
Exercise Sheet 1: Basics of Quantum Information The-

ory

This exercise sheet tries to teach you some of the basics of quantum information theory.

Density Matrix Formalism

Introduction. There are multiple ways to approach a description of quantum mechanics from
the analytical point of view. Quantum mechanics courses usually rely mostly on the formalism of
quantum states, normally expressed as |ψ⟩, and the Schrödinger equation. For our purposes, we
will, however, mostly use the density matrix formulation of quantum mechanics, which allows for
a simpler treatment of probabilistic mixtures of quantum states. These arise for example when
a quantum system undergoes unwanted random interactions with an environment, introducing
“noise” to a quantum state.

The density matrix formulation starts from the following (incomplete) set of postulates:

(I) Each physical system is associated with a Hilbert space (H, ⟨·|·⟩). The (mixed) state of
a quantum system is described by a non-negative (also called positive semi-definite, this
means that all eigenvalues of the matrix are non-negative), self-adjoint linear operator
with unit trace, i.e. an element of1

D := {ρ ∈ L(H) | ρ = ρ†, ρ ≥ 0, Tr[ρ] = 1}. (1)

Here, ρ ≥ 0 is the notation we use to say that ρ is positive semi-definite.

(II) Observables are represented by Hermitian operators on H. The expectation value of an
observable A in the state ρ is given by ⟨A⟩ρ = Tr[Aρ].

(III) The time-evolution of the state of a quantum system satisfies

dρ

dt
= −i[H, ρ],

where H is the Hamiltonian, the observable associated to the total energy of the system.

Exercise 1 (Rank one projectors).2 P. Show that the set

P = {π ∈ L(H) | π = π†, π2 = π, rankπ = 1} (2)

of orthogonal projectors onto one-dimensional subspaces of H is a subset of D.

Most probably, you have originally learned another definition for quantum states in your
first quantum mechanics course. Namely, pure quantum states are rays of the Hilbert space
H. The rays of a Hilbert space are the equivalence classes of unit vector that only differ by
a phase factor. In symbols, we have rays(H) = {|ψ⟩ ∈ H | ∥|ψ⟩∥22 = 1}/ ∼. The equivalence
relation |ψ⟩ ∼ |ϕ⟩ captures the fact that if there exist α ∈ R such that |ψ⟩ = eiα|ϕ⟩, then |ψ⟩
and |ϕ⟩ represent the same state. Often physicists tend to drop the equivalence relation and
talk about unit vectors as quantum states instead of rays.

Exercise 2 (Pure states).5 P. In this exercise, we will show that the set P of Eq. (2) is equivalent
to the set of pure quantum states and use this to derive the time-evolution in the density matrix
formalism from the pure state Schrödinger equation.

1In quantum information theory, it will be sufficient to consider finite-dimensional Hilbert spaces most of the
time. A finite-dimensional Hilbert space is simply a vector space. In infinite dimension there are more subtleties,
but these do not concern us.



(a)2 P. Show that the mapping

[|ψ⟩] 7→ |ψ⟩⟨ψ| (3)

is a bijection between the set P defined in Eq. (2) and rays(H) irrespective of which
representative of [|ψ⟩] is chosen.

(b)1 P. Show that the mapping of Eq. (3) is the correct one as it reproduces the same expectation
values for any observable A.

(c)2 P. Starting from the Schrödinger equation for pure states, i.e.

d

dt
|ψ⟩ = −iH|ψ⟩ (4)

derive the corresponding evolution equation for density matrices

dρ

dt
= −i[H, ρ]. (5)

Here [A,B] = AB −BA is the commutator of two matrices. (Hint: start by proving this
for ρ = π a pure state, then use linearity.)

We have seen that density matrices describe both mixed and pure quantum states. Let us
define the following function of the state

f : D → R, ρ 7→ Tr[ρ2]. (6)

Before we come to the next exercise, we will also introduce the so-called Hilbert-Schmidt inner
product, which endows the space of matrices with an inner product. It is defined as

⟨A,B⟩ := Tr[A†B]. (7)

As any proper inner product, it also obeys a Cauchy-Schwarz inequality:

Tr[A†B]2 ≤ Tr[A†A] Tr[B†B]. (8)

Exercise 3 (Purity).9 P.

