Exercise Sheet 1: Basics of Quantum Information Theory

This exercise sheet tries to teach you some of the basics of quantum information theory.

Density Matrix Formalism

Introduction. There are multiple ways to approach a description of quantum mechanics from the analytical point of view. Quantum mechanics courses usually rely mostly on the formalism of quantum states, normally expressed as $|\psi\rangle$, and the Schrödinger equation. For our purposes, we will, however, mostly use the density matrix formulation of quantum mechanics, which allows for a simpler treatment of probabilistic mixtures of quantum states. These arise for example when a quantum system undergoes unwanted random interactions with an environment, introducing "noise" to a quantum state.

The density matrix formulation starts from the following (incomplete) set of postulates:
(I) Each physical system is associated with a Hilbert space $(\mathcal{H},\langle\cdot \mid \cdot\rangle)$. The (mixed) state of a quantum system is described by a non-negative (also called positive semi-definite, this means that all eigenvalues of the matrix are non-negative), self-adjoint linear operator with unit trace, i.e. an element of ${ }^{1}$

$$
\begin{equation*}
\mathcal{D}:=\left\{\rho \in L(\mathcal{H}) \mid \rho=\rho^{\dagger}, \rho \geq 0, \operatorname{Tr}[\rho]=1\right\} . \tag{1}
\end{equation*}
$$

Here, $\rho \geq 0$ is the notation we use to say that ρ is positive semi-definite.
(II) Observables are represented by Hermitian operators on \mathcal{H}. The expectation value of an observable A in the state ρ is given by $\langle A\rangle_{\rho}=\operatorname{Tr}[A \rho]$.
(III) The time-evolution of the state of a quantum system satisfies

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=-i[H, \rho]
$$

where H is the Hamiltonian, the observable associated to the total energy of the system.
2 P. Exercise 1 (Rank one projectors). Show that the set

$$
\begin{equation*}
\mathcal{P}=\left\{\pi \in L(\mathcal{H}) \mid \pi=\pi^{\dagger}, \pi^{2}=\pi, \operatorname{rank} \pi=1\right\} \tag{2}
\end{equation*}
$$

of orthogonal projectors onto one-dimensional subspaces of \mathcal{H} is a subset of \mathcal{D}.
Most probably, you have originally learned another definition for quantum states in your first quantum mechanics course. Namely, pure quantum states are rays of the Hilbert space \mathcal{H}. The rays of a Hilbert space are the equivalence classes of unit vector that only differ by a phase factor. In symbols, we have $\left.\operatorname{rays}(\mathcal{H})=\{|\psi\rangle \in \mathcal{H}|\|| \psi\rangle \|_{2}^{2}=1\right\} / \sim$. The equivalence relation $|\psi\rangle \sim|\phi\rangle$ captures the fact that if there exist $\alpha \in \mathbb{R}$ such that $|\psi\rangle=\mathrm{e}^{i \alpha}|\phi\rangle$, then $|\psi\rangle$ and $|\phi\rangle$ represent the same state. Often physicists tend to drop the equivalence relation and talk about unit vectors as quantum states instead of rays.
5 P. Exercise 2 (Pure states). In this exercise, we will show that the set \mathcal{P} of Eq. (2) is equivalent to the set of pure quantum states and use this to derive the time-evolution in the density matrix formalism from the pure state Schrödinger equation.

[^0]2 P. (a) Show that the mapping

$$
\begin{equation*}
[|\psi\rangle] \mapsto|\psi\rangle\langle\psi| \tag{3}
\end{equation*}
$$

is a bijection between the set \mathcal{P} defined in Eq. (2) and rays (\mathcal{H}) irrespective of which representative of $[|\psi\rangle]$ is chosen.
1 P. (b) Show that the mapping of Eq. (3) is the correct one as it reproduces the same expectation values for any observable A.

2 P. (c) Starting from the Schrödinger equation for pure states, i.e.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle=-i H|\psi\rangle \tag{4}
\end{equation*}
$$

derive the corresponding evolution equation for density matrices

$$
\begin{equation*}
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=-i[H, \rho] . \tag{5}
\end{equation*}
$$

Here $[A, B]=A B-B A$ is the commutator of two matrices. (Hint: start by proving this for $\rho=\pi$ a pure state, then use linearity.)

We have seen that density matrices describe both mixed and pure quantum states. Let us define the following function of the state

$$
\begin{equation*}
f: \mathcal{D} \rightarrow \mathbb{R}, \rho \mapsto \operatorname{Tr}\left[\rho^{2}\right] . \tag{6}
\end{equation*}
$$

Before we come to the next exercise, we will also introduce the so-called Hilbert-Schmidt inner product, which endows the space of matrices with an inner product. It is defined as

$$
\begin{equation*}
\langle A, B\rangle:=\operatorname{Tr}\left[A^{\dagger} B\right] . \tag{7}
\end{equation*}
$$

As any proper inner product, it also obeys a Cauchy-Schwarz inequality:

$$
\begin{equation*}
\operatorname{Tr}\left[A^{\dagger} B\right]^{2} \leq \operatorname{Tr}\left[A^{\dagger} A\right] \operatorname{Tr}\left[B^{\dagger} B\right] . \tag{8}
\end{equation*}
$$

9 P. Exercise 3 (Purity).
3 P. (a) Show that $\frac{1}{d} \leq f(\rho) \leq 1$, where d is the dimension of the Hilbert space \mathcal{H}. (Hint: Use the Cauchy-Schwarz inequality)

3 P. (b) Show that $f(\rho)=1$ if and only if ρ is a pure state.
3 P. (c) What state attains the lower bound $f(\rho)=\frac{1}{d}$? Argue that $f(\rho)$ can be seen as a measure of "purity" of the state ρ.

