
Exercise Sheet 6: LOCC and Majorization

LOCC

At the heart of entanglement theory lies the notion of LOCC (Local Operations and Classical
Communication). To see why, imagine two parties that are a large distance apart from each
other, say, Alice is in Berlin and Bob in New York. While they may obtain access to shared
entanglement from a third party, it is unreasonable to assume that they are able to perform
global operations on the state they share. However, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

The goal of the next exercise is to show that if Alice and Bob are in distant labs, and share
a state, any measurement on Alice’s part of the state can be simulated as follows: Bob performs
a measurement on his side and communicates the result to Alice, who performs a local unitary
transformation. This can be proven for POVMs, but for simplicity we will restrict ourselves to
projective measurements.

Exercise 1.8 P. We work on a bipartite Hilbert space H = HA ⊗HB. For convenience we assume
HA

∼= HB. Consider a bipartite pure state |ψ⟩AB with Schmidt decomposition

|ψ⟩AB =
∑
i

√
λi|ai⟩|bi⟩ (1)

and a projective measurement Π = {ΠA
i }i acting on Alice’s Hilbert space.

(a)3 P. Expand ΠA
i in the basis of the Schmidt decomposition and define a projective measurement

Γ = {ΓB
i }i on Bob’s system such that the probability pBk that Bob observes result k when

measuring Γ is the same as the probability pAk that Alice observes result k when measuring
Π.

(b)2 P. Determine the post-measurement states |ϕAj ⟩ after Alice measures Π and obtains result

j, and |ϕBj ⟩ after Bob measures Γ and obtains result j. (Note: Both of these states are
defined on the whole Hilbert space AB, the superscripts serve to identify who performed
the measurement).

(c)2 P. Show that |ϕAj ⟩ and |ϕBj ⟩ are equivalent up to local unitary transformations.

Hint: Recall that for a state of the form
∑

kℓCkℓ|ek⟩|fℓ⟩, with orthonormal sets {|ek⟩}k and
{|fℓ⟩}ℓ, its Schmidt coefficients are exactly the singular values of the matrix C = (Ckℓ)kℓ.

(d)1 P. Describe the LOCC protocol.

Majorization

Majorization is a mathematical concept that has surprisingly far-reaching applications. Con-
sider two vectors x ∈ Rn and y ∈ Rn. We define a sorted (in descending manner) version of a
vector v as v↓, such that

v↓1 ≥ v↓2 ≥ . . . ≥ v↓n. (2)

We can write

v↓ = Pv (3)

for some matrix P that permutes the entries of v.



Exercise 2.2 P. Let us look at the vector y = (2, 4, 1, 3). What is y↓ and what matrix P permutes

y into y↓?

We now say that x majorizes y, written as x ≻ y, if

x ≻ y ⇔
k∑

j=1

x↓j ≥
k∑

j=1

y↓j for all 1 ≤ k ≤ n. (4)

Exercise 3.1 P. Show that x = (2, 1, 0) majorizes y = (1, 1, 1).

A central insight in the theory of majorization is that the majorization condition x ≻ y
holds if and only if we can write

x ≻ y ⇔ y =
∑
j

pjPjx (5)

for a probability distribution pj over permutation matrices Pj . Birkhoff’s theorem then implies
that we can write

y = Dx (6)

for a doubly-stochastic matrix D, which is a matrix where all columns and rows are simultane-
ously probability distributions, i.e.

D is doubly-stochastic ⇔ Dij ≥ 0 and
n∑

i=1

Dij = 1 and
n∑

j=1

Dij = 1 for all i and j. (7)

The purpose of the next exercise is to uncover the role of majorization in state transfor-
mations using LOCC. Specifically, we will try to understand when we can transform a given
copy of a pure bipartite quantum state |ψ⟩ to another quantum state |ϕ⟩ using LOCC, which
we write as

|ψ⟩ LOCC−−−−→ |ϕ⟩. (8)

As a first ingredient, we extend the definition of majorization to Hermitian matrices. Let
X, Y be Hermitian n× n matrices. If λ(X) (λ(Y )) is the vector of eigenvalues of X (Y ), then
we say that X majorizes Y if their vectors of eigenvalues majorize each other, i.e.

X ≻ Y ⇔ λ(X) ≻ λ(Y ). (9)

Exercise 4.4 P. Show that X ≻ Y for Hermitian X and Y if and only if there exists a probability
distribution p and unitary matrices Uj such that

Y =
∑
j

pjUjXU
†
j .

Hint: Make use of the eigendecompositions of X and Y and use Eq. (5) for the “if” part and
Eq. (6) for the “only if” part.

