
Exercise Sheet 5: Entropies and Examples of Quan-

tum Channels

Entropic Quantities

Properties of the Shannon entropy

The Shannon entropy and related entropic quantities are of fundamental importance in classical
information theory. We now invest some time and effort to better understand these notions.

Exercise 1.8 P. Recall the definition of the Shannon entropies for random variables X,Y which
take values in (for simplicity finite) sets X ,Y, and are distributed according to probability
distributions p, q over X and Y, respectively:

Shannon entropy: H(X) = −
∑
x∈X

p(x) log p(x) (1)

Conditional entropy: H(X|Y ) = H(X,Y ) −H(Y ) =
∑
y∈Y

p(y)H(X|Y = y) (2)

= −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)

Note that here, as is common in information theory, log denotes the logarithm with base 2. For
these definitions, recall that we take the convention 0 log(0) ≡ 0.

(a)2 P. Show that 0 ≤ H(X) ≤ log |X |. Moreover, show that the first equality holds if there is an
x ∈ X for which p(x) = 1, and that the second equality holds if p(x) = 1/|X | for all x.

Hint: To prove the second inequality, use Jensen’s inequality for a suitably chosen concave
function.



Solution

First inequality. Since p(x) ≤ 1 for all x, we have log(p(x)) ≤ 0 for all x, which
together with p(x) ≥ 0 implies that 0 ≤ H(X). If there exist x ∈ X with
p(x) = 1, we have equality, since log(1) = 0 and 0 · log(0) = 0. (This can be
justified via limx↘0 x log(x) = 0.) Bonus note: The reverse direction also holds.
This follows from the facts that H(X) is concave and that the set of probability
distributions is convex, so the entropy attains its minimum value exactly at the
extreme points. So, the entropy attains its minimum value at the extreme points,
which are exactly the “delta distributions” that have p(x) = 1 for exactly one x ∈ X .

Second inequality. Using Jensen’s inequality for the convex function x 7→ log(x), we
get

H(X) = E
[
log2

1

p(x)

]
≤ log2 E

[
1

p(x)

]
= log2

∑
x∈X

p(x)

p(x)
= log2 |X | .

This proves the upper bound. And it is an easy computation to see that this upper
bound is attained for the uniform distribution.

Second inequality – Alternative solution. The second inequality can also be proven
using Lagrange multipliers. In particular, if all px := p(x) > 0, we can compute the
gradient (gradH(X))px = − log(px) − 1. Together with the restriction

∑
x px = 1,

we obtain the equations − log(px) − 1 + λ = 0. As log is an injective function, this
can only be the case if all px are equal. Then they all have to be equal to 1/|X |,
so that evaluating H(X) at px = 1/|X | yields the second inequality. In fact, the
uniform distribution over X is the unique maximizer of the entropy. This can be
seen as follows: It can easily be checked that the case with px = 0 for some multiple
x ∈ X does not yield a larger value simply by repeating the above argument on the
non-vanishing px.

(b)3 P. Show that the Shannon entropy is subadditive, i.e., that H(X,Y ) ≤ H(X) + H(Y ) with
equality if X and Y are independent.

Hint: Show that H(X,Y ) −H(X) −H(Y ) ≤ 0 using that ln(2) · log2(x) = ln(x) ≤ x− 1.

Solution

Using that
∑

x p(x, y) = p(y) and
∑

y p(x, y) = p(x), we have that

H(X,Y ) −H(X) −H(Y ) = −
∑
x,y

p(x, y)(log p(x, y) − log p(x) − log p(y))

=
∑
x,y

p(x, y) log
p(x)p(y)

p(x, y)
≤ 1

ln 2

∑
x,y

p(x, y)

(
p(x)p(y)

p(x, y)
− 1

)
=

1

ln 2

∑
x,y

(p(x)p(y) − p(x, y)) =
1

ln 2
(1 − 1) = 0

We also immediately see that equality holds if p(x, y) = p(x)p(y) for all x, y, i.e. for
independent random variables X and Y , because then p(x, y)(log p(x, y)− log p(x)−
log p(y)) = 0 for all x, y.

(c)2 P. Show that H(Y |X) ≥ 0, with equality if Y is a (deterministic) function of X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x).