(a)3 P. Show that 1
d ≤ f(ρ) ≤ 1, where d is the dimension of the Hilbert space H. (Hint: Use the

Cauchy-Schwarz inequality)

(b)3 P. Show that f(ρ) = 1 if and only if ρ is a pure state.

(c)3 P. What state attains the lower bound f(ρ) = 1
d? Argue that f(ρ) can be seen as a measure

of “purity” of the state ρ.

Exercise 4 (Decompositions of mixed states).5 P.

(a)2 P. Show that every mixed state of a finite-dimensional quantum system can be written as a
convex decomposition of pure states.

(b)2 P. Consider the following two (macroscopically different) preparation schemes of a large
number of polarised photons:

Preparation A. For each photon we toss a fair coin. Depending on whether we get
head or tail, we prepare the photon to have either vertical or horizontal linear polarisation.

Preparation B. For each photon we toss a fair coin. Depending on whether we get
head or tail, we prepare the photon to have either left-handed or right-handed circular
polarisation.



Note: You can simply think of the polarization of the light as a binary variable and of the
polarization axis as a local basis. That is, the vertical and horizontal linear polarizations
may be identified with the |0⟩ and |1⟩ eigenstates of the Z operator. Likewise you may

interpret the left- and right handed circular polarizations as the |+⟩ = |0⟩+|1⟩√
2

and |−⟩ =
|0⟩−|1⟩√

2
eigenstates of the X operator.

Write down the density matrices ρ
(m)
A and ρ

(m)
B describing the mixed quantum states

obtained after m rounds of Preparations A and B, respectively.

(c)1 P. Use the result of (b) to argue that, having only access to the photons produced by the
preparation procedures in (b), we cannot distinguish whether Preparation A or Prepara-
tion B was used.

Bonus Exercise 1.4 P. Argue that if it were possible to distinguish Preparation A from Prepa-
ration B (from the previous exercise) by measuring the photons, then this could be used to
communicate a bit of information without actually sending any (classical or quantum) infor-
mation carrier. Which fundamental physical principle would this violate? (Hint: What is the
reduced state of the maximally entangled state |Ω⟩ = 1√

2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ |−−⟩)?)

Composite Quantum Systems

Next, we will see that the generalization to density matrices is a necessary one if we want to
study subsystems. Consider a bipartite system AB with Hilbert space H = CdA ⊗ CdB and
an observable that is only supported on the subsystem A as OA ⊗ IB. We will see that the
restriction to a subsystem is described by the partial trace: For a a linear operator (matrix)
M : H → H on the composite system AB, the partial trace with respect to the system B is
defined as

TrB[M ] =

dB∑
j=1

(IA ⊗ ⟨j|B)M(IA ⊗ |j⟩B), (9)

where {|j⟩B} is an arbitrary orthonormal basis for CdB (as with the trace, this definition is
independent of the particular choice of the basis). In quantum information theory, we usually
say “we trace out the system B”.

Exercise 5.10 P.

(a)2 P. As a technical prerequisite, prove that a self-adjoint operator is positive semi-definite, i.e.
has only non-negative eigenvalues, if and only if ⟨v|M |v⟩ ≥ 0 for all |v⟩.

(b)3 P. Show that the partial trace of a state with respect to the system B (density operator) is
a valid state on the subsystem A.

(c)2 P. Prove that for any state ρAB we have

Tr[ρAB(OA ⊗ IB)] = Tr[TrB[ρAB]OA]. (10)

for all observables OA. That is, the partial trace is the reduced state on the subsystem A.

(d)3 P. Reduced states of pure states are not necessarily pure. Let dA = dB = d. Show that there
is no pure state |ψA⟩⟨ψA| acting on A that satisfies

Tr[ρAB(OA ⊗ IB)] = Tr[|ψA⟩⟨ψA|OA] (11)

for ρAB = |ΩAB⟩⟨ΩAB| and all observables OA. Here,

|Ω⟩ := d−
1
2

d∑
j=1

|j, j⟩ (12)



is the maximally entangled state.

Total Points: 30 (+4)


