
Exercise Sheet 7: Channel capacities

Capacities of classical channels

Shannon’s noisy channel coding theorem states that the capacity of a (noisy) classical channel
T is given by the maximum input-output mutual information:

C(T ) = max
X,pX

I(X : Y ) ,

with the input-output mutual information

I(X : Y ) = H(X) +H(Y ) −H(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

Here X is an input random variable with distribution pX , and where Y is the random variable
describing the output of the channel T with input X. We will determine the capacity of two
example channels.

The first channel we treat is the binary symmetric channel or bitflip channel TBSC. With
probability p, the input bit is flipped (0 → 1 and 1 → 0), and with probability 1 − p it is
transmitted without error. We can also formulate this in terms of the following conditional
probabilities of the outputs given the inputs:

TBSC :
P[0 | 0] = P[1 | 1] = 1 − p,
P[1 | 0] = P[0 | 1] = p.

Exercise 1.4 P.

(a)3 P. Determine the capacity of the binary symmetric channel C(TBSC) in terms of the binary
entropy (which is the entropy of a coin/Bernoulli random variable with probability p)

H2(p) := −p log p− (1 − p) log(1 − p). (1)

For the rest of the sheet, we assume logarithms to be base 2.

Hint: It may be useful to expand H(Y |X) as
∑

x p(x)H(Y |X = x).

Solution

We have

I(X : Y ) = H(Y ) −H(Y |X)

= H(Y ) −
∑
x

pX(x)H(Y |X = x)

= H(Y ) −
∑
x

p(x)H2(p)

= H(Y ) −H2(p)

≤ 1 −H2(p).

The second equality uses the hint, the third equality recognizes that upon fixing an
input, Y is just a binary random variable (a coin) with probability p, whose entropy
thus is H2(p). The final inequality uses H(Y ) ≤ log 2 = 1, because we’re dealing
with a distribution over {0, 1}.
We can saturate the above inequality by choosing X as a uniformly distributed ran-
dom variable, in which case it is easy to check that Y is also uniformly distributed.
We conclude that C(TBSC) = 1 −H2(p).



(b)1 P. The binary symmetric channel TBSC is a classical communication channel. Write down a
quantum channel that generalizes it (in the sense that it acts similarly on computational
basis states.)

Solution

The qubit channel

ρ 7→ pXρX + (1 − p)ρ

that we discussed on sheet 5 is as desired.

At the output of the binary symmetric channel, it is not possible to detect if an error occurred
or not. If we instead got an output “error”, every time an error occurred, our lives might get
easier. The channel describing this is the so-called binary erasure channel TE. Mathematically,
we describe it by adding the “error state” e to the possible states of the system (besides 0 and
1). Formally, the binary erasure channel outputs “error” (i.e. the state e) with probability p and
with probability 1 − p transmits the input without error, leading to the following conditional
probabilities:

TE :
P[0 | 0] = P[1 | 1] = 1 − p,
P[e | 0] = P[e | 1] = p.

Exercise 2.9 P. Let us now determine the capacity of TE.

(a)1 P. We first introduce another random variable Z. Namely, we let Z = 1E be the indicator
random variable for the event E = {Y = e} that an erasure error occurs. What is P[Z = 1]
in terms of p?

Solution

We have that

P[Z = 1] = P[Z = 1 |X = 0]P[X = 0] + P[Z = 1 |X = 1]P[X = 1]

= P[Z = 1 |X = 0](1 − P[X = 1]) + P[Z = 1 |X = 1]P[X = 1]

= p(1 − P[X = 1]) + pP[X = 1]

= p.

Note that by definition P[Z = 1] = P[Y = e], so we could have formulated everything
in the calculation above in terms of Y instead of Z.

(b)2 P. Given this new random variable Z (note that its complement is ¬E = {Y ̸= e}), we can
write

H(Y ) = H(Y, Z) = H(Z) +H(Y |Z), (2)

because Z is a deterministic function of Y . Use the above expansion to show that H(Y ) =
H2(p) + (1 − p)H2(P[X = 1]), where H2 is the binary entropy defined in Eq. (1).

Hint: Use that P[Y = y |Y ̸= e] = P[X = y].



Solution

As argued in part (a) of this exercise, we have that P[Z = 1] = p. On the other
hand, using the given decomposition for H(Y ), we have

H(Y ) = H(Z) + P[Z = 0]H(Y |Z = 0) + P[Z = 1]H(Y |Z = 1)

= H2(p) + (1 − p)H(Y |Y ̸= e) + pH(Y |Y = e)

= H2(p) + (1 − p)H2(P[X = 1]) + p · 0 .

