
Exercise Sheet 6: LOCC and Majorization

LOCC

At the heart of entanglement theory lies the notion of LOCC (Local Operations and Classical
Communication). To see why, imagine two parties that are a large distance apart from each
other, say, Alice is in Berlin and Bob in New York. While they may obtain access to shared
entanglement from a third party, it is unreasonable to assume that they are able to perform
global operations on the state they share. However, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

The goal of the next exercise is to show that if Alice and Bob are in distant labs, and share
a state, any measurement on Alice’s part of the state can be simulated as follows: Bob performs
a measurement on his side and communicates the result to Alice, who performs a local unitary
transformation. This can be proven for POVMs, but for simplicity we will restrict ourselves to
projective measurements.

Exercise 1.8 P. We work on a bipartite Hilbert space H = HA ⊗HB. For convenience we assume
HA

∼= HB. Consider a bipartite pure state |ψ⟩AB with Schmidt decomposition

|ψ⟩AB =
∑
i

√
λi|ai⟩|bi⟩ (1)

and a projective measurement Π = {ΠAi }i acting on Alice’s Hilbert space.

(a)3 P. Expand ΠAi in the basis of the Schmidt decomposition and define a projective measurement
Γ = {ΓBi }i on Bob’s system such that the probability pBi that Bob observes result i when
measuring Γ is the same as the probability pAi that Alice observes result i when measuring
Π.



Solution

We expand Alice’s POVM effects as

Πi =
∑
kj

Πkji |ak⟩⟨aj |

and define

Γi =
∑
kj

Πkji |bk⟩⟨bj |.

Note that Γ = {Γi}i forms a POVM because Γi differs from Πi only by a basis
change and because Π = {Πi}i forms a POVM. Then,

pBi = ⟨ψ|Γi|ψ⟩

=

(∑
k′

√
λk′⟨ak′ | ⊗ ⟨bk′ |

)(∑
kj

Πkji I⊗ |bk⟩⟨bj |

)(∑
j′

√
λj′ |aj′⟩ ⊗ |bj′⟩

)
=

∑
k,k′,j,j′

√
λk
√
λjΓ

kj
i δk′j′δkk′δjj′ =

∑
k

λkΓ
kk
i =

∑
k

λkΠ
kk
i = pAi

An alternative way of writing this: If we define the isometry

IA→B :=
∑
i

|bi⟩⟨ai|,

and IB→A = I†A→B, we simply have that ΓBi = IA→BΠ
A
i IB→A.

(b)2 P. Determine the post-measurement states |ϕAj ⟩ after Alice measures Π and obtains result

j, and |ϕBj ⟩ after Bob measures Γ and obtains result j. (Note: Both of these states are
defined on the whole Hilbert space AB, the superscripts serve to identify who performed
the measurement).

Solution

Up to normalization |ϕAj ⟩ =
∑

ik

√
λkΠ

ik
j |ai⟩|bk⟩ and |ϕBj ⟩ =

∑
ik

√
λkΠ

ik
j |ak⟩|bi⟩.

(c)2 P. Show that |ϕAj ⟩ and |ϕBj ⟩ are equivalent up to local unitary transformations.

Hint: Recall that for a state of the form
∑

kℓCkℓ|ek⟩|fℓ⟩, with orthonormal sets {|ek⟩}k and
{|fℓ⟩}ℓ, its Schmidt coefficients are exactly the singular values of the matrix C = (Ckℓ)kℓ.



Solution

Define a matrix C(j) with entries C
(j)
ik =

√
λkΠ

ik
j . With this matrix, we can rewrite

our states up to normalization as

|ϕAj ⟩ =
∑
ik

C
(j)
ik |ai⟩|bk⟩ , (2)

|ϕBj ⟩ =
∑
ik

C
(j)
ik |ak⟩|bi⟩ =

∑
ik

(
C(j)⊤

)
ik
|ai⟩|bk⟩ . (3)

Thus, since {|ak⟩}k and {|bℓ⟩}ℓ are orthonormal sets (remember that they come from
a Schmidt decomposition), the Schmidt coefficients of |ϕAj ⟩ are (up to normalization)

the singular values of C(j) while the Schmidt coefficients of |ϕBj ⟩ are (up to normal-

ization) the singular values of C(j)⊤. As the matrix transpose leaves the singular
values invariant, we conclude that |ϕAj ⟩ and |ϕBj ⟩ have the same Schmidt coefficients.
Hence they are equivalent up to local unitary transformations (namely exactly the
local unitaries that transform between the respective local Schmidt bases).

