
Exercise Sheet 2: Measurements and Co.

This sheet aims to deepen our understanding of the formalism of quantum information theory.

Measurements

Projective measurement. A projective measurement is described by a Hermitian observable A.
We denote the unique eigenvalues of A as {λk}k, and the eigenvectors as {|ψj⟩}j , which form an
orthonormal basis. We index the eigenvectors with j because there could be multiple different
eigenvectors for the same eigenvalue. To resolve this, we add a superscript to identify which
individual eigenvalue corresponds to each eigenvector {|ψkj ⟩}j .

In the spectral decomposition of the observable,

A =
∑
k

λkPk, (1)

the eigenvalues λk correspond to the possible outcomes from measuring A, and Pk are the
projectors onto the subspaces corresponding to each eigenvalue:

Pk =
∑

j:EVλk

|ψkj ⟩⟨ψkj |, (2)

where the sum is over all eigenvectors |ψkj ⟩ associated to the eigenvalue λk.

Exercise 1.11 P.

(a)2 P. Upon measuring the observable A on the state |ϕ⟩, the probability of getting the result
λk, p(k), is the expected value of Pk on |ϕ⟩. Give two formulas for p(k), one in terms of
Pk and the other in terms of |ψkj ⟩.

Solution

In bra-ket notation, the probability of getting result λk can be written in these two
ways:

p(k) = ⟨ϕ|Pk|ϕ⟩

p(k) =
∑

j:EVλk

|⟨ϕ|ψkj ⟩|2

The same formula in density matrix notation can be found in the lecture notes.

(b)1 P. If we observe the outcome λk, the state |ϕ⟩ gets projected onto the eigenspace of λk,

becoming |ϕpostk ⟩. Give a formula for |ϕpostk ⟩ (do not forget the normalization).

Solution

In bra-ket notation, the state immediately after measuring if we observed outcome
λk is:

|ϕpostk ⟩ = Pk|ϕ⟩
∥Pk|ϕ⟩∥2

=
Pk|ϕ⟩√

⟨ϕ|PkPk|ϕ⟩
=

Pk|ϕ⟩√
⟨ϕ|Pk|ϕ⟩

=
Pk|ϕ⟩√
p(k)

.

The same formula in density matrix notation can be found in the lecture notes.

(c)2 P. Consider the observable A = X ⊗ X, where X is the Pauli-X operator. Give the spec-
tral decomposition of A, identifying the eigenvalues (λk)k and the projectors to their
corresponding eigenspaces1 (Pk)k.

1Sanity check, you should have
∑

k Pk = I the identity matrix.



Solution

One could do the calculation explicitly for the diagonalization of the matrix, but
here we show a different approach. We use knowledge from the regular single qubit
Pauli matrices, and also intuitive properties of the tensor product.
We know that all three Pauli operators have two eigenvalues {−1, 1}. We also know
what the corresponding eigenvectors are: |±⟩ for X, |±i⟩ for Y , and |0/1⟩ for Z.
For B ∈ {X,Y, Z}, with eigenvectors |±B⟩, we know the spectral decomposition of
B is:

B = |+B⟩⟨+B| − |−B⟩⟨−B|.

Next, let’s say matrix A has eigenvalues (λi)i (allowing for duplicates if an eigenvalue
is degenerate) and eigenvectors (|ai⟩)i, and matrix B has eigenvalues (σj)j (allowing
for duplicates if an eigenvalue is degenerate) and eigenvectors (|bj⟩)j . Then it follows
that matrix A⊗B has eigenvalues (λiσj)i,j and eigenvectors (|aibj⟩)i,j .
For this particular exercise, we combine the spectral decomposition of X = |+⟩⟨+|−
|−⟩⟨−| with this property of the tensor product to reach the spectral decomposition
of A:

A = X⊗2 = (|+⟩⟨+| − |−⟩⟨−|)⊗2

= |++⟩⟨++|+ |−−⟩⟨−−| − |+−⟩⟨+−| − |−+⟩⟨−+|.