Solution

Non-negativity of H(Y |X) can be seen as follows:

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log2

p(x, y)

p(x)

= −
∑

x∈X ,y∈Y
p(x, y) log2

p(y|x)p(x)

p(x)
= −

∑
x∈X ,y∈Y

p(x, y) log2 p(y|x) .

Now, we have p(x, y) ≥ 0 and log2 p(y|x) ≤ 0 (because 0 ≤ p(y|x) ≤ 1), so the
above rewriting of H(Y |X) is ≥ 0.

Next, suppose Y = f(X) for some deterministic function f : X → Y. Then,
p(y|x) = δf(x),y. Rewriting

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x) ,

we can now again use the convention 0 log(0) ≡ 0. This gives us

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

δf(x),y log2 δf(x),y

= −
∑
x∈X

p(x) ((|Y| − 1)0 log(0) + 1 log(1))

= 0 .

(d)1 P. Show that H(Y |X) ≤ H(Y ) with equality if X and Y are independent random variables.

Solution

Using subadditivity, we have

H(Y |X) = H(X,Y ) −H(X) ≤ H(X) +H(Y ) −H(X) = H(Y ).

Equality holds if H(X,Y ) = H(X) +H(Y ), which is the case if p(x, y) = p(x)p(y)
as we have seen when proving subadditivity.

Properties of the von Neumann entropy

Above, we have investigated some useful properties of the Shannon entropy. Now, we do
the same for the von Neumann entropy. For any state ρ ∈ D(H) with dimH = d, the von
Neumann entropy is defined as S(ρ) = −Tr[ρ log ρ]. Recall from previous exercise sheets
that log ρ is obtained by taking the eigendecomposition ρ = UDU †, with D = diag((λi)i)
and applying the log function to the (non-zero) eigenvalues, leaving everything else untouched
log ρ = U diag((log λi)i)V

†.

Exercise 2.6 P.

(a)1 P. Show that 0 ≤ S(ρ) ≤ log d with equality if and only if ρ is pure.

Hint: You’ve already proved something quite similar for the Shannon entropy in Exercise
1. So, don’t start from scratch but instead try to use that already established result.



Solution

Diagonalize ρ to obtain S(ρ) = −
∑

x λx log λx, where the λx are the eigenvalues
of ρ. The λx form a probability distribution and S(ρ) = H((λx)x). The claim
now follows from the lower and upper bounds on the Shannon entropy (proven in
Exercise 1).

(b)2 P. Prove that for any two positive definite matrices A and B we have log(A⊗B) = log(A)⊗
I + I⊗ log(B).

Note: We only ask you to prove for A,B > 0, but this result can be extended to A,B ≥ 0
given a proper definition of the matrix logarithm.

Solution

We first address the case A,B > 0. Let A and B have spectral decompositions

A =
∑
i

λi|ψi⟩⟨ψi|, B =
∑
j

µj |ϕj⟩⟨ϕj | ,

where the eigenvalues by the positive definiteness assumption satisfy λi, µj > 0 for
all i, j. In particular, log(λiµj), log(λi), and log(µj) are well-defined for all i and j.
Then, the spectral decomposition of A⊗B is

A⊗B =
∑
ij

λiµj |ψi⟩⟨ψi| ⊗ |ϕj⟩⟨ϕj | ,

so we can compute

log(A⊗B)

=
∑
ij

log(λiµj)|ψi⟩⟨ψi| ⊗ |ϕj⟩⟨ϕj |

=
∑
ij

(log(λi) + log(µj)) |ψi⟩⟨ψi| ⊗ |ϕj⟩⟨ϕj |

=

(∑
i

log(λi)|ψi⟩⟨ψi|

)
⊗

∑
j

|ϕj⟩⟨ϕj |

+

(∑
i

|ψi⟩⟨ψi|

)
⊗

∑
j

log(µj)|ϕj⟩⟨ϕj |


= log(A) ⊗ I + I⊗ log(B) ,

where the last step used that
∑

i |ψi⟩⟨ψi| = I and
∑

j |ϕj⟩⟨ϕj | = I.
Note on positive semidefinite matrices. Now for the case A,B ≥ 0. If A and B
have 0 as an eigenvalue, then so does A⊗ B. However, by definition of the matrix
logarithm, we apply the logarithm only to the non-zero eigenvalues occurring in
the spectral decompositions and leave the 0-eigenvalue untouched (since the cor-
responding summands in the spectral decomposition anyways vanish). Hence, we
don’t run into any issues about the logarithm not being well-defined. (This can be
made more formal when written out in terms of eigenprojections.)

