
Exercise Sheet 0: Elements of Linear Algebra

This exercise sheet serves as a warm-up for the course. We want to familiarize ourselves with
the most important tool we need in quantum information: Linear Algebra in bra-ket notation.

Bra-ket notation

Introduction. Bra-ket notation is a different way of writing up vectors that physicists usually
find more appealing. There is not much magic going on. Normally, vectors in Cd are written
by using bold symbols u,v ∈ Cd and we can denote inner products (scalar products) as

⟨u,v⟩ =
d∑

i=1

u∗i vi = u†v. (1)

Note here that we need to do a complex conjugation of the left vector because we are dealing
with complex numbers. In bra-ket notation, we just replace the symbol of a (column) vector
with a ket v → |v⟩ and of a conjugated (row) vector with a bra u† = ⟨u|. Putting both together
we close the bracket to obtain the inner product again

⟨u,v⟩ = ⟨u|v⟩ =
d∑

i=1

u∗i vi. (2)

We will also use the conjugate transpose to switch between bra and ket:

|v⟩† = ⟨v| (3)

⟨v|† = |v⟩ . (4)

In the following, we will also make use of outer products that describe maps, i.e. matrices.
Consider for example the outer products(

1
0

)(
1 0

)
=

(
1 0
0 0

)
(5)(

1
0

)(
0 1

)
=

(
0 1
0 0

)
. (6)

The outer product of two vectors is normally written as uv† and in bra-ket notation becomes
uv† → |u⟩⟨v|.

Last but not least we will need to multiply vectors with matrices, for a given matrix A
usually written as Au. This becomes Au → A|u⟩. If we take the inner product of a vector u
with Av we obtain

⟨u, Av⟩ = ⟨u|A|v⟩. (7)

Note that if we take the conjugate (bra) of a matrix-vector product we have to use the conjugate
transpose

(A |v⟩)† = ⟨v|A†. (8)

Exercise 1 (Warmup).9 P. Let us denote with

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
(9)

the two basis vectors of C2.



(a)2 P. Write the following vectors in bra-ket notation:(
1/
√
2

1/
√
2

) (
3− i
1 + i

) (
i 3

) (
0 2

)
(10)

Solution

(
1/
√
2

1/
√
2

)
= 1/

√
2(|0⟩+ |1⟩)(

3− i
1 + i

)
= (3− i) |0⟩+ (1 + i) |1⟩(

i 3
)
= i ⟨0|+ 3 ⟨1|(

0 2
)
= 2 ⟨1|

(b)3 P. Write the following matrices in bra-ket notation:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(11)

Solution

X = |0⟩⟨1|+ |1⟩⟨0|
Y = −i|0⟩⟨1|+ i|1⟩⟨0|
Z = |0⟩⟨0| − |1⟩⟨1|

(c)2 P. Compute ⟨0|X|0⟩ by explicitly writing down the vectors.

Solution

⟨0|X|0⟩ =
(
1 0

)(0 1
1 0

)(
1
0

)
=
(
1 0

)(0
1

)
= 0.

(d)2 P. Now compute (or argue) the values of ⟨0|0⟩, ⟨1|1⟩ and ⟨0|1⟩. Then calculate ⟨0|X|0⟩ in
bra-ket notation.

Solution

⟨0|X|0⟩ = ⟨0|
(
0⟩⟨1|+ |1⟩⟨0|

)
|0⟩

= ⟨0|0⟩︸︷︷︸
=1

⟨1|0⟩︸︷︷︸
=0

+ ⟨0|1⟩︸︷︷︸
=0

⟨0|0⟩︸︷︷︸
=1

= 0

Exercise 2 (Abstract calculations).9 P. We now look at the abstract vector space Cd.



(a)1 P. For a ket vector in Cd given in the computational basis as

|v⟩ =
d∑

i=1

vi |i⟩ , (12)

write down its associated bra ⟨v|.

Solution

⟨v| =
d∑

i=1

v∗i ⟨i| .

(b)2 P. Write a matrix A ∈ Cd×d with entries Aij in the computational basis in bra-ket notation.

Solution

A =
d∑

i=1

d∑
j=1

Aij |i⟩⟨j|.

(c)2 P. A matrix A has eigenvalues {ai}di=1 with associated eigenvectors {|ai⟩}di=1. Give the
expansion of A in terms of its eigenvectors in bra-ket notation.