5 P. Exercise 4 (Decompositions of mixed states).
2 P. (a) Show that every mixed state of a finite-dimensional quantum system can be written as a convex decomposition of pure states.

2 P. (b) Consider the following two (macroscopically different) preparation schemes of a large number of polarised photons:
Preparation A. For each photon we toss a fair coin. Depending on whether we get head or tail, we prepare the photon to have either vertical or horizontal linear polarisation.
Preparation B. For each photon we toss a fair coin. Depending on whether we get head or tail, we prepare the photon to have either left-handed or right-handed circular polarisation.

Note: You can simply think of the polarization of the light as a binary variable and of the polarization axis as a local basis. That is, the vertical and horizontal linear polarizations may be identified with the $|0\rangle$ and $|1\rangle$ eigenstates of the Z operator. Likewise you may interpret the left- and right handed circular polarizations as the $|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|-\rangle=$ $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ eigenstates of the X operator.
Write down the density matrices $\rho_{A}^{(m)}$ and $\rho_{B}^{(m)}$ describing the mixed quantum states obtained after m rounds of Preparations A and B, respectively.

1 P. (c) Use the result of (b) to argue that, having only access to the photons produced by the preparation procedures in (b), we cannot distinguish whether Preparation A or Preparation B was used.

4 P. Bonus Exercise 1. Argue that if it were possible to distinguish Preparation A from Preparation B (from the previous exercise) by measuring the photons, then this could be used to communicate a bit of information without actually sending any (classical or quantum) information carrier. Which fundamental physical principle would this violate? (Hint: What is the reduced state of the maximally entangled state $|\Omega\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle)$?)

Composite Quantum Systems

Next, we will see that the generalization to density matrices is a necessary one if we want to study subsystems. Consider a bipartite system $A B$ with Hilbert space $\mathcal{H}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$ and an observable that is only supported on the subsystem A as $O_{A} \otimes \mathbb{I}_{B}$. We will see that the restriction to a subsystem is described by the partial trace: For a a linear operator (matrix) $M: \mathcal{H} \rightarrow \mathcal{H}$ on the composite system $A B$, the partial trace with respect to the system B is defined as

$$
\begin{equation*}
\operatorname{Tr}_{B}[M]=\sum_{j=1}^{d_{B}}\left(\mathbb{I}_{A} \otimes\left\langle\left. j\right|_{B}\right) M\left(\mathbb{I}_{A} \otimes|j\rangle_{B}\right),\right. \tag{9}
\end{equation*}
$$

where $\left\{|j\rangle_{B}\right\}$ is an arbitrary orthonormal basis for $\mathbb{C}^{d_{B}}$ (as with the trace, this definition is independent of the particular choice of the basis). In quantum information theory, we usually say "we trace out the system B ".

10 P. Exercise 5.

2 P. (a) As a technical prerequisite, prove that a self-adjoint operator is positive semi-definite, i.e. has only non-negative eigenvalues, if and only if $\langle v| M|v\rangle \geq 0$ for all $|v\rangle$.

3 P. (b) Show that the partial trace of a state with respect to the system B (density operator) is a valid state on the subsystem A.

2 P. (c) Prove that for any state $\rho_{A B}$ we have

$$
\begin{equation*}
\operatorname{Tr}\left[\rho_{A B}\left(O_{A} \otimes \mathbb{I}_{B}\right)\right]=\operatorname{Tr}\left[\operatorname{Tr}_{B}\left[\rho_{A B}\right] O_{A}\right] . \tag{10}
\end{equation*}
$$

for all observables O_{A}. That is, the partial trace is the reduced state on the subsystem A.
3 P. (d) Reduced states of pure states are not necessarily pure. Let $d_{A}=d_{B}=d$. Show that there is no pure state $\left|\psi_{A}\right\rangle\left\langle\psi_{A}\right|$ acting on A that satisfies

$$
\begin{equation*}
\operatorname{Tr}\left[\rho_{A B}\left(O_{A} \otimes \mathbb{I}_{B}\right)\right]=\operatorname{Tr}\left[\left|\psi_{A}\right\rangle\left\langle\psi_{A}\right| O_{A}\right] \tag{11}
\end{equation*}
$$

for $\rho_{A B}=\left|\Omega_{A B}\right\rangle\left\langle\Omega_{A B}\right|$ and all observables O_{A}. Here,

$$
\begin{equation*}
|\Omega\rangle:=d^{-\frac{1}{2}} \sum_{j=1}^{d}|j, j\rangle \tag{12}
\end{equation*}
$$

is the maximally entangled state.

[^0]: ${ }^{1}$ In quantum information theory, it will be sufficient to consider finite-dimensional Hilbert spaces most of the time. A finite-dimensional Hilbert space is simply a vector space. In infinite dimension there are more subtleties, but these do not concern us.

