
Exercise Sheet 2: Measurements and Co.

This sheet aims to deepen our understanding of the formalism of quantum information theory.

Measurements

Projective measurement. A projective measurement is described by a Hermitian observable A.
We denote the unique eigenvalues of A as {λk}k, and the eigenvectors as {|ψj⟩}j , which form an
orthonormal basis. We index the eigenvectors with j because there could be multiple different
eigenvectors for the same eigenvalue. To resolve this, we add a superscript to identify which
individual eigenvalue corresponds to each eigenvector {|ψkj ⟩}j .

In the spectral decomposition of the observable,

A =
∑
k

λkPk, (1)

the eigenvalues λk correspond to the possible outcomes from measuring A, and Pk are the
projectors onto the subspaces corresponding to each eigenvalue:

Pk =
∑

j:EVλk

|ψkj ⟩⟨ψkj |, (2)

where the sum is over all eigenvectors |ψkj ⟩ associated to the eigenvalue λk.

Exercise 1.11 P.

(a)2 P. Upon measuring the observable A on the state |ϕ⟩, the probability of getting the result
λk, p(k), is the expected value of Pk on |ϕ⟩. Give two formulas for p(k), one in terms of
Pk and the other in terms of |ψkj ⟩.

(b)1 P. If we observe the outcome λk, the state |ϕ⟩ gets projected onto the eigenspace of λk,

becoming |ϕpostk ⟩. Give a formula for |ϕpostk ⟩ (do not forget the normalization).

(c)2 P. Consider the observable A = X ⊗ X, where X is the Pauli-X operator. Give the spec-
tral decomposition of A, identifying the eigenvalues (λk)k and the projectors to their
corresponding eigenspaces1 (Pk)k.

(d)3 P. Consider A as defined in the previous exercise, and the following state |ϕ⟩:

|ϕ⟩ = 1√
30


1
2i
−3i
−4

 . (3)

What are the probabilities of each possible outcome when measuring A on |ϕ⟩? What is
the post-measurement state after observing λ1? and after observing λ−1?

(e)3 P. Given all of these, what is the (mixed) state ρpost resulting from measuring A on |ϕ⟩ if we
do not observe the measurement outcome? What is the purity2 of ρpost?

1Sanity check, you should have
∑

k Pk = I the identity matrix.
2Recall that the purity of a state ρ is computed as Tr[ρ2]



POVMs. From a theoretical perspective, a measurement description more general than the
projective measurement is often helpful. For simplicity – and in the spirit of information theory
– we assume that the possible measurement outcomes are from a discrete set3 X .

A measurement with outcomes X on a quantum system with Hilbert space H can be de-
scribed by a positive operator valued measure (POVM) on X . We denote by Pos(H) := {A ∈
L(H) | A ≥ 0} the set of Hermitian positive semi-definite operators on H. A POVM on a
discrete space X is a map µ : X → Pos(H) such that

∑
x∈X µ(x) = I. If the system is in the

quantum state ρ ∈ D(H), the probability of observing the outcome x ∈ X is given by Tr(µ(x)ρ).

Exercise 2.4 P.

(a)2 P. Can every projective measurement (also called projector valued measurement, PVM) be
phrased as a POVM? Either prove that this is always the case or show a counterexample.

(b)2 P. Can every POVM be phrased as a PVM on the same Hilbert space? Argue the answer,
and give an illustrative example. (Hint: what is Tr[EiEj ] for two elements Ei and Ej of
a POVM?)

It is often stated that this is the most general form of a quantum measurement. We want
to understand this statement in more detail. So what could be regarded as the most general
quantum measurement? One can start as follows: A (general) quantum measurement M with
outcomes in X is a map that associates to each quantum state ρ ∈ D(H) a probability measure
pρ on X , i.e. M : ρ 7→ pρ with pρ : X → [0, 1] such that

∑
x∈X pρ(x) = 1.

Exercise 3.2 P. Show that any POVM on X defines a general quantum measurement as defined
above.

Quantum information theory

Encoding classical bits. We know that describing quantum systems requires exponential amounts
of classical bits. Then, could we use a quantum state to store an exponential amount of bits?
Or how many classical bits can be encoded and (perfectly) decoded in a d-dimensional quantum
system in this way? In this exercise, we see that the fact that we need to measure to access
information stored in a quantum state limits the amount of classical information we can extract
from the state of a quantum system.

Let H be a d-dimensional Hilbert space. Our aim is to encode n classical bits into the space
of quantum states as density matrices D(H). There are 2n possible different arrangements of
n classical bits: |{0, 1}n| = 2n. To this end, we choose a set of 2n states {ρx}x∈{0,1}n ⊂ D(H),
each state corresponding to a bit string. Now we would like to come up with a measurement
protocol such that, when measuring each ρx, we observe the corresponding bit string x ∈ {0, 1}n
as the outcome of the measurement.