The unique eigenvalues are λ±1 = ±1, and the corresponding projectors are:

P1 = |++⟩⟨++|+ |−−⟩⟨−−|,
P−1 = |+−⟩⟨+−|+ |−+⟩⟨−+|.

To see this fulfills the sanity check we observe that, if we replaced + 7→ 0 and − 7→ 1,
then P1 +P−1 would be the identity matrix “in ketbra notation”. That means it is
also the identity matrix without the replacement, since the replacement was only a
change of basis.

(d)3 P. Consider A as defined in the previous exercise, and the following state |ϕ⟩:

|ϕ⟩ = 1√
30


1
2i
−3i
−4

 . (3)

What are the probabilities of each possible outcome when measuring A on |ϕ⟩? What is
the post-measurement state after observing λ1? and after observing λ−1?



Solution

We start with a small useful observation for the P±1 from the previous exercise:

P±1 =
I± (X ⊗X)

2
.

With this, we just plug in the variables into the formulas from exercises (a) and (b).
Start with the outcome probabilities p(k) = ⟨ϕ|Pk|ϕ⟩.

p(1) = ⟨ϕ|P1|ϕ⟩ = ⟨ϕ|1
2
(I+X ⊗X)|ϕ⟩ = 1

2
(1 + ⟨ϕ|(X ⊗X)|ϕ⟩)

=
1

2

1 +
1√
30

(
1 −2i 3i −4

)
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 1√
30


1
2i
−3i
−4




=
1

2

1 +
1

30

(
1 −2i 3i −4

)
−4
−3i
2i
1




=
1

2

(
1 +

1

30
(−4− 6− 6− 4)

)
=

1

2

(
1− 20

30

)
=

1

6
.

It follows that p(−1) = 1− p(1) = 5
6 .

Now for the state after measurement outcome λk: |ϕpostk ⟩ = Pk|ϕ⟩√
p(k)

.

|ϕpost1 ⟩ = P1|ϕ⟩√
p(1)

=
I+X⊗X

2 |ϕ⟩√
1
6

=

√
6

2
(|ϕ⟩+ (X ⊗X)|ϕ⟩)

=

√
3

2

 1√
30


1
2i
−3i
−4

+
1√
30


−4
−3i
2i
1


 =

1√
20


−3
−i
−i
−3

 .

|ϕpost−1 ⟩ = P−1|ϕ⟩√
p(−1)

=
I−X⊗X

2 |ϕ⟩√
5
6

=

√
6

2
√
5
(|ϕ⟩ − (X ⊗X)|ϕ⟩)

=

√
3

10

 1√
30


1
2i
−3i
−4

− 1√
30


−4
−3i
2i
1


 =

1

10


5
5i
−5i
−5



=
1

2


1
i
−i
−1

 .

(e)3 P. Given all of these, what is the (mixed) state ρpost resulting from measuring A on |ϕ⟩ if we
do not observe the measurement outcome? What is the purity2 of ρpost?

2Recall that the purity of a state ρ is computed as Tr[ρ2]



Solution

If we do not observe the measurement outcome, the measure prepares a classical
mixture of both output states with their corresponding probabilities:

ρpost = p(1)|ϕpost1 ⟩⟨ϕpost1 |+ p(−1)|ϕpost−1 ⟩⟨ϕpost−1 |.