Here, we used:

• H(Y |Y = e) = 0 since after conditioning on Y = e, Y is deterministic and
thus doesn’t have any entropy.

• H(Y |Y ̸= e) = H(P[X = 1]) since if Y ̸= e, then the case Y = 1 occurs with
probability P[X = 1] (namely if and only if X = 1) whereas the case Y = 0
occurs with probability 1 − P[X = 1] (namely if and only if X = 0).

(c)2 P. Compute the conditional entropy H(Y |X).

Solution

If we fix a value x ∈ {0, 1} for X, then Y is either equal to x with probability
1 − p or equal to e with probability p. Therefore, H(Y |X = x) = H2(p) for both
x ∈ {0, 1}. From this, we can conclude that H(Y |X) = H2(p).

(d)2 P. Now proceed similarly to Exercise 1 to determine the channel capacity of the erasure
channel.

Solution

Now, we need to maximize the mutual information. To this end, we denote P[X =
1] = τ and have

C(TE) = max
pX

{H(Y ) −H(Y |X)}

= max
0≤τ≤1

H2(p) + (1 − p)H2(τ) −H2(p)

= max
0≤τ≤1

(1 − p)H2(τ)

= 1 − p ,

where the maximum of H2(τ) is achieved for τ = 1/2. (This is e.g. a consequence
of Exercise 1 (a) on Sheet 5.)

(e)1 P. Compare the channel capacities of TBSC and TE. Give an approximate numerical value p0
such that for p < p0 you would rather communicate via TE than via TBSC.

Solution

Using the results derived above, we have

C(TE) − C(TBSC) = H2(p) − p .

So, we should prefer TE over TBSC whenever H2(p) > p. This is the case for
p < p0 ≈ 0.772908.



(f)1 P. The erasure channel TE is a classical communication channel. Write down a quantum
channel that generalizes it (in the sense that it acts similarly on computational basis
states.)

Solution

The qubit-to-qutrit channel

ρ 7→ p|e⟩⟨e| + (1 − p)ρ

from C2 → C3 is as desired, where we picked an orthonormal basis for C3 as
{|0⟩, |1⟩, |e⟩} (in essence simply relabling |2⟩ as |e⟩).

Classical capacity of a quantum channel

In the lecture, we saw two alternative characterizations of the classical channel capacity of a
quantum channel E , which is given by the Holevo-information χ(E). We want to establish the
equivalence of these expressions.

To this end, recall the definition of the quantum mutual information of a bi-partite quantum
system in a state ρAB

I(A : B)ρAB
:= S(ρA) + S(ρB) − S(ρAB). (3)

The Holevo information of channel can be defined using the following scheme: Alice encodes
the information of a classical random variable X taking values in X with probability distri-
bution pX into a quantum state using a set of states {ρx}x∈X . To keep track of the classical
random variable but formulating everything quantum mechanically, we think of Alice keeping
a “notebook” of the information she encoded which we can model as storing that information
in another register N using an orthogonal basis {|x⟩}x∈X . From this “notebook” register N ,
the classical information of X can be completely recovered. Altogether, Alice prepares the
bi-partite state

ρNA =
∑
x

pX(x)|x⟩⟨x|N ⊗ ρxA. (4)

Then, the state in system A is sent to Bob using the channel E . Thus, we end up with a final
state shared between Alice’s notebook and Bob

ρNB =
∑
x

pX(x)|x⟩⟨x|N ⊗ E [ρxA]B. (5)

We can now ask for the mutual information between the variable X encoded in N and Bob’s
output of the channel. Analogously to the classical result, maximizing the mutual information
over all possible input variables X and encodings yields the capacity of the quantum channel
to transmit classical information, i.e.

χ(E) = max
(X,pX ,{ρx})

I(N : B)ρNB . (6)

Exercise 3.4 P. Show that the Holevo information can be equivalently computed as the largest
difference between the entropy of the expected output state and the expected entropy of the
output state:

χ(E) = max
(X,pX ,{ρx})

{
S

(
E

[∑
x

pX(x)ρx

])
−
∑
x

pX(x)S (E [ρx])

}
. (7)

Hint: The result of Bonus Exercise 1 of sheet 5 will be useful.



Solution

Let’s simply call σxB := E [ρxA]B. The marginal states of ρNB are

ρN = TrB[ρNB] =
∑
x

pX(x)|x⟩⟨x|, (8)

ρB = TrN [ρNB] =
∑
x

pX(x)σxB. (9)

For a classical-quantum state, we have seen on Sheet 5 that

S(ρNB) = H(X) +
∑
x

pX(x)S(σxB). (10)

Thus, the mutual information is

I(N : B)ρNB = S(ρN ) + S(ρB) − S(ρNB) (11)

= H(X) + S

(∑
x

pX(x)σxB

)
−H(X) −

∑
x

pX(x)S(σxB), (12)

from which the claim follows.