(c)3 P. Show that the von Neumann entropy is subadditive in the following sense: If two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B), with
equality if ρAB = ρA ⊗ ρB.

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum state σ
(without proving it).



Solution

We want to show

S(A,B) = S(ρAB) ≤ S(TrB[ρAB]) + S(TrA[ρAB]) = S(A) + S(B).

Let ρ = ρAB, σ = ρA ⊗ ρB. Then:

S(ρ) ≤ −Tr[ρ log(ρA ⊗ ρB)]

= −Tr[ρ(log(ρA) ⊗ I + I⊗ log(ρB))]

= −Tr[ρ(log(ρA) ⊗ I)] − Tr[ρ(I⊗ log(ρB))]

= S(ρA) + S(ρB).

Here, the first step used the inequality in the hint for σ = ρA ⊗ ρB, the
second step used (b), and the third step used that the partial trace satisfies
Tr[ρ(XA ⊗ I)] = Tr[ρAXA] for every operator XA on the A-system (and similarly
for the B-system). This proves the desired inequality.

Now, for the claimed equality: Suppose ρAB = ρA ⊗ ρB. Then, the first step in
our derivation of the inequality above is clearly an equality. As the other steps are
equalities anyways, this shows that we get the overall equality S(ρ) = S(ρA)+S(ρB)
as claimed.

Bonus Exercise 1.4 P.

(a)3 P. Suppose that p = (pi)i is a discrete probability distribution and that the states ρi are
mutually orthogonal. Show that

S

(∑
i

piρi

)
= H(p) +

∑
i

piS(ρi).

and use this result to infer that

S

(∑
i

piρi ⊗ |ψi⟩⟨ψi|

)
= H(p) +

∑
i

piS(ρi),

where ⟨ψi|ψj⟩ = δij and the ρi are arbitrary quantum states.



Solution

Take spectral decompositions

ρi =
∑
j

λjiΠ
j
i ,

where the Πj
i are eigenprojectors. By assumption, the states ρi are mutually or-

thogonal, hence we have Tr[Πj
iΠ

l
k] = 0 for i ̸= k whenever max{λji , λlk} > 0. Also,

we have Tr[Πj
iΠ

l
i] = 0 whenever j ̸= l. Thus, we can compute:

S

(∑
i

piρi

)
= −Tr

∑
i,j

piλ
j
iΠ

j
i log

∑
k,l

pkλ
l
kΠl

k


= −Tr

∑
i,j

piλ
j
iΠ

j
i

 ∑
k,l:λl

k ̸=0

(log pk + log λlk)Πl
k


= −

∑
i,j

∑
k,l:λl

k ̸=0

piλ
j
i (log pk + log λlk) Tr

[
Πj

iΠ
l
k

]
= −

∑
i,j

piλ
j
i (log pi + log λji )


= H(p) +

∑
i

piS(ρi) .

Here, the second-to-last step used the orthogonality relations among the eigenpro-
jections discussed above and the last step used that

∑
j λ

j
i = 1 for every i.

To get the second of the two claimed equalities, first observe that the states
ρi ⊗ |ψi⟩⟨ψi| are mutually orthogonal, simply because the |ψi⟩⟨ψi| are: Tr[(ρi ⊗
|ψi⟩⟨ψi|)†(ρj ⊗ |ψj⟩⟨ψj |)] = Tr[ρ†iρj ] · |⟨ψi|ψj⟩|2 = Tr[ρ†iρj ]δij . So, we can apply the
equality that we have just established. If we additionally use the equality in the
subadditivity condition for S(ρ ⊗ σ) = S(ρ) + S(σ), this gives S(ρi ⊗ |ψi⟩⟨ψi|) =
S(ρi) + S(|ψi⟩⟨ψi|) = S(ρi) and thus the claimed equality.

(b)1 P. Use the subadditivity and the result from (a) to infer that the von Neumann entropy S is
concave, that is, S(

∑
i piρi) ≥

∑
i piS(ρi) for any probability distribution {pi} and states

ρi.