We could just plug in the results from the last exercise. Or we could use the formulas
so that the solution of this exercise does not depend on the correctness of the other
ones:

ρpost = p(1)
P1|ϕ⟩√
p(1)

⟨ϕ|P1√
p(1)

+ p(−1)
P−1|ϕ⟩√
p(−1)

⟨ϕ|P−1√
p(−1)

= P1|ϕ⟩⟨ϕ|P1 + P−1|ϕ⟩⟨ϕ|P−1

=
1

2
(I+ (X ⊗X))|ϕ⟩⟨ϕ|1

2
(I+ (X ⊗X))

+
1

2
(I− (X ⊗X))|ϕ⟩⟨ϕ|1

2
(I− (X ⊗X))

=
1

4
(|ϕ⟩+ (X ⊗X)|ϕ⟩)(⟨ϕ|+ ⟨ϕ|(X ⊗X))

+
1

4
(|ϕ⟩ − (X ⊗X)|ϕ⟩)(⟨ϕ| − ⟨ϕ|(X ⊗X))

=
1

2
(|ϕ⟩⟨ϕ|+ (X ⊗X)|ϕ⟩⟨ϕ|(X ⊗X))

=
1

2

 1

30


1
2i
−3i
−4

(
1 −2i 3i −4

)
+

1

30


−4
−3i
2i
1

(
−4 3i −2i 1

)

=
1

60




1 −2i 3i −4
2i 4 −6 −8i
−3i −6 9 12i
−4 8i −12i 16

+


16 −12i 8i −4
12i 9 −6 −3i
−8i −6 4 2i
−4 3i −2i 1




=
1

60


17 −14i 11i −8
14i 13 −12 −11i
−11i −12 13 14i
−8 11i −14i 17

 .

Good sanity check: ρpost is Hermitian (real diagonal, symmetric for the real part,
antisymmetric for the imaginary part), and Tr[ρpost] = 1.
In order to compute the purity, we could either compute (ρout)2 or we could notice
that |ϕpost1 ⟩ and |ϕpost−1 ⟩ are orthogonal and normalized. With this knowledge, we can
say there exists an orthonormal basis with these two states as the first two elements.
In this basis, we know ρpost takes a diagonal form ρpost = diag(p(1), p(−1), 0, 0).
We know the purity is basis-independent, so with this we can quickly reach the
conclusion that

Tr[(ρpost)2] = p(1)2 + p(−1)2 =
1

36
+

25

36
=

13

18
.

We see the purity is closer to 1 (maximum) than to 1/4 (minimum), so while ρpost

is not pure, it is still very far from the maximally mixed state.



POVMs. From a theoretical perspective, a measurement description more general than the
projective measurement is often helpful. For simplicity – and in the spirit of information theory
– we assume that the possible measurement outcomes are from a discrete set3 X .

A measurement with outcomes X on a quantum system with Hilbert space H can be de-
scribed by a positive operator valued measure (POVM) on X . We denote by Pos(H) := {A ∈
L(H) | A ≥ 0} the set of Hermitian positive semi-definite operators on H. A POVM on a
discrete space X is a map µ : X → Pos(H) such that

∑
x∈X µ(x) = I. If the system is in the

quantum state ρ ∈ D(H), the probability of observing the outcome x ∈ X is given by Tr(µ(x)ρ).

Exercise 2.4 P.

(a)2 P. Can every projective measurement (also called projector valued measurement, PVM) be
phrased as a POVM? Either prove that this is always the case or show a counterexample.

Solution

Yes, this is always possible. This can be seen as follows: Let A =
∑

i λiΠi be
an observable with spec(A) = {λi} and Πi the orthogonal projector to the i-th
eigenspace. Then, the map spec(A) → Pos(H), λi 7→ Πi defines a POVM, because∑

iΠ = I.

(b)2 P. Can every POVM be phrased as a PVM on the same Hilbert space? Argue the answer,
and give an illustrative example. (Hint: what is Tr[EiEj ] for two elements Ei and Ej of
a POVM?)

Solution

Not every POVM can be phrased as a PVM. In particular, the projectors of a PVM
fulfill pairwise orthonormality Tr[PiPj ] = δij whereas the elements of a POVM do
not, in general, Tr[EiEj ] ̸= δij .
Counterexample: we only need to give a set of PSD matrices that add up to the
identity but are not pairwise orthonormal.
Define E1, E2 as follows:

E1 =
1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1|,

E2 =
2

3
|0⟩⟨0|+ 1

3
|1⟩⟨1|.

