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1. Introduction to graphical calculus with tensor networks (6 Points: 1+1+1+2+1)

As you might have noticed, already for a little number of tensor factors even simple
calculations can become hard to follow quite easily. Hence, an alternative approach
to visualize such calculations was developed. Namely, graphical calculus with tensor
networks, often atributed to Roger Penrose. We will give a short introduction into
the basics of this calculation technique in this exercise. However, we encourage you
to have a look into https://arxiv.org/pdf/1603.03039.pdf, which gives a nice and
complete overview over tensor networks. For this course, you won’t need most of the
content but it constitutes a good reference where you can find any concept we will use
(in particular, in chapter 1 and 2).

In tensor network notation, a tensor is simply an object that has indices, usually a set
of complex numbers Ai1,...,in . A tensor with one index is a vector, one with two indices
is a matrix. A tensor with n indices is denoted as a box with n legs, hence we have the
following correspondences

ψ ≃ |ψ⟩ ∈ H, ψ ≃ ⟨ψ | ∈ H∗,

≃ 1 ∈ L(H), A ≃ A ∈ L(H),

ψ

ϕ
≃ |ψ⟩ ⊗ |ϕ⟩ ∈ H ⊗H, ≃

d∑
i=1

|ii⟩

One can think of each unconnected leg carrying a (dual) Hilbert space. Connecting
two legs denotes contraction of the indices, so that for example the matrix product

(AB)ij =
∑

k AikBkj is denoted by A B

a) Draw the expectation value ⟨ψ |A |ψ⟩ as a tensor network.

b) What does the following tensor network represent?
A

c) Prove

A = AT

d) Using tensor networks, prove the following statement from Exercise sheet 1

Tr(ρABOA ⊗ 1B) = Tr(TrB(ρAB)OA) (1)

Hint: recall that any ρAB can be decomposed in bases of HA and HB as ρAB =∑
ijkl ρijkl |i⟩⟨j | ⊗ |k⟩⟨l|.
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e) Prove that Tr(A2) = Tr((A ⊗ A)F ) using tensor networks. F denotes the flip
operator exchanging the two subsystems, i.e. F : H ⊗ H → H ⊗ H, |i⟩ ⊗ |j⟩ 7→
|j⟩ ⊗ |i⟩.

2. On the Kraus Representation of Quantum Channels
We have seen in the lecture as well as in previous exercise sheets that many of the
notions in quantum information theory can be understood by starting with pure-state
quantum mechanics and demanding a description for subsystems of such quantum
systems. Some examples of this are the following statements

• Given an arbitrary pure state |ψ⟩ ∈ HA ⊗ HB describing the joint state of
two physical systems A and B, all measurement statistics of measurements on
subsystem A (or B) are fully contained in the reduced density matrices ρA =
TrB |ψ⟩⟨ψ | (or ρB = TrA |ψ⟩⟨ψ |). I.e. density matrices are required to describe the
possible states of subsystems of larger systems whose states are pure.

• Given an arbitrary mixed state ρ ∈ D(HA) there always exists a second Hilbert
space HB and a pure state |ψ⟩ ∈ HA ⊗HB such that ρ = trB |ψ⟩⟨ψ |(Such a |ψ⟩ is
called a purification of ρ). This means that all density matrices can be interpreted
as states of a subsystem of a larger system which is in a pure state.

• POVMs, also called generalized measurements, can be understood as projective
measurements on a larger system.

In this exercise we want to develop a similar picture for quantum channels by exploring
the fact that quantum channels are exactly set of operations one can implement on a
quantum system HA by implementing a unitary operation on a joint system HA ⊗HB

and then looking at how the state of the subsystem A has transformed.