Solution

A =

d∑
i=1

ai |ai⟩⟨ai|.

(d)4 P. Let the matrix A have a singular value decomposition A = UDV † with unitary matrices
U and V and a diagonal matrix D. Express this decomposition of A in bra-ket notation.

Solution

The matrix D is diagonal in the computational basis, hence we can write D =∑d
i=1 di|i⟩⟨i| where {di}di=1 are the singular values of A. We expand

A = UDV †

= U

(
d∑

i=1

di|i⟩⟨i|

)
V †

=

d∑
i=1

di U |i⟩⟨i|V †.

Now let us define the vectors |ui⟩ = U |i⟩ and |vi⟩ = V |i⟩. Then we have the form

A =
d∑

i=1

di |ui⟩⟨vi|.

Bonus Exercise 1.3 P. A ket |v⟩ represents an element of a Hilbert space (a vector space with
scalar product). Find out and describe what a bra ⟨v| represents in abstract terms.



Solution

As a ket represents a vector in Cd, a bra represents a vector in the dual space of Cd, which
is the space of linear maps from Cd to C. Any such map can be constructed as a linear
combination of bra vectors. To learn more about this, google a bit.

Resolution of the identity. Another simple fact of linear algebra that can be quite useful is the
resolution of the identity, i.e. the fact that we can write the identity matrix I ∈ Cd×d as

I =
d∑

i=1

|ai⟩⟨ai| (13)

for any orthonormal basis {|ai⟩}di=1.

Exercise 3 (Resolution of the identity).4 P.

(a)3 P. Use the resolution of the identity to determine the bra-ket form of an arbitrary matrix A.
(Compare to Exercise 2 (b))

Solution

A = IAI

=

(
d∑

i=1

|i⟩⟨i|

)
A

 d∑
j=1

|j⟩⟨j|


=

d∑
i=1

d∑
j=1

⟨i|A|j⟩ |i⟩⟨j|.

(b)1 P. Compare your result to Exercise 2 (b) and give the formula for the entries of the matrix
Aij relative to the computational basis.

Solution

Aij = ⟨i|A|j⟩.

Tensor products

Introduction. When multiple quantum systems are combined, their mathematical description
needs the so-called tensor product. We will study this from the perspective of linear algebra.
Let us consider two Hilbert spaces Cd and Cd′ with orthonormal basis systems {|i⟩}di=1 and
{|j⟩}d′j=1 respectively. On an intuitive level, the tensor product Cd ⊗Cd′ of the two spaces aims

to describe all possible combinations of vectors in Cd and Cd′ . We can construct an orthonormal
basis for the new space Cd ⊗ Cd′ by combining the basis elements of both spaces into a new
basis {|i⟩ ⊗ |j⟩}di=1

d′
j=1. This means we can expand any vector in the tensor product space as

|v⟩ ∈ Cd ⊗ Cd′ ⇒ |v⟩ =
d∑

i=1

d′∑
j=1

vij(|i⟩ ⊗ |j⟩). (14)

Note that so far we just made up a new vector space with a new basis that has two indices
instead of one. One can reduce this to one index by making up a new basis |k⟩ = |i⟩⊗ |j⟩ where
k = i+ (j − 1) · d, which is something people often do when doing numerical implementations.



To complete the definition of the tensor product space, we also need a way to take vectors
|u⟩ ∈ Cd and |v⟩ ∈ Cd′ and combine them to a vector in the product space. Let |u⟩ =

∑d
i=1 ui |i⟩

and |v⟩ =
∑d′

j=1 vj |j⟩. Then, the tensor product operation is naturally obtained by treating the
operation ⊗ like a product:

|u⟩ ⊗ |v⟩ =

(
d∑

i=1

ui |i⟩

)
⊗

 d′∑
j=1

vj |j⟩

 (15)

=
d∑

i=1

d′∑
j=1

(ui |i⟩ ⊗ vj |j⟩) (16)

=
d∑

i=1

d′∑
j=1

uivj(|i⟩ ⊗ |j⟩). (17)

All definitions above extend in a similar way to tensor products of bras, i.e. expressions like
⟨u|⊗⟨v| = (|u⟩⊗|v⟩)†. In quantum information science, people are usually quite lazy. Therefore,
you will often see the abbreviation |i⟩ ⊗ |j⟩ = |i, j⟩ = |ij⟩.
Exercise 4 (Tensor products of vectors).4 P.