Solution

To show: S(
∑

i piρi) ≥
∑

i piS(ρi).
We start from the rhs:

∑
i

piS(ρi) = S

(∑
i

piρi ⊗ |i⟩⟨i|

)
−H(p)

≤ S

(∑
i

piρi

)
+ S

(∑
i

pi|i⟩⟨i|

)
−H(p) = S

(∑
i

piρi

)

Here, the first step used (a), the second step used that S(A,B) ≤ S(A)+S(B), and
the final step used S(

∑
i pi|i⟩⟨i|) = H(p).



Exercise 3.5 P. Now we want to set our sight back on bipartite systems and entanglement entropies.
Throughout this problem, if the global state being referred to is clear, we will denote entropies
of the reduced states using the corresponding Hilbert space as an argument, e.g. the entropy of
a state ρAB reduced on subsystem A, that is S (TrB [ρAB]), is denoted S(A).

(a)1 P. Let |ψ⟩AB = |ξ⟩A ⊗ |η⟩B be some product pure state. Compute the entanglement entropy
of the state, as well as the conditional von Neumann entropy S(A|B) ≡ S(A,B) − S(B).

Solution

E(ρ) = S(B) = −Tr ρB log2 ρB

For a product state, the reduced state is also a pure state ρB = |η⟩⟨η|, thus its von
Neumann entropy is 0. Consequently, the entanglement entropy of a pure product
state also is 0.

S(A|B) = S(A,B) − S(B) = −Tr[ρAB log2(ρAB)] + Tr[ρB log2(ρB)] = 0 + 0

since both the bipartite state ρAB = |ψ⟩⟨ψ| and the reduced state are pure states,
their von Neumann entropy is 0.

(b)1 P. Let ΩAB be the maximally entangled state on two Hilbert spaces of equal dimension d,
i.e. Ω = |Ω⟩⟨Ω| with

|Ω⟩ =
1√
d

d∑
i=1

|ii⟩.

Compute the conditional von Neumann entropy S(A|B) ≡ S(A,B)−S(B). What do you
conclude when comparing your result to that of Exercise 1(c)?

Solution

S(A|B) = S(AB) − S(B) = −S(B) = − log(d) = −E(ρ).

The conditional von Neumann entropy can be negative for entangled states. This
is in contrast to the classical conditional Shannon entropy, which is always non-
negative.

(c)2 P. Let ρAB be a bipartite (potentially mixed) state. Show that if ρA is separable, i.e. ρAB =∑
i piσ

i
A ⊗ τ iB where σi and τ i are states and {pi} is a probability distribution, then

S(A|B) ≥ 0.

Hint: The concavity of the von Neumann entropy established in (e) can be helpful here.



Solution

The reduced density matrices of ρAB are

ρA =
∑
i

piσ
i
A, ρB =

∑
i

piτ
i
B .

Thus, S(B) = S(
∑

i piτ
i
B). Let’s write the spectral decomposition σiA =∑

j λ
j
i |ψ

j
i ⟩⟨ψ

j
i |. Now, we have

S(AB) = S(
∑
i

piσ
i
A ⊗ τ iB)

= S(
∑
ij

piλ
j
i |ψ

j
i ⟩⟨ψ

j
i | ⊗ τ iB)

≥
∑
j

λjiS(
∑
i

|ψj
i ⟩⟨ψ

j
i | ⊗ τ iB)

=
∑
j

λjiS(
∑
i

τ iB)

= S(B),

where the inequality is an application of concavity of the von Neumann entropy
(applicable since each (λji )j forms a probability distribution) and the second-to-
last step uses the equality case of subadditivity and the fact that pure states have
vanishing entropy (just as we did in the solution to (d) above). Thus S(A|B) ≡
S(AB) − S(B) ≥ 0.

(d)1 P. In the lecture, you have encountered the entropy of entanglement, defined via the entropy
of a reduced density matrix, as a measure for pure state entanglement. Show via an
example that the entropy of a reduced density matrix is not suitable for quantifying
entanglement in mixed states.

Solution

Take a bipartite maximally mixed state. This is a tensor product state, thus not
at all entangled, but it achieves the maximum possible value for the entropy of a
reduced density matrix. Hence, while large entropy of a reduced density matrix is
indicates the presence of entanglement if we started from a pure bipartite state, this
is no longer true when starting from a bipartite mixed state.