(d)1 P. Describe the LOCC protocol.

Solution

Bob performs the measurement Γ, obtains result j and communicates the result to
Alice. Now both know that the global state is |ϕBj ⟩ and perform the necessary local

unitaries to turn the state into |ϕAj ⟩.

Majorization

Majorization is a mathematical concept that has surprisingly far-reaching applications. Con-
sider two vectors x ∈ Rn and y ∈ Rn. We define a sorted (in descending manner) version of a
vector v as v↓, such that

v↓1 ≥ v↓2 ≥ . . . ≥ v↓n. (4)

We can write

v↓ = Pv (5)

for some matrix P that permutes the entries of v.

Exercise 2.2 P. Let us look at the vector y = (2, 4, 1, 3). What is y↓ and what matrix P permutes

y into y↓?

Solution

We have

y↓ =


4
3
2
1

 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

=:P


2
4
1
3

 = Py.



We now say that x majorizes y, written as x ≻ y, if

x ≻ y ⇔
k∑
j=1

x↓j ≥
k∑
j=1

y↓j for all 1 ≤ k ≤ n. (6)

Exercise 3.1 P. Show that x = (2, 1, 0) majorizes y = (1, 1, 1).

Solution

Clear from evaluating the sums for all 1 ≤ k ≤ 3 which are 2, 3, 3 and 1, 2, 3, respectively.

A central insight in the theory of majorization is that the majorization condition x ≻ y
holds if and only if we can write

x ≻ y ⇔ y =
∑
j

pjPjx (7)

for a probability distribution pj over permutation matrices Pj . Birkhoff’s theorem then implies
that we can write

y = Dx (8)

for a doubly-stochastic matrix D, which is a matrix where all columns and rows are simultane-
ously probability distributions, i.e.

D is doubly-stochastic ⇔ Dij ≥ 0 and

n∑
i=1

Dij = 1 and

n∑
j=1

Dij = 1 for all i and j. (9)

The purpose of the next exercise is to uncover the role of majorization in state transfor-
mations using LOCC. Specifically, we will try to understand when we can transform a given
copy of a pure bipartite quantum state |ψ⟩ to another quantum state |ϕ⟩ using LOCC, which
we write as

|ψ⟩ LOCC−−−−→ |ϕ⟩. (10)

As a first ingredient, we extend the definition of majorization to Hermitian matrices. Let
X, Y be Hermitian n× n matrices. If λ(X) (λ(Y )) is the vector of eigenvalues of X (Y ), then
we say that X majorizes Y if their vectors of eigenvalues majorize each other, i.e.

X ≻ Y ⇔ λ(X) ≻ λ(Y ). (11)

Exercise 4.4 P. Show that X ≻ Y for Hermitian X and Y if and only if there exists a probability
distribution p and unitary matrices Uj such that

Y =
∑
j

pjUjXU
†
j .

Hint: Make use of the eigendecompositions of X and Y and use Eq. (7) for the “if” part and
Eq. (8) for the “only if” part.



Solution

We will first show that if X majorizes Y , we can write Y in the desired form. We will
write spectral decompositions X = V Λ(X)V † and Y = WΛ(Y )W †. As majorization
implies via Eq. (7) that

λ(Y ) =
∑
j

pjPjλ(X)

for a probability vetor (pi)i and for permutation matrices Pj , and since the entries of
λ(X) and λ(Y ) form the diagonals of Λ(X) and Λ(Y ), respectively, we can deduce that

Λ(Y ) =
∑
j

pjPjΛ(X)P †
j .

Using Λ(X) = V †XV and Λ(Y ) =W †YW then yields

Y =
∑
j

pjWPjV
†XV P †

jW
†.

Defining Uj := WPjV
† proves the desired statement, as the matrices Pj are unitary and

hence the Uj are as well.
For the reverse implication, we will again use the eigendecompositions, which allow us to
transform

Y =
∑
j

pjUjXU
†
j

into

Λ(Y ) =
∑
j

pjW
†UjV Λ(X)V †UjW

† =
∑
j

pjQjΛ(X)Q†
j ,

where we defined the unitary matrices Qj :=W †UjV . Now, we look at one diagonal entry
of Λ(Y ), which can be identified with an entry of λ(Y ). This yields

λ(Y )i =
∑
j

pj
∑
k

[Qj ]ikλ(X)k[Qj ]
∗
ik

=
∑
jk

pj |[Qj ]ik|2λ(X)k.