Let’s take another perspective on the Holevo information. The quantum relative entropy
between two states ρ and σ is defined as

D(ρ∥σ) =

{
Tr[ρ(log ρ− log σ)] if supp(ρ) ⊆ supp(σ)

+∞ else
.

Here, the support of a Hermitian operator is the orthogonal complement of its kernel or, equiv-
alently, the span of the eigenstates associated its non-zero eigenvalues. The quantum relative
entropy plays a crucial role in quantum information theory and is related to many quantum
entropic quantities. Here, we prove one such relationship, namely between the quantum relative
entropy and the Holevo information.

Bonus Exercise 1.4 P. Prove the following equality:

χ(E) = max
(X,pX ,{ρx})

EX

[
D
(
E [ρX ] ∥EX [E [ρX ]]

)]
.

Hint: You first have to show that the relative entropies involved are not infinite.



Solution

By Exercise 3, it suffices to show that for any (X, pX , {ρx}) we have

S

(
E

[∑
x

pX(x)ρx

])
−
∑
x

pX(x)S (E [ρx]) = EX [D(E [ρX ]∥EX [E [ρX ]])] .

First, we show that supp (E [ρx]) ⊆ supp
(
EX [E [ρX ]]

)
holds for all x, so we don’t

have to worry about the relative entropy being infinite. This can be seen as follows:
Suppose |ψ⟩ is in the kernel of EX [E [ρX ]], i.e., EX [E [ρX ]]|ψ⟩ = 0. Then in par-
ticular 0 = ⟨ψ|EX [E [ρX ]]|ψ⟩ = EX [⟨ψ|E [ρX ]|ψ⟩]. As E [ρx] is PSD for all x and thus
⟨ψ|E [ρx]|ψ⟩ ≥ 0 for all x, this average being 0 implies that 0 = ⟨ψ|E [ρx]|ψ⟩ = ∥

√
E [ρx]|ψ⟩∥2

for all x. Thus, for all x, |ψ⟩ is in the kernel of
√
E [ρx], which equals the kernel of

E [ρx]. So, we have shown that ker (E [ρx]) ⊇ ker
(
EX [E [ρX ]]

)
holds for all x. Taking or-

thogonal complements, we indeed get that supp (E [ρx]) ⊆ supp
(
EX [E [ρX ]]

)
holds for all x.

Now, we don’t have to worry about the quantum relative entropy being infinite and we
can do the actual computation. We start from the right hand side. :

EX [D(E [ρX ]∥EX [E [ρX ]])] = EX

[
Tr
[
E [ρX ] log

(
E [ρX ]

)]
− Tr

[
E [ρX ] log

(
EX [E [ρX ]]

)]]
= EX

[
−S

(
E [ρX ]

)]
− Tr

[
EX [E [ρX ]] log

(
EX [E [ρX ]]

)]
= −EX

[
S
(
E [ρX ]

)]
+ S

(
EX [E [ρX ]]

)
= S

(
E

[∑
x

pX(x)ρx

])
−
∑
x

pX(x)S (E [ρx]) .

The last step used that, because E is linear, we have EX [E [ρX ]] = E [EX [ρX ]]. That’s
exactly what we wanted to show.

Recap

In this exercise, we will also learn to use the three important representations of channels that
we have encountered so far – Choi-Jamio lkowski, Kraus, and Stinespring – in concrete examples
rather than just abstractly. Recall the qubit noise channels

Fϵ(ρ) := ϵXρX + (1 − ϵ)ρ

Dϵ(ρ) := ϵTr[ρ]
I
2

+ (1 − ϵ)ρ

where ϵ ∈ [0, 1], from the last sheet.

Exercise 4.6 P. We derive different representations for our two example channels (recall Exercise
4 in Exercise sheet 5).

(a)3 P. Give the Choi-Jamio lkowski state, a Kraus representation, and a Stinespring representa-
tion for F1. Explicitly write down the environment system Hilbert space and the Stine-
spring dilation unitary.

Hint: For the Stinespring dilation, don’t just shut up and calculate. Stop and consider:
What is the smallest possible additional Hilbert space which you need to make the evolution
unitary?



Solution

From our solution to Exercise 4 (a) in Exercise sheet 5, we already know the Choi
state:

J(F1) =
1

2

∑
i,j

|i⊕ 1, i⟩⟨j ⊕ 1, j| =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

Next, simply plugging ϵ = 1 into the definition of Fϵ gives us a Kraus representation
F1(A) = XAX with the single (unitary) Kraus operator X. Finally, as this Kraus
operator is unitary, F1 is a unitary channel, so F1(A) = XAX is already a Stine-
spring representation with trivial auxiliary/environment system (i.e., HE = C) and
with Stinespring unitary X.