The condition E1 + E2 = I is fulfilled. Then {E1, E2} describes a POVM which
cannot be rephrased as a PVM, because, on the one hand Tr[E1E2] = 4/9 ̸= 0, and
on the other hand Tr[E2

1 ] = 5/9 ̸= 1.
Notice each of those conditions is sufficient individually.

It is often stated that this is the most general form of a quantum measurement. We want
to understand this statement in more detail. So what could be regarded as the most general
quantum measurement? One can start as follows: A (general) quantum measurement M with
outcomes in X is a map that associates to each quantum state ρ ∈ D(H) a probability measure
pρ on X , i.e. M : ρ 7→ pρ with pρ : X → [0, 1] such that

∑
x∈X pρ(x) = 1.

Exercise 3.2 P. Show that any POVM on X defines a general quantum measurement as defined
above.

3More generally, one can replace X by the σ-algebra of a measurable Borel space. This is the natural structure
from probability theory to describe a set of all possible events in an experiment. If you are curious and have
some time left, it is an instructive and not so hard exercise to look up the definitions of a Borel space and a
probability space and translate this exercise and its solution into this language.



Solution

For a POVM µ : X → Pos(H) we can define the general measurement M which maps
ρ 7→ Tr(ρµ(·)) : X → [0, 1]. Here, Tr[ρµ(x)] ≥ 0 holds for all x ∈ X because both ρ and
µ(x) are PSD. Next, observe that

∑
x∈X Tr[ρµ(x)] = Tr[ρ

∑
x∈X µ(x)] = Tr[ρ1] = Tr[ρ] =

1. So, {Tr[ρµ(x)]}x∈X indeed forms a probability measure on X as desired.

Quantum information theory

Encoding classical bits. We know that describing quantum systems requires exponential amounts
of classical bits. Then, could we use a quantum state to store an exponential amount of bits?
Or how many classical bits can be encoded and (perfectly) decoded in a d-dimensional quantum
system in this way? In this exercise, we see that the fact that we need to measure to access
information stored in a quantum state limits the amount of classical information we can extract
from the state of a quantum system.

Let H be a d-dimensional Hilbert space. Our aim is to encode n classical bits into the space
of quantum states as density matrices D(H). There are 2n possible different arrangements of
n classical bits: |{0, 1}n| = 2n. To this end, we choose a set of 2n states {ρx}x∈{0,1}n ⊂ D(H),
each state corresponding to a bit string. Now we would like to come up with a measurement
protocol such that, when measuring each ρx, we observe the corresponding bit string x ∈ {0, 1}n
as the outcome of the measurement.

Exercise 4.7 P. Consider an ensemble {p(x), ρx} of density operators and a POVM with elements
{Λx} that should identify the states ρx with high probability. That is, we would like Tr[Λxρx]
to be as large as possible. Consider a source that outputs the bit string x ∈ {0, 1}n with
probability p(x).

(a)1 P. We say that the POVM is successful if outcome x is returned upon measuring on ρx.
Define the expected success probability of the POVM with respect to the distribution p.

Solution

The expected success probability of the POVM is∑
x

p(x) Tr[Λxρx]. (4)

(b)1 P. There exists an (incomplete) order relation ≤ for PSD matrices. For A,B Hermitian PSD
matrices, we say A ≤ B if B − A is PSD, B − A ≥ 0. Show that ρ ≤ I for any density
matrix ρ.

Solution

I − ρ = U(I − Λ)U †, where U diagonalises ρ. But since ρ is a quantum state with
eigenvalues smaller than one, I − Λ has only nonnegative entries, hence the claim
I ≥ ρ.

(c)2 P. Show that for two positive semi-definite matrices A ≥ 0 and B ≥ 0 we have that

Tr[AB] ≥ 0. (5)

Do not use the property that for any A ≥ 0 there exists a unique
√
A ≥ 0 such that

A =
√
A
√
A. Argue why under the same assumptions, AB is only positive semidefinite

when A and B commute.