From this we can conclude that

λ(Y ) = Dλ(X)

for a matrix D with entries

Dik =
∑
j

pj |[Qj ]ik|2

We are left to check that D is a doubly-stochastic matrix to prove the reverse impliciation
via Eq. (8). Indeed, we have that all entries of D are non-negative and∑

i

Dik =
∑
i

∑
j

pj |[Qj ]ik|2 =
∑
j

pj = 1

∑
k

Dik =
∑
k

∑
j

pj |[Qj ]ik|2 =
∑
j

pj = 1,

which concludes the proof.



Exercise 5.6 P. We are now ready to prove the surprising theorem that conversion of |ψ⟩ into
|ϕ⟩ under LOCC is only possible if the reduced state TrB[|ϕ⟩⟨ϕ|] majorizes the reduced state
TrB[|ψ⟩⟨ψ|]:

|ψ⟩ LOCC−−−−→ |ϕ⟩ ⇔ TrB[|ψ⟩⟨ψ|] ≺ TrB[|ϕ⟩⟨ϕ|]. (12)

We encourage you to have a look into the original paper that established the theorem (https:
//arxiv.org/pdf/quant-ph/9811053.pdf).

(a)3 P. Show the “only if” direction in Eq. (12) using the previous result, i.e. assume that |ψ⟩ can
be transformed into |ϕ⟩ under LOCC and show that this implies the states majorization
condition. You can suppose that LOCC is realised by a measurement M = {Mj} on
Alice’s side and a corresponding unitary on Bob’s side. In other words, from Alice’s point
of view it must be the case that1

MjTrB[|ψ⟩⟨ψ|]M †
j = pjTrB[|ϕ⟩⟨ϕ|]. (13)

Hint: Define Xj :=Mj

√
TrB[|ψ⟩⟨ψ|] such that the left hand side of the above equations is

XjX
†
j and use the polar decomposition of X and the fact that {Mj} is a POVM.

Solution

Let us define ρψ := TrB[|ψ⟩⟨ψ|] and ρϕ := TrB[|ϕ⟩⟨ϕ|]. The polar decomposition is
Xj = RjVj for a positive semi-definite matrix Rj and a unitary Vj . The matrix Rj

is given by Rj =
√
XjX

†
j =

√
MjρψM

†
j .

Combining the polar decomposition with the assumption yields

Xj =Mj
√
ρψ =

√
MjρψM

†
j Vj =

√
pjρϕVj ,

where we used Eq. (13) for the last step. Now, we can write

ρψ =
√
ρψ

√
ρψ

=
∑
j

√
ρψM

†
jMj

√
ρψ

=
∑
j

V †
j

√
pjρϕ

√
pjρϕVj

=
∑
j

pjV
†
j ρϕVj

which in turn implies ρψ ≺ ρϕ by assertion of Exercise 4 as desired. Here, we inserted

an identity I =
∑

jM
†
jMj for the second equality and then used the just-derived

expression for Xj .

(b)3 P. Now show the “if” direction in Eq. (12) by proceeding analogously.

1This is because the transition from |ψ⟩ to |ϕ⟩ comes about as a post-measurement state with probability pj .

https://arxiv.org/pdf/quant-ph/9811053.pdf
https://arxiv.org/pdf/quant-ph/9811053.pdf


Solution

We run the proof of the preceding exercise backwards. By assumption and by
Exercise 4, we know the existence of Vj and pj such that

ρψ =
∑
j

pjV
†
j ρϕVj .

We can then define the operators

Mj :=
√
pjρϕVj

√
ρψ

−1. (14)

If ρψ does not have full rank, it suffices to take the inverse on the support, as the
POVM is only evaluated on ρψ anyways and contributions outside of the support
do not matter. We check that the Mj indeed fulfill the completeness relation as∑

j

M †
jMj =

∑
j

√
ρψ

−1V †
j

√
pjρϕ

√
pjρϕVj

√
ρψ

−1 (15)

=
√
ρψ

−1

∑
j

pjV
†
j ρϕVj

√
ρψ

−1 (16)

=
√
ρψ

−1ρψ
√
ρψ

−1 (17)

= I. (18)

Again, if the matrix ρψ does not have full rank, think of the identity as to be defined
on the complement of the kernel of ρψ. As

MjρψM
†
j = pjρϕ (19)

by definition of Mj , we have found a LOCC scheme performing the transformation.