(a)1 P. What is the dimension of Cd ⊗ Cd′?

Solution

It is d× d′.

(b)3 P. For a given vector |v⟩ ∈ Cd⊗Cd′ , give a formula for the coefficients vij of Eq. (14). (Hint:
what is (⟨i| ⊗ ⟨j|)(|i′⟩ ⊗ |j′⟩) = ⟨i, j|i′, j′⟩?).

Solution

We have

vij = (⟨i| ⊗ ⟨j|) |v⟩ = ⟨i, j|v⟩

because

(⟨i| ⊗ ⟨j|) |v⟩ = (⟨i| ⊗ ⟨j|)
d∑

i′=1

d′∑
j′=1

vi′j′(|i′⟩ ⊗ |j′⟩)

=
d∑

i′=1

d′∑
j′=1

vi′j′(⟨i| ⊗ ⟨j|)(|i′⟩ ⊗ |j′⟩)

=
d∑

i′=1

d′∑
j′=1

vi′j′(⟨i|i′⟩ ⊗ ⟨j|j′⟩)

=

d∑
i′=1

d′∑
j′=1

vi′j′δii′δjj′

= vij .

Kronecker product. Next, we will consider a particular way to find explicit vectors representing
the basis of the tensor product space. Let us consider again C2 with the basis vectors

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
. (18)



We can give new basis vectors for C2 ⊗ C2 by using the Kronecker product, which can be
understood as follows:

|u⟩ ⊗ |v⟩ →

u1 ·
(
v1
v2

)
u2 ·

(
v1
v2

)
→


u1v1
u1v2
u2v1
u2v2

 . (19)

We did not write equals signs because we remove the parentheses in the middle step. Using the
above product, we obtain an explicit basis for C2 ⊗ C2 as

|0⟩ ⊗ |0⟩ = |0, 0⟩ =


1
0
0
0

 |0⟩ ⊗ |1⟩ = |0, 1⟩ =


0
1
0
0



|1⟩ ⊗ |0⟩ = |1, 0⟩ =


0
0
1
0

 |1⟩ ⊗ |1⟩ = |1, 1⟩ =


0
0
0
1

 .

(20)

The construction extends to products of larger spaces in the natural way.

Exercise 5 (Kronecker product of vectors).2 P. We use the setting of C2 ⊗C2 with the Kronecker
product described above. Compute the following tensor products in the Kronecker product
basis:

(1/
√
2 |0⟩+ 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩+ 1/

√
2 |1⟩) (21)

(1/
√
2 |0⟩+ 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩ − 1/

√
2 |1⟩) (22)

(1/
√
2 |0⟩ − 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩+ 1/

√
2 |1⟩) (23)

(4i |0⟩ − 3 |1⟩)⊗ (|0⟩ − i |1⟩). (24)

Solution

(1/
√
2 |0⟩+ 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩+ 1/

√
2 |1⟩) =


1/2
1/2
1/2
1/2



(1/
√
2 |0⟩+ 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩ − 1/

√
2 |1⟩) =


1/2
−1/2
1/2
−1/2



(1/
√
2 |0⟩ − 1/

√
2 |1⟩)⊗ (1/

√
2 |0⟩+ 1/

√
2 |1⟩) =


1/2
1/2
−1/2
−1/2



(4i |0⟩ − 3 |1⟩)⊗ (|0⟩ − i |1⟩) =


4i
4
−3
3i

 .



Tensor products of matrices. We have discussed how we can construct tensor products of
vectors. Next we care about tensor products of matrices acting on these vectors. We can define
the tensor product of two operations through the rather sensible equation

(A |u⟩)⊗ (B |v⟩) = (A⊗B)(|u⟩ ⊗ |v⟩). (25)

Exercise 6 (Tensor products of matrices).11 P.

(a)2 P. Use the definition of Eq. (25) to show that (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Solution

By definition, we have that

(A⊗B)(C ⊗D)(|u⟩ ⊗ |v⟩) = (A⊗B)(C |u⟩ ⊗D |v⟩)
= (AC |u⟩ ⊗BD |v⟩)
= (AC ⊗BD)(|u⟩ ⊗ |v⟩).