Solution

We establish the claim by expanding A and B into their respective eigenbases:

Tr[AB] = Tr

 d∑
i=1

ai|ai⟩⟨ai|
d∑
j=1

bj |bj⟩⟨bj |


=

d∑
i=1

d∑
j=1

aibj |⟨ai|bj⟩|2.

As A and B are positive semi-definite, all ai and bj are non-negative and the above
is a sum that only involves non-negative terms which establishes the claim.
The product AB is easily seen to be positive semi-definite when A and B com-
mute, because then they share a common eigenbasis in which the (non-negative)
eigenvalues are just multiplied and stay non-negative. If A and B fail to commute,
we have that AB ̸= BA, and the operator AB is hence not Hermitian. It can
thus have eigenvalues with an imaginary part for which the definition non-negative
makes no sense in the first place, which means that positive semidefiniteness is not
well-defined in the first place. This is ultimately a consequence of the fact that the
complex numbers admit no total order.

(d)2 P. Use the results of the two preceding exercises to show that for p(x) = 2−n (the uniform
distribution over bitstrings) the expected success probability is upper bounded by 2−nd.

Solution

The fact that ρx ≤ I for all x is equivalent to I − ρx ≥ 0. Using the result of
the previous exercise then establishes that for all POVM effects Λx, which are also
positive semi-definite, we have that

Tr[Λx(I− ρ)] ≥ 0 ⇔ Tr[Λx] ≥ Tr[Λxρ].

Applying this to the expected success probability for the uniform distribution yields∑
x

p(x) Tr[ρxΛx] = 2−n
∑
x

Tr[ρxΛx] ≤ 2−n
∑
x

Tr[Λx] = 2−nTr[I] = 2−nd

(e)1 P. What is then the largest number of bits n such that, when selecting bitstrings uniformly
at random, the POVM could still succeed with probability 1.

Solution

From the previous exercise we know the success probability is upper bounded by
2−nd. We write 1 ≤ 2−nd and solve for n: n ≤ log2 d. So the number of classical
bits that can be encoded and decoded perfectly is the same as the number of qubits
in the system, which is precisely log2 d.

No-cloning theorem. We now want to revisit one of the most well-known results in quantum
information theory.

Exercise 5.3 P.

(a)2 P. Show that there does not exist a unitary map U acting on two copies of a Hilbert space
H which fulfills the following condition for any state in the Hilbert space |ψ⟩ ∈ H:

U |ψ⟩|0⟩ = eiϕ(|ψ⟩)|ψ⟩|ψ⟩. (6)



Here ϕ is allowed to be any arbitrary phase function ϕ : H → R.
(Style points: this can be proved using only the fact that unitary operators are linear.
Style points are not worth actual points.)

Solution

We offer two solutions:

(a) Solution without using linearity: Assume this was the case for |ψ⟩ and |ϕ⟩
with |ψ⟩ ̸= eiα|ϕ⟩ for any α. Let us consider the scalar product between two
such vectors

⟨φ|ψ⟩ = ⟨0|⟨φ|U †U |ψ⟩|0⟩ (7)

= ei(ϕ(ψ)−ϕ(φ))⟨φ|⟨φ||ψ⟩|ψ⟩ (8)

= ⟨φ|ψ⟩2ei(ϕ(ψ)−ϕ(φ)). (9)

Taking absolute values on both sides shows that ⟨φ|ψ⟩ can only be 0 or 1, so
it cannot be the case that U clones arbitrary states.