Bonus Exercise 1.5 P. Let’s try to apply Eq. (12) a bit more concretely.

(a)3 P. Give one example for each of the following:

(i) A pair of pure 2-qubit states (|ψ⟩, |ϕ⟩) such that |ψ⟩ can be LOCC-transformed into
|ϕ⟩ but not vice versa.

(ii) A pair of pure 2-qubit states (|ψ⟩, |ϕ⟩) such that |ψ⟩ can be LOCC-transformed into
|ϕ⟩ and vice versa.

(iii) A pair of pure 2-qutrit states (|ψ⟩, |ϕ⟩) such that neither can |ψ⟩ be LOCC-transformed
into |ϕ⟩ nor vice versa.

For each of your examples, also give short proofs that the respective LOCC transformations
are (im-)possible as claimed. Ensure that your examples are simple enough so that you
can prove them in 3-4 lines using Eq. (12).



Solution

We first give an example for (i). Take |ψ⟩ = 1√
2
(|00⟩ + |11⟩) and |ϕ⟩ = |00⟩.

The states are already in Schmidt decomposition form, the Schmidt values are
λψ1 = 1

2 = λψ2 and λϕ1 = 1, λϕ2 = 0. Clearly, λψ1 < λϕ1 and λψ1 + λψ2 = 1 = λϕ1 + λϕ2 .

So, by Eq. (12), |ψ⟩ LOCC−−−−→ |ϕ⟩ but not vice versa.

For (ii), the easiest example to pick is |ψ⟩ = |ϕ⟩ for any 2-qubit state |ψ⟩. In fact,
it is not hard to see that any pair satisfying the desired property has to be a pair
of two 2-qubit states with the same Schmidt values (up to reordering).

Now we give an example for (iii), taken from Nielsen’s paper (https://arxiv.org/
pdf/quant-ph/9811053.pdf). Here, we take

|ψ⟩ = 1√
2
|00⟩+

√
2

5
|11⟩+ 1√

10
|22⟩ (20)

|ϕ⟩ =
√

3

5
|00⟩+ 1√

5
|11⟩+ 1√

5
|22⟩ . (21)

The states are already in Schmidt decomposition form, we can read off the Schmidt
values and notice:

• λψ1 = 1/2 < 3/5 = λϕ1 , so TrB[|ϕ⟩⟨ϕ|] ̸≺ TrB[|ψ⟩⟨ψ|]. Hence, |ϕ⟩ cannot be
LOCC-transformed into |ψ⟩.

• λψ1 + λψ2 = 1/2 + 2/5 = 9/10 > 4/5 = 3/5 + 1/5 = λϕ1 + λϕ2 , so TrB[|ψ⟩⟨ψ|] ̸≺
TrB[|ϕ⟩⟨ϕ|]. Hence, |ψ⟩ cannot be LOCC-transformed into |ϕ⟩.

(b)2 P. Is there a pair of 2-qubit states (|ψ⟩, |ϕ⟩) such that neither can |ψ⟩ be LOCC-transformed
into |ϕ⟩ nor vice versa? Either give an example or prove that such a pair does not exist.

Solution

No, such a pair does not exist. This can be seen as follows: Let |ψ⟩, |ϕ⟩ be 2-qubit

states with Schmidt values λψ1 , λ
ψ
2 and λϕ1 , λ

ϕ
2 . W.l.o.g. these Schmidt values are

already in non-increasing order. Assume that |ψ⟩ cannot be LOCC-transformed

into |ϕ⟩. As λψ1 + λψ2 = 1 = λϕ1 + λϕ2 , by Eq. (12) this implies λψ1 > λϕ1 . However,

together with λψ1 + λψ2 = 1 = λϕ1 + λϕ2 , this then implies that |ϕ⟩ can be LOCC-
transformed into |ψ⟩ according to Eq. (12).

Monogamy

Bonus Exercise 2.5 P. In this exercise, we consider a property called monogamy of (pure state)
entanglement. First, we prove the simplest version thereof mathematically, then we interpret it
physically.