(b)4 P. For two matrices A =
∑d

i=1

∑d
i′=1Aii′ |i⟩⟨i′| and B =

∑d′

j=1

∑d′

j′=1Bjj′ |j⟩⟨j′|, determine
the bra-ket expansion of A⊗B.

Solution

We know that any matrix C can be expressed in an orthonormal basis {|vi⟩}di=1 as

d∑
i=1

d∑
j=1

⟨i|C|j⟩ |i⟩⟨j|.

Therefore, the action of C is completely determined by knowing all the terms ⟨i|C|j⟩
in some basis. In the case of A⊗B, this means it suffices to calculate

(⟨i| ⊗ ⟨j|)(A⊗B)(|i′⟩ ⊗ |j′⟩)
= (⟨i| ⊗ ⟨j|)(A |i′⟩)⊗ (B |j′⟩)

= (⟨i| ⊗ ⟨j|)

(
d∑

i′′=1

d∑
i′′′=1

Ai′′i′′′ |i′′⟩⟨i′′′|i′⟩

)
⊗

 d′∑
j′′=1

d′∑
j′′′=1

Bj′′j′′′ |j′′⟩⟨j′′′|j′⟩


= (⟨i| ⊗ ⟨j|)

(
d∑

i′′=1

Ai′′i′ |i′′⟩

)
⊗

 d′∑
j′′=1

Bj′′j′ |j′′⟩


= Aii′Bjj′ .

Therefore, A⊗B can be written as

A⊗B =

d∑
i,i′=1

d′∑
j,j′=1

Aii′Bjj′(|i⟩ ⊗ |j⟩)(⟨i′| ⊗ ⟨j′|)

=
d∑

i,i′=1

d′∑
j,j′=1

Aii′Bjj′(|i⟩⟨i′| ⊗ |j⟩⟨j′|)

=
d∑

i,i′=1

d′∑
j,j′=1

Aii′Bjj′ |i, j⟩⟨i′, j′|.



(c)2 P. Compute the matrix form of the operator X ⊗X in the Kronecker product basis. (Hint:
Use the fact that X |0⟩ = |1⟩ and X |1⟩ = |0⟩.

Solution

Because the basis vectors of the Kronecker product basis only map to each other,
the matrix representation of X ⊗X consists of column vectors with only one 1 and
three zeros. We are left to track down exactly where they are which can easily seen
by taking the action of X ⊗X on the computational basis:

(X ⊗X)(|0⟩ ⊗ |0⟩) = |1⟩ ⊗ |1⟩
(X ⊗X)(|0⟩ ⊗ |1⟩) = |1⟩ ⊗ |0⟩
(X ⊗X)(|1⟩ ⊗ |0⟩) = |0⟩ ⊗ |1⟩
(X ⊗X)(|1⟩ ⊗ |1⟩) = |0⟩ ⊗ |0⟩ .

Therefore, the matrix representation of X ⊗X is

X ⊗X =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

(d)3 P. Look up the multiplication rule for the Kronecker product A⊗B of two matrices

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
(26)

and write it down. Then, compute the following matrix tensor products in the Kronecker
product basis:

X ⊗ Y,Z ⊗X. (27)

Here, X,Y, Z are as defined in Exercise 1.



Solution

The multiplication rule is given by

A⊗B →

A11

(
B11 B12

B21 B22

)
A12

(
B11 B12

B21 B22

)
A21

(
B11 B12

B21 B22

)
A22

(
B11 B12

B21 B22

)


→


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 .

We recall from Exercise 1 the definitions

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

With these, we can compute:

X ⊗ Y =

(
0 1
1 0

)
⊗
(
0 −i
i 0

)
=


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

Z ⊗X =

(
1 0
0 −1

)
⊗
(
0 1
1 0

)
=


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

Bonus Exercise 2.3 P. Are there vectors |v⟩ ∈ C2 ⊗ C2 that you cannot write as |v⟩ = |u⟩ ⊗ |v⟩
for |u⟩ , |v⟩ ∈ C2?

Solution

Yes, there are such vectors! You will revisit this topic soon under the name of quantum
entanglement. An example is

|Φ+⟩ = 1√
2
(|0, 0⟩+ |1, 1⟩).

Total Points: 39 (+6)


