what precise sense one can hope for quan-
tum advantages. Again, since the problems considered are usually NP-hard not only
in worst case complexity, but also in approximation up to a constant ratio, one cannot
expect a quantum computer to solve all instances in polynomial time.

12.3 Final thoughts

12.3.1 Random circuit sampling

The presumably simplest near-term algorithm is that of random circuit sampling. Here,
one does not alter the circuit in any variational way on the fly. Instead, one considers the
native output distribution of a random quantum circuit. A moment of thought reveals
that at the end of the day, every experiment is quantum physics is a random sampling
scheme: One just has to take the raw native data that follow Born’s rule. Random
quantum sampling is inspired by this kind of thinking. ForN qubits, one starts off with
|0〉⊗N and implements a random circuit, by implementing a collection of random two-
qubit and single qubit gates that are taken from a universal gate set as discussed above.
This gives rise to a state vector |ψ〉 ∈ (C2)⊗N . Then one performs a measurement in
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the computational basis (the Pauli-Z-basis), to get outcomes x = (x1, . . . , xN ) with
probability

p(x) = |〈ψ|x1, . . . , xN 〉|2. (12.20)

This distribution is pretty structureless, in fact, it is close to being uniform. Yet, the
tails of this distribution are intricate. They are so intricate that one cannot sample from
a distribution close to this one efficiently on a quantum computer.

Random circuit sampling: An efficient classical sampling from a distribution that
is close up to a constant error in the ‖.‖l1 distance for random circuit sampling
with size and depth of the circuit appropriately chosen leads to a collapse of the
polynomial hierarchy to the third level.

The mentioned ‖.‖l1 distance is nothing but the sum of absolute values of a vec-
tor and is the same as the trace norm applied to diagonal quantum states. It also has
basically the same statistical interpretation. The “collapse of the polynomial hierarchy
to the third level” is an elaborate concept in theoretical computer science. It is suffi-
cient to say that proving P = NP would lead to a collapse of the polynomial hierarchy
altogether, so the mentioned collapse is a similarly implausible (but strictly speaking
unproven) collapse of complexity classes.

Such random sampling schemes have been experimentally implemented, to great
attention, first by the Google AI Quantum team using a superconducting device involv-
ing 53 qubits. In the meantime, it has been argued that one can classically sample from
the given distribution to a small error also on classical supercomputers. The question
of how to fairly compare quantum and classical schemes is an exciting and important
topic of ongoing research. Also, it is interesting to note that one cannot black-box verify
such devices, and more indirect methods of verifying the output distributions such as
linear cross entropy benchmarking must be resorted to. Also, in the meantime, larger
scale experiments have been performed with 66 qubits (by a Chinese team) which is to
date unchallenged by classical computers. These experiments show “quantum advan-
tages” or what is sometimes called “quantum supremacy” – relating to the situation that
quantum computers can outperform classical computers for the same well defined com-
putational problem, underpinned by a language of computational complexity. But they
are not practically minded algorithms in their own right, and applications are scarse.

12.3.2 Closing remarks
To precisely find out what near-term quantum computers can do is a highly interest-
ing and exploratory field of research that receives a lot of attention. People are much
concerned with the impact of noise that basically limits variational quantum circuits to
logarithmic depth. Researchers are asking questions of good control in quantum vari-
ational algorithms. Importantly, it is much studied what applications in combinatorial
optimization and quantum-assisted machine learning are conceivable. Indeed, there is
evidence that quantum computers can help in both families of problems. How this is
precisely done is presumably one of the most exciting questions of present-day physics
and computer science.