Exercise 5.6 P. We are now ready to prove the surprising theorem that conversion of |ψ⟩ into
|ϕ⟩ under LOCC is only possible if the reduced state TrB[|ϕ⟩⟨ϕ|] majorizes the reduced state
TrB[|ψ⟩⟨ψ|]:

|ψ⟩ LOCC−−−−→ |ϕ⟩ ⇔ TrB[|ψ⟩⟨ψ|] ≺ TrB[|ϕ⟩⟨ϕ|]. (10)

We encourage you to have a look into the original paper that established the theorem (https:
//arxiv.org/pdf/quant-ph/9811053.pdf).

https://arxiv.org/pdf/quant-ph/9811053.pdf
https://arxiv.org/pdf/quant-ph/9811053.pdf


(a)3 P. Show the “only if” direction in Eq. (10) using the previous result, i.e. assume that |ψ⟩ can
be transformed into |ϕ⟩ under LOCC and show that this implies the states majorization
condition. You can suppose that LOCC is realised by a measurement M = {Mj} on
Alice’s side and a corresponding unitary on Bob’s side. In other words, from Alice’s point
of view it must be the case that1

MjTrB[|ψ⟩⟨ψ|]M †
j = pjTrB[|ϕ⟩⟨ϕ|]. (11)

Hint: Define Xj :=Mj

√
TrB[|ψ⟩⟨ψ|] such that the left hand side of the above equations is

XjX
†
j and use the polar decomposition of X and the fact that {Mj} is a POVM.

(b)3 P. Now show the “if” direction in Eq. (10) by proceeding analogously.

Bonus Exercise 1.5 P. Let’s try to apply Eq. (10) a bit more concretely.

(a)3 P. Give one example for each of the following:

(i) A pair of pure 2-qubit states (|ψ⟩, |ϕ⟩) such that |ψ⟩ can be LOCC-transformed into
|ϕ⟩ but not vice versa.

(ii) A pair of pure 2-qubit states (|ψ⟩, |ϕ⟩) such that |ψ⟩ can be LOCC-transformed into
|ϕ⟩ and vice versa.

(iii) A pair of pure 2-qutrit states (|ψ⟩, |ϕ⟩) such that neither can |ψ⟩ be LOCC-transformed
into |ϕ⟩ nor vice versa.

For each of your examples, also give short proofs that the respective LOCC transformations
are (im-)possible as claimed. Ensure that your examples are simple enough so that you
can prove them in 3-4 lines using Eq. (10).

(b)2 P. Is there a pair of 2-qubit states (|ψ⟩, |ϕ⟩) such that neither can |ψ⟩ be LOCC-transformed
into |ϕ⟩ nor vice versa? Either give an example or prove that such a pair does not exist.

Monogamy

Bonus Exercise 2.5 P. In this exercise, we consider a property called monogamy of (pure state)
entanglement. First, we prove the simplest version thereof mathematically, then we interpret it
physically.

(a)2 P. Suppose we have a bipartite Hilbert space H = HA ⊗ HB and let |ψ⟩ = |ψ⟩AB ∈ H
be a pure quantum state. Assume that the reduced state ρA = TrB[|ψ⟩⟨ψ|] on the first
subsystem is pure, ρA = |ϕ⟩⟨ϕ| for some |ϕ⟩ = |ϕ⟩A ∈ HA. Show that |ψ⟩AB is a tensor
product, i.e., that |ψ⟩AB = |ϕ⟩A ⊗ |φ⟩B for some pure state |φ⟩ = |φ⟩B ∈ HB.

(b)1 P. Now let’s start from the setting where we have an entangled pure state |ψ⟩AB. Can there
exist a pure state |Ψ⟩ABC where there is entanglement between AB and C such that the
reduced state on AB is |ψ⟩AB? Explain your answer.

(c)1 P. Consider a 3-qubit GHZ state |GHZ⟩ = 1√
2
(|000⟩+ |111⟩). This is a state in which all 3

subsystems are entangled. Why does that not contradict the result of (a)?

(d)1 P. Does a similar property of monogamy hold for classical correlations? That is, if ρAB

is a separable non-product state that is diagonal in the computational basis, is it true
that every separable state ρABC that is diagonal in the computational basis and satisfies
ρAB = TrC [ρABC ], has to be a product state ρABC = ρAB ⊗ ρC? Either sketch a proof or
give a counterexample.

Total Points: 21 (+10)
1This is because the transition from |ψ⟩ to |ϕ⟩ comes about as a post-measurement state with probability pj .