(b) Solution using only linearity: We prove this by reductio ad absurdum: we
assume the thesis holds and then reach a contradiction. Take any state or-
thogonal to the |0⟩ state |ψ⟩ ∈ H : ⟨ψ|0⟩ = 0. Consider the superposition
|ψ′⟩ = 1√

2
(|0⟩+ |ψ⟩). Then, on the one hand, we have:

U |ψ′⟩|0⟩ = eiϕ(|ψ
′⟩)|ψ′⟩|ψ′⟩ = eiϕ(|ψ

′⟩)

2
(|00⟩+ |0ψ⟩+ |ψ0⟩+ |ψψ⟩,

which we notice is a product state. On the other hand, we have:

U |ψ′⟩|0⟩ = U

(
1√
2
(|0⟩+ |ψ⟩)

)
|0⟩

=
1√
2
(U |0⟩|0⟩+ U |ψ⟩|0⟩)

=
1√
2
(eiϕ(|0⟩)|00⟩+ eiϕ(|ψ⟩)|ψψ⟩),

which we notice is an entangled state. But we do actually not need to talk
about entanglement. Since we took |ψ⟩ to be orthogonal to |0⟩, it follows that
the elements of the set {|00⟩, |0ψ⟩, |ψ0⟩, |ψψ⟩} are pairwise orthonormal. With
this, it follows that

eiϕ(|ψ
′⟩)

2
(|00⟩+ |0ψ⟩+ |ψ0⟩+ |ψψ⟩) = 1√

2
(eiϕ(|0⟩)|00⟩+ eiϕ(|ψ⟩)|ψψ⟩)

is a contradiction irrespective of the particular form of ϕ (LIGHTNING
BOLT).

(b)1 P. Classical data can be freely copied. Why does that not contradict the no-cloning theorem
even though we can identify strings of classical bits with the associated basis states of the
quantum system?



Solution

Simply put, because we can easily find the unitary U that produces the copies!
Given bitstrings x ∈ {0, 1}n of length n, we can identify each bitstring with a
computational basis state x ↔ |x⟩. W.l.o.g. we consider n = 1. We see that the
CNOT gate produces the desired effect:

CNOT|00⟩ = |00⟩ (10)

CNOT|10⟩ = |11⟩. (11)

If we still don’t know what the CNOT gate is, then there’s a more winding answer.
In order to show that the quantum copier cannot exist, we needed to consider
a superposition of different states. If we map classical bits to a set of pairwise
orthogonal states, then the set of states on which we want the quantum copier
to work (this discrete set of pairwise orthogonal states) is much smaller (than the
set of all possible states, including superposition states, which are not orthogonal
with the computational basis states). In particular, linearity does not impose any
limitations if we only need to copier to work on the set of pairwise orthogonal states.
Said otherwise, given x ̸= x′ we have ⟨x|x′⟩ = 0, which means that the action of the
hypothetical U on |x⟩ is completely independent of the action on |x′⟩. This means
that, for any set of pairwise orthogonal states {|ψx⟩}x∈{0,1}n , there will always exist
at least one unitary U which maps the set {|x0⟩}x to the set {|xx⟩}x, which can be
seen as a simple change of basis.

Math

In this exercise we take a short break from following the main content covered in the lecture
and return back to proving some simple but useful identities for operators on complex Hilbert
spaces. In particular, we explore the two important facts that operators are completely specified
by their diagonal elements in all bases as well as the power of the square root representation
for positive (PSD) operators.

Bonus Exercise 1.5 P. Interestingly, in a complex inner product space an operator is fully specified
when its diagonal elements in all bases are known.

(a)1 P. Start by verifying the identity

⟨ϕ|A|ψ⟩ = 1

4

3∑
k=0

ik⟨ψ + ikϕ|A|ψ + ikϕ⟩, (12)

where we define

|ψ + ikϕ⟩ = |ψ⟩+ ik|ϕ⟩. (13)

(Careful, for the corresponding bra we need to flip the sign of the imaginary root.) This
is known as the polarization identity in a complex inner product space.