Recall that a map C : L (H1) → L (H2) is a proper quantum channel if and only if
it is completely positive and trace preserving, which is equivalent to

C : ρ 7→
∑
k

EkρE
†
k (2)

for some Kraus operators Ek such that
∑

k E
†
kEk = I. In the following, we investigate

the operational meaning of Kraus operators. For simplicity, we restrict ourselves to
quantum channels with the same input and output space L(X ). Suppose we apply a
unitary U to the joint system and environment in the state ρ⊗|0⟩⟨0| ∈ L(X⊗Z), where
|0⟩ ∈ Z is some reference state, and then we measure system Z in the computational
basis.

a) Show that the action of any unitary on the joint system can be written as

U(ρ⊗ |0⟩⟨0|)U † =
∑
kl

EkρE
†
l ⊗ |k⟩ ⟨l| ,

with respect to the basis {|i⟩}i on the second system for a set of operators {Ek}.
In particular show how these operators are related to the unitary U .

b) Now, we perform a von-Neumann (that is, projective) measurement on Z in the
same basis. Determine the post-measurement state conditioned on outcome i.

c) What is the probability of obtaining outcome i? What does this entail for the
operators Ek?

d) Give the corresponding operational interpretation of the Kraus operators Ek and
the unitary U .
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e) Now, suppose we want to implement a projective measurement on X via a global
unitary and a projective measurement on Z. Consider the unitaries U ∈ U(X ⊗Z)
on the joint system that give rise to this situation. What conditions do they have
to satisfy?

Hint: the measurement needs to collapse the state of the first system as well.

f) Can you think of an example for the case of X and Z being each a qubit?

We will show one last property of the Kraus representation

g) Let {Ki}Ni=1 and {K̃j}Ni=1 be two sets of linear operators in L(X ,Z) fulfilling the
completeness relation of Kraus operators. Show that if the two sets are related
by a unitary transformations U ∈ U(N) such that K̃i =

∑
j UijKj, the channels

represented by the sets coincide.

3. Equivalence between representations of quantum channels (11 Points:
1+1+2+1+2+2+1+1)
The aim of this exercise is to establish a duality between quantum channels and quan-
tum states. To this end, let

|Ω⟩ =
1√
d

d∑
i=1

|i, i⟩ (3)

be the maximally mixed state on a bipartite system Hd⊗Hd and denote by Ω = |Ω⟩⟨Ω|
its corresponding density matrix. Then define the Choi-Jamio lkowski map as

J : L(L(X ), L(Y)) → L(X ⊗ Y) :: T 7→ (T ⊗ 1)(Ω) (4)

with Ω now the maximally entangled state in X ⊗ X and 1 the identity on X ⊗ X∗.
Throughout let d be the dimension of X .

We will show that J as a map from the completely positive tracepreserving (CPTP)
maps to the set of quantum states on a bipartite system X ⊗ Y with the restriction
TrY ρ = 1/d is a bijection.

a) Use the criterion for positivity from the lecture and show that for a CPTP map
T from operators on X to operators on Y , J(T ) ∈ D(X ⊗ Y) is indeed a density
matrix on the joined system.

b) Use the diagrammatic notation to first draw the action of T on a density matrix
ρ ∈ L(X ). Then use that intuition to draw the Choi-state J(T ) in diagrammatic
notation. (Hint: you can represent T diagramatically as

T = T (5)

where the two bottom legs can be thought as corresponding to the “input” space
L(X ) ≃ X ⊗X ∗ and similarly for the two top legs. It may be convenient to think
about how the density matrix Ω is expressed graphically.)

c) Show that J is injective. (Hint: Do so by showing that for any J(T ) in the image
of J you can define a T̃ that maps X ∈ L(X ) to T̃ (X) = dTrX

[
J(T )(1Y ⊗XT )

]
.

If you use this hint, explain what this implies?).

d) Before we show surjectivity of J we want to get used to some concepts from the
lecture: determine a set of Kraus operators representing T (Hint: use the matrix
representation of pure states on a bipartite system from two weeks ago together
with the eigendecomposition of ρT .).
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e) Assuming dim(X ) = dim(Y), show that J is surjective. (Hint: Assume a given ρ
with the restriction mentioned above and use the previous exercise to construct a
CPTP map T such that J(T ) = ρ.).

Let ρT ∈ Y⊗X be the Choi-Jamio lkowski state corresponding to the quantum channel
T .

f) Determine a unitary UT representing T via the Stinespring representation.

Now, let UT be a unitary representing T in the Stinespring representation.

g) Determine the Choi-Jamio lkowski state representing T from UT .

The rank of a quantum channel is defined as the rank of its Choi matrix.

h) Show that a quantum channel with rank r can be represented as a Stinespring
dilation using an auxiliary system of dimension r.
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