Examples of Quantum Channels

On the last sheet, we looked at quantum channels on a general, abstract level. Here, we
investigate some examples of quantum channels acting on qubits, i.e., our Hilbert space is
H = C2. The following maps are important so-called noise channels

Fϵ(ρ) := ϵXρX + (1 − ϵ)ρ)

Dϵ(ρ) := ϵTr[ρ]
I
2

+ (1 − ϵ)ρ

Aϵ(ρ) := ϵTr[ρ]|0⟩⟨0| + (1 − ϵ)ρ,

where ϵ ∈ [0, 1].

Exercise 4.10 P. In this exercise, we will familiarize ourselves with the three channels above. In the
process, we will also learn to use the three important representations of channels that we have



encountered so far – Choi-Jamio lkowski, Kraus, and Stinespring – in concrete examples rather
than just abstractly.

(a)4 P. Show that Fϵ, Dϵ, and Aϵ indeed are linear CPTP maps and thus valid quantum channels.



Solution

Trace preservation and linearity are obvious. Therefore we just show complete
positivity. If the Choi state of a linear superoperator has non-negative eigenvalues
the map is completely positive, so we show that the Choi states of these linear maps
are PSD.
Because of linearity we can write

J(Fϵ) = ϵJ(F1) + (1 − ϵ)J(id) = ϵJ(F1) + (1 − ϵ)|Ω⟩⟨Ω| ,

and similarly for J(Dϵ) and J(Aϵ). As |Ω⟩⟨Ω| is PSD, we now focus on J(F1), J(D1),
and J(A1).
The Choi state for F1 is given by

J(F1) =
1

2

∑
i,j

|i xor 1, i⟩⟨j xor 1, j| =
1

2

∑
i,j

|i⊕ 1, i⟩⟨j ⊕ 1, j| ,

where 1 xor 1 = 0 and 0 xor 1 = 1 and ⊕ is just another way of writing this flip.
Written in matrix from, this is

J(F1) =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 ,

so J(F1) has eigenvalues 0 (of multiplicity 3) and 1 (of multiplicity 1) and is thus
PSD. Hence, J(Fϵ) is a convex combination of two PSD matrices and thus itself
PSD.
The depolarising channel has the Choi state

J(D1) = (D1 ⊗ I)|Ω⟩⟨Ω|

=
1

d2
I⊗ Tr1

∑
ij

|ii⟩⟨jj|


=

1

d2
I⊗

∑
ij

δij |i⟩⟨j|

=
1

d2
I⊗

∑
i

|i⟩⟨i|

=
1

d2
I⊗ I ≥ 0 ,

So, J(Dϵ) is PSD as a convex combination of PSD matrices.
Finally, we have

J(A1) = |0⟩⟨0| ⊗ I
2

=
1

2


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ≥ 0 .

Again, J(Aϵ) is PSD as a convex combination of PSD matrices.

(b)3 P. Describe the action of each of the channels Fϵ, Dϵ, and Aϵ in words.



Solution

Fϵ does the following: With probability 1 − ϵ, it leaves the input state unchanged,
and with probability ϵ, it “flips” the input state by applying a Pauli X.

Dϵ does the following: With probability 1 − ϵ, it leaves the input state unchanged,
and with probability ϵ, it completely depolarizes the input state, i.e., it throws the
input state away and replaces it by a maximally mixed state.

Aϵ does the following: With probability 1 − ϵ, it leaves the input state unchanged,
and with probability ϵ, it throws the input state away and replaces it by |0⟩⟨0|.

(c)3 P. Compute the action of each of the three channels on the input states |0⟩⟨0| and ρ = I/2.

Solution

For the input |0⟩⟨0|:

Fϵ(|0⟩⟨0|) = ϵ|1⟩⟨1| + (1 − ϵ)|0⟩⟨0| ,

Dϵ(|0⟩⟨0|) = ϵ
I
d

+ (1 − ϵ)|0⟩⟨0| ,

Aϵ(|0⟩⟨0|) = |0⟩⟨0| .

For the input ρ = I/2:

Fϵ(I/2) = I/2 ,
Dϵ(I/2) = I/2 ,
Aϵ(I/2) = ϵ|0⟩⟨0| + (1 − ϵ)I/2 .

Recap

As we keep gaining in speed and confidence when talking about mixed and entangled states, we
take a moment to revisit some core concepts via direct, small examples.

Bonus Exercise 2.5 P.