Solution

1

4

3∑
k=0

ik⟨ψ + ikϕ|A|ψ + ikϕ⟩ = 1

4
[⟨ψ|A|ψ⟩(1 + i− 1− i)

+ ⟨ψ|A|ϕ⟩(1− 1 + 1− 1)

+ ⟨ϕ|A|ψ⟩(1 + 1 + 1 + 1)

+ ⟨ϕ|A|ϕ⟩(1 + i− 1− i)]

= ⟨ϕ|A|ψ⟩.

(b)1 P. Use the previous identity to show that if ⟨ψ|A|ψ⟩ = ⟨ψ|B|ψ⟩ holds for all |ψ⟩, then A = B.

Solution

We use the above identity on ⟨j|A|l⟩, for |j⟩ and |l⟩ computational basis vectors.

⟨ψ|A|ψ⟩ = ⟨ψ|B|ψ⟩ ∀ψ (14)

⇓ (15)

⟨l + ikj|A|l + ikj⟩ = ⟨l + ikj|B|l + ikj⟩ ∀k, j, l (16)

⇓ (17)

1

4

3∑
k=0

⟨l + ikj|A|l + ikj⟩ = 1

4

3∑
k=0

⟨l + ikj|B|l + ikj⟩ ∀j, l (18)

⇓ (19)

⟨j|A|l⟩ = ⟨j|B|l⟩ ∀j, l (20)

⇓ (21)

A = B. (22)

(c)1 P. Use this to show that the class of operators A ∈ L(H) which preserve the inner product
is exactly the set of unitaries. I.e. if ∀ψ, ϕ : ⟨Aψ|Aϕ⟩ = ⟨ψ|ϕ⟩ then A is unitary and vice
versa.

Solution

∀ψ, ϕ : ⟨Aψ|Aϕ⟩ = ⟨ψ|A†A|ϕ⟩ = ⟨ψ|ϕ⟩ =⇒ A†A = I. Since left-inverses of
operators are right-inverses as well we also have AA† = I making A unitary. Let
now A be unitary. Then ∀ψ, ϕ : ⟨Aψ|Aϕ⟩ = ⟨ψ|A†A|ϕ⟩ = ⟨ψ|I|ϕ⟩ = ⟨ψ|ϕ⟩

(d)1 P. A useful property of positive operators is the following: If A is a positive operator then

there exists a unique positive operator A1/2 which satisfies A1/2A1/2 = A. Moreover, this
operator satisfies [A,H] = 0 =⇒ [A1/2, H] = 0. Use this to show that the product of
two positive operators is positive if and only if they commute. (hint: Also show that
A ≥ B ∧B ≥ A =⇒ A = B).

Solution

Let AB = BA then ⟨ψ|AB|ψ⟩ = ⟨ψ|A1/2A1/2B|ψ⟩ = ⟨ψ|A1/2BA1/2|ψ⟩ ≥ 0.
Now Suppose AB ≥ 0 then ∀ψ : ⟨ψ|AB|ψ⟩ ∈ R. Thus ⟨ψ|BA|ψ⟩ = ⟨ψ|A†B†|ψ⟩∗ =
⟨ψ|AB|ψ⟩. This implies by the previous exercise ⟨ψ|AB − BA|ψ⟩ = 0∀ψ and thus
AB −BA = 0.



(e)1 P. Show that for two positive semi-definite matrices A ≥ 0 and B ≥ 0 we have that

Tr[AB] ≥ 0. (23)

Use the property that for any A ≥ 0 there exists a unique
√
A ≥ 0 such that A =

√
A
√
A.

(Hint: You can start proving ABA ≥ 0 for any two A ≥ 0, B ≥ 0.)

Solution

Start proving the hint. We use that, for any Hermitian matrix C, C†C ≥ 0. Then,
using B =

√
B
√
B, it follows

ABA = A
√
B
√
BA (24)

=
(√

BA
)†√

BA ≥ 0. (25)

It follows Tr[ABA] ≥ 0 for any A ≥ 0, B ≥ 0.
Finally:

TrAB = Tr
√
A
√
AB = Tr

√
AB

√
A ≥ 0. (26)

Total Points: 27 (+5)