(a)2 P. Suppose we have a bipartite Hilbert space H = HA ⊗ HB and let |ψ⟩ = |ψ⟩AB ∈ H
be a pure quantum state. Assume that the reduced state ρA = TrB[|ψ⟩⟨ψ|] on the first
subsystem is pure, ρA = |ϕ⟩⟨ϕ| for some |ϕ⟩ = |ϕ⟩A ∈ HA. Show that |ψ⟩AB is a tensor
product, i.e., that |ψ⟩AB = |ϕ⟩A ⊗ |φ⟩B for some pure state |φ⟩ = |φ⟩B ∈ HB.

https://arxiv.org/pdf/quant-ph/9811053.pdf
https://arxiv.org/pdf/quant-ph/9811053.pdf


Solution

Consider the Schmidt decomposition of |ψ⟩AB:

|ψ⟩AB =

min{dA,dB}∑
j=1

√
λj |ej⟩|fj⟩ , (22)

where λj ≥ 0 for all j,
∑

j λj = 1, {|ej⟩}j is an ONB for HA and {|f⟩j}j is an ONB
for HB. From the Schmidt decomposition, we can read off the reduced density
matrix:

TrB[|ψ⟩⟨ψ|] =
min{dA,dB}∑

j=1

λj |ej⟩⟨ej | . (23)

By assumption, this reduced density matrix equals the pure state |ϕ⟩⟨ϕ|. As |ϕ⟩⟨ϕ|
has rank 1, this is only possible if there exists 1 ≤ i ≤ min{dA, dB} such that λi = 1,
|ej⟩ = |ϕ⟩, and λj = 0 for j ̸= i. Plugging this back into the Schmidt decomposition
of |ψ⟩, we get

|ψ⟩AB = |ϕ⟩|fi⟩ , (24)

so |ψ⟩ indeed is a tensor product state (with the |φ⟩ from the question being |fi⟩).

(b)1 P. Now let’s start from the setting where we have an entangled pure state |ψ⟩AB. Can there
exist a pure state |Ψ⟩ABC where there is entanglement between AB and C such that the
reduced state on AB is |ψ⟩AB? Explain your answer.

Solution

In words, the result proved in (a) says the following: If the reduced density ma-
trix on some subsystem is pure, then that subsystem does not have any quantum
correlations with any other system. As a consequence of (a), if we have a bipartite
entangled pure state |ψ⟩AB, then it cannot be entangled with any other quantum
system C via an overall pure quantum state |Ψ⟩ABC , since that would violate the
tensor product form. In other words: Correlations in a pure quantum state are
“monogamous”, they cannot be shared with further systems.

(c)1 P. Consider a 3-qubit GHZ state |GHZ⟩ = 1√
2
(|000⟩+ |111⟩). This is a state in which all 3

subsystems are entangled. Why does that not contradict the result of (a)?

Solution

Any 2-qubit reduced density matrix of the GHZ state equals 1
2(|00⟩⟨00|+ |11⟩⟨11|).

This is a separable mixed state. In particular, as this reduced density matrix is a
mixed state, we cannot apply (a). Moreover, note that this reduced density matrix is
not entangled. Thus, while all three systems are in an entangled state, if we “throw
away” any of the three subsystems, we completely destroy the entanglement.

(d)1 P. Does a similar property of monogamy hold for classical correlations? That is, if ρAB
is a separable non-product state that is diagonal in the computational basis, is it true
that every separable state ρABC that is diagonal in the computational basis and satisfies
ρAB = TrC [ρABC ], has to be a product state ρABC = ρAB ⊗ ρC? Either sketch a proof or
give a counterexample.



Solution

No, classical correlations are very much not monogamous. There are different ways
of seeing this (e.g., if you clone a classical system multiple times, you get many
perfectly correlated copies). Here’s a simple counterexample phrased in the notation
that we’ve been using all along: Consider a (diagonal, hence classical) mixed state

ρABC =
d∑
i=1

pi|i⟩⟨i| ⊗ |i⟩⟨i| ⊗ |i⟩⟨i| , (25)

where (pi)i is a probability vector and we for simplicity assumed that HA,HB, and
HC are all isomorphic to Cd. This state describes three perfectly correlated classical
random variables. The reduced density matrix on the first two subsystems is

ρAB =
d∑
i=1

pi|i⟩⟨i| ⊗ |i⟩⟨i| . (26)

This state describes two perfectly correlated random variables on the A and B
systems. Here, we have perfect correlation between A and B, but in general these
two subsystems are further correlated with C (since ρABC is not a tensor product
if (pi)i has more than one non-zero entry). This shows by example that classical
correlations can be shared between more than just two systems.
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