Exercise 4.7 P. Consider an ensemble {p(x), ρx} of density operators and a POVM with elements
{Λx} that should identify the states ρx with high probability. That is, we would like Tr[Λxρx]
to be as large as possible. Consider a source that outputs the bit string x ∈ {0, 1}n with
probability p(x).

(a)1 P. We say that the POVM is successful if outcome x is returned upon measuring on ρx.
Define the expected success probability of the POVM with respect to the distribution p.

(b)1 P. There exists an (incomplete) order relation ≤ for PSD matrices. For A,B Hermitian PSD
matrices, we say A ≤ B if B − A is PSD, B − A ≥ 0. Show that ρ ≤ I for any density
matrix ρ.

3More generally, one can replace X by the σ-algebra of a measurable Borel space. This is the natural structure
from probability theory to describe a set of all possible events in an experiment. If you are curious and have
some time left, it is an instructive and not so hard exercise to look up the definitions of a Borel space and a
probability space and translate this exercise and its solution into this language.



(c)2 P. Show that for two positive semi-definite matrices A ≥ 0 and B ≥ 0 we have that

Tr[AB] ≥ 0. (4)

Do not use the property that for any A ≥ 0 there exists a unique
√
A ≥ 0 such that

A =
√
A
√
A. Argue why under the same assumptions, AB is only positive semidefinite

when A and B commute.

(d)2 P. Use the results of the two preceding exercises to show that for p(x) = 2−n (the uniform
distribution over bitstrings) the expected success probability is upper bounded by 2−nd.

(e)1 P. What is then the largest number of bits n such that, when selecting bitstrings uniformly
at random, the POVM could still succeed with probability 1.

No-cloning theorem. We now want to revisit one of the most well-known results in quantum
information theory.

Exercise 5.3 P.

(a)2 P. Show that there does not exist a unitary map U acting on two copies of a Hilbert space
H which fulfills the following condition for any state in the Hilbert space |ψ⟩ ∈ H:

U |ψ⟩|0⟩ = eiϕ(|ψ⟩)|ψ⟩|ψ⟩. (5)

Here ϕ is allowed to be any arbitrary phase function ϕ : H → R.
(Style points: this can be proved using only the fact that unitary operators are linear.
Style points are not worth actual points.)

(b)1 P. Classical data can be freely copied. Why does that not contradict the no-cloning theorem
even though we can identify strings of classical bits with the associated basis states of the
quantum system?

Math

In this exercise we take a short break from following the main content covered in the lecture
and return back to proving some simple but useful identities for operators on complex Hilbert
spaces. In particular, we explore the two important facts that operators are completely specified
by their diagonal elements in all bases as well as the power of the square root representation
for positive (PSD) operators.

Bonus Exercise 1.5 P. Interestingly, in a complex inner product space an operator is fully specified
when its diagonal elements in all bases are known.

(a)1 P. Start by verifying the identity

⟨ϕ|A|ψ⟩ = 1

4

3∑
k=0

ik⟨ψ + ikϕ|A|ψ + ikϕ⟩, (6)

where we define

|ψ + ikϕ⟩ = |ψ⟩+ ik|ϕ⟩. (7)

(Careful, for the corresponding bra we need to flip the sign of the imaginary root.) This
is known as the polarization identity in a complex inner product space.

(b)1 P. Use the previous identity to show that if ⟨ψ|A|ψ⟩ = ⟨ψ|B|ψ⟩ holds for all |ψ⟩, then A = B.



(c)1 P. Use this to show that the class of operators A ∈ L(H) which preserve the inner product
is exactly the set of unitaries. I.e. if ∀ψ, ϕ : ⟨Aψ|Aϕ⟩ = ⟨ψ|ϕ⟩ then A is unitary and vice
versa.

(d)1 P. A useful property of positive operators is the following: If A is a positive operator then

there exists a unique positive operator A1/2 which satisfies A1/2A1/2 = A. Moreover, this
operator satisfies [A,H] = 0 =⇒ [A1/2, H] = 0. Use this to show that the product of
two positive operators is positive if and only if they commute. (hint: Also show that
A ≥ B ∧B ≥ A =⇒ A = B).

(e)1 P. Show that for two positive semi-definite matrices A ≥ 0 and B ≥ 0 we have that

Tr[AB] ≥ 0. (8)

Use the property that for any A ≥ 0 there exists a unique
√
A ≥ 0 such that A =

√
A
√
A.

(Hint: You can start proving ABA ≥ 0 for any two A ≥ 0, B ≥ 0.)

Total Points: 27 (+5)


