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1. Examples of quantum channels (9 Points: 1+4+2+2)
Now we are ready to look at some examples of quantum channels acting on qubits, i.e.,
H = C2 . The following maps are important so-called noise channels

Fϵ(A) := ϵXAX + (1 − ϵ)A

Dϵ(A) := ϵTr[A]
1
d

+ (1 − ϵ)A

Aϵ(A) := ϵTr[A] |0⟩⟨0| + (1 − ϵ)A,

where ϵ ∈ [0, 1].

a) For each channel, show that it is CPT.

Next, we represent each quantum channel in different three ways, discussed in the
previous exercise.

b) For each channel with fixed ϵ = 1, give its Choi-Jamio lkowski state, a Kraus
representation and a Stinespring representation.

c) Generalise the previous results to an arbitrary ϵ ∈ [0, 1]. (Hint: First compute the
respective representations for ϵ = 0 and then reason for the Choi state on the one
hand, and for the Kraus and Stinespring representations on the other hand how
to combine the ϵ = 0 and = 1 cases into an arbitrary ϵ case.)

d) For arbitrary ϵ ∈ [0, 1] compute the action of each channel on the inputs |0⟩⟨0|
and ρ = 1/2. What is the physical interpretation of each channel?

2. On Shannon entropy...

To begin with let us first show some simple properties of entropies, in particular, of the
mutual information.

Recall the definition of the Shannon entropies for random variables X, Y which take
values in X ,Y and are distributed according to probability distributions p, q over X
and Y , respectively.

H(X) = −
∑
x∈X

p(x) log p(x) (Shannon entropy) (1)

H(X|Y ) = H(X, Y ) −H(Y ) =
∑
x∈X

p(x)H(Y |X = x) (Conditional entropy) (2)

a) Show that 0 ≤ H(X) ≤ log |X |, where the first equality holds iff there is an x ∈ X
for which p(x) = 1 and the second inequality holds iff p(x) = 1/|X | for all x.

b) Show that the Shannon entropy is subadditive, i.e., that H(X, Y ) ≤ H(X)+H(Y )
with equality if X and Y are independent..

Hint: Show that H(X, Y )−H(X)−H(Y ) ≤ 0 using that log2 x ln 2 = lnx ≤ x−1.

c) Show that H(Y |X) ≥ 0 equality if and only if Y is a (deterministic) function of
X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x)
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3. ... and the von-Neumann entropy

For any state ρ ∈ D(H) with dimH = d the von-Neumann entropy is defined as
S(ρ) = −Tr(ρ log ρ). Throughout this problem, if the global state being referred to is
clear, we will denote entropies of the reduced states using the corresponding Hilbert
space as an argument, e.g. the entropy of a state ρAB reduced on subsystem A is
denoted S(A).

a) Show that 0 ≤ S(ρ) with equality if and only if ρ is pure. (One can also show the
upper bound S(ρ) ≤ log d.)

b) Show that the von-Neumann entropy is subadditive in the sense that if two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B),
with equality if ρAB = ρA ⊗ ρB.

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum
state σ and that for two matrices A and B, log(A⊗B) = log(A)⊗1 + 1⊗ log(B).

c) Suppose that p = (pi)i is a probability vector and the states ρi are mutually
orthogonal. Show that

S

(∑
i

piρi

)
= H(p) +

∑
i

piS(ρi).

and use this result to infer that

S

(∑
i

piρi ⊗ |i⟩⟨i|

)
= H(p) +

∑
i

piS(ρi),

where ⟨i|j⟩ = δij and the ρi are arbitrary quantum states.

d) Use the results from b) and c) to infer that the von-Neumann entropy S is concave,
that is, S(

∑
i piρi) ≥

∑
i piS(ρi) for a probability distribution {pi}.

e) let ΩAB be the maximally entangled state on two Hilbert spaces of equal dimension
d, i.e. Ω = |Ω⟩ ⟨Ω| with

|Ω⟩ =
1√
d

d∑
i=1

|ii⟩ . (3)

Compute S(A|B). What do you conclude?

f) Let ρAB be a bipartite state. Use the result of point c) to show that if ρA is
separable, i.e. ρAB =

∑
i piσ

i
A ⊗ τ iB where σi and τ i are states, then S(A|B) ≥ 0.
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