(a)3 P. Come up with three mixed quantum states as density matrices ρ1, ρ2, and ρ3. Let the
states be such that the density matrix is not diagonal in the computational basis, and let
each of them have the corresponding purity: Tr(ρ2k) = k/(k + 1).



Solution

Let’s make it nice and easy. Let σ1, σ2 be any two orthogonal states. Our ansatz
for the ρi will be mixtures of σ1 and σ2. That is, we consider states

ρ(p) = pσ1 + (1 − p)σ2 ,

where p ∈ [0, 1]. It follows that Tr((ρ(p))2) = p2 + (1 − p)2 = 2p2 − 2p + 1. Now
let’s equate this to the required purities, and find the value pk that we need to set
p to, for each k:

2p2k − 2pk + 1 =
k

k + 1

2p2k − 2pk + 1 − k

k + 1
= 0

=⇒ pk =
2 ±

√
4 − 8(1 − k

k+1)

4

=
1 ±

√
1 − 2

k+1

2

=
1 ±

√
k−1
k+1

2

=
1 ±

√
k2−1
k+1

2

=
k + 1 ±

√
k2 − 1

2(k + 1)
.

Okay, this is as far as we’ll go, now you just plug in any k ≥ 1 and that gives you a
corresponding probability pi.
Since we ask for mixed states that are not diagonal in the computational basis,
it’s left to fix the arbitrary orthogonal states σ1 and σ2 such that the sum is not
diagonal on the computational basis. It should be enough to take σ1 = |+⟩⟨+| and
σ2 = |−⟩⟨−|.

(b)2 P. Compute the purity of the product states ρi,j = ρi ⊗ ρj for every combination of i, j ∈
{1, 2, 3}.

Hint: There is of course a brute force solution, but spend a few minutes thinking about
whether you can save yourself computational effort.



Solution

We can answer this very quickly, without even considering the form of the individ-
ual quantum states. In particular, it is true that the purity of a product state is
the product of the purities of each tensor factors. To see this, we only need two
ingredients:

(a) The trace of a tensor product is the product of traces: Tr(A ⊗ B) =
Tr(A) Tr(B).

(b) The square of a tensor product is the tensor product of the squares: (A⊗B)2 =
A2 ⊗B2.

The purity is the trace of the square of a matrix, and for this exercise we consider
tensor product matrices. Now we use the two ingredients: First, we know the square
of the tensor product is the tensor product of squares: ρ2i,j = ρ2i ⊗ ρ2j . Second, we

know the trace of a tensor product is the product of traces: Tr(ρ2i ⊗ρ2j ) = Tr ρ2i Tr ρ2j ,
completing the necessary bit of math.
Now we just plug in the formula for the individual purity Tr ρ2i = i/(i+1) to obtain

Tr ρ2i,j =
ij

(i+ 1)(j + 1)
.

One way of interpreting this result is that putting together states that are not pure
results in a larger state with lower purity.

Bonus Exercise 3.3 P. Consider a mixed state as a classical mixture of pure states.

(a)1 P. Can you obtain an entangled mixed state by mixing only pure tensor product states?
(Either give an illustrative example or prove that it’s not possible.)

Solution

No, this is not possible. By definition, a mixture (aka convex combination) of
(possibly mixed) tensor product states is separable and thus not entangled.

(b)1 P. Can you obtain a tensor product mixed state by mixing only pure entangled states?
(Either give an illustrative example or prove that it’s not possible.)

Solution

Yes, illustrative example: take the Bell basis, which is an ONB of maximally en-
tangled 2-qubit states. Consider the classical mixture of preparing each of the Bell
states with uniform probability. Then the resulting state is the maximally mixed
state (which would be the case for any ONB of states, irrespective of their entan-
glement). The maximally mixed state of a d-dimensional system is 1

dI. In the case
of a 4-dimensional system (2 qubits), we can write the 4-dimensional identity ma-
trix as the tensor product of two 2-dimensional identity matrices, with the correct
normalization:

1

4
I4 =

(
1

2
I2
)
⊗
(

1

2
I2
)
,

so indeed we are left with a product state as a classical mixture of entangled states.

(c)1 P. Given the results of (a) and (b), what do you conclude about how entanglement behaves
under probabilistic mixtures?



Solution

Probabilistic mixing cannot create entanglement but it can destroy entanglement.

Total Points: 29 (+12)