(b)3 P. Give the Choi-Jamio lkowski state, a Kraus representation, and a Stinespring represen-
tation for D1. Explicitly write down the environment Hilbert space and the Stinespring
dilation isometry (no need to complete it to a unitary).



Solution

Now, we consider D1. Again, we already determined the Choi state in Exercise 4
(a) in Exercise sheet 5, namely

J(D1) =
I⊗ I
d2

=
I⊗ I

4
.

Next, we show that {1
2I,

1
2X,

1
2Y,

1
2Z} is a set of Kraus operators for D1. To see this,

notice that the Bell states |Ω⟩, (X ⊗ I)|Ω⟩, (Y ⊗ I)|Ω⟩, (Z ⊗ I)|Ω⟩ form an eigenbasis
for J(D1) (simply because they form an ONB), namely we can write

J(D1) =
1

4

(
|Ω⟩⟨Ω| + (X ⊗ I)|Ω⟩⟨Ω|(X ⊗ I)†

+ (Y ⊗ I)|Ω⟩⟨Ω|(Y ⊗ I)† + (Z ⊗ I)|Ω⟩⟨Ω|(Z ⊗ I)†
)
.

From this, since channels and Choi states are isormorphic, we can directly read off
the claimed Kraus operators.
An alternative set of Kraus operators for D1 is { 1√

d
|i⟩⟨j|}i,j=0,1 is a set of Kraus

operators for D1. To prove this, first notice that
∑

i,j(|i⟩⟨j|)†|i⟩⟨j| = dI, so we indeed
have a valid set of Kraus operators. To show that it actually describes our channel,
we compute

∑
i,j

1√
d
|i⟩⟨j|ρ(

1√
d
|i⟩⟨j|)† =

1

d

∑
j

⟨j|ρ|j⟩

∑
i

|i⟩⟨i| = Tr[ρ]
I
d

= D1(ρ) .

We can now construct a Stinespring dilation for D1 from our Kraus representation
(we’ll take the one in terms of Pauli matrices). The canonical way of getting a
Stinespring isometry U from a set of Kraus operators {Ki}i is via U(|·⟩ ⊗ |0⟩) =∑

iKi|·⟩ ⊗ |i⟩. That is, our environment Hilbert space is HE = C4 and the action
of U is described by

U(|0⟩ ⊗ |0⟩) =
1

2
(I|0⟩ ⊗ |0⟩ +X|0⟩ ⊗ |1⟩ + Y |0⟩ ⊗ |2⟩ + Z|0⟩ ⊗ |3⟩)

=
1

2
(|0, 0⟩ + |1, 1⟩ + i|1, 2⟩ + |0, 3⟩) ≡ |ψ0⟩

U(|1⟩ ⊗ |0⟩) =
1

2
(|1, 0⟩ + |0, 1⟩ − i|0, 2⟩ − |1, 3⟩) ≡ |ψ1⟩ .

The action of U on |ψ⟩ ⊗ |0⟩ is then described by

U(|ψ⟩ ⊗ |0⟩) = ⟨ψ|0⟩|ψ0⟩ + ⟨ψ|1⟩|ψ1⟩ .

Therefore, after spectral decomposing a general state ρ, we get

U(ρ⊗ |0⟩⟨0|)U †

= ⟨0|ρ|0⟩|ψ0⟩⟨ψ0| + ⟨0|ρ|1⟩|ψ0⟩⟨ψ1| + ⟨1|ρ|0⟩|ψ1⟩⟨ψ0| + ⟨1|ρ|1⟩|ψ1⟩⟨ψ1| .

To double-check that we did the computation correctly, we can check partial traces:

TrE [|ψ0⟩⟨ψ0|] =
1

4
(|0⟩⟨0| + |1⟩⟨1| + |1⟩⟨1| + |0⟩⟨0|) =

I
2

= . . . = TrE [|ψ1⟩⟨ψ1|] ,

TrE [|ψ0⟩⟨ψ1|] =
1

4
(|0⟩⟨1| + |1⟩⟨0| − |1⟩⟨0| − |0⟩⟨1|) = 0 = . . . = TrE [|ψ1⟩⟨ψ0|] ,

where the . . . hide similar computations. So, we get

TrE [U(ρ⊗ |0⟩⟨0|)U †] = ⟨0|ρ|0⟩ I
2

+ ⟨1|ρ|1⟩ I
2

= Tr[ρ]
I
2

= D1(ρ) .



Exercise 5.3 P. Explain how to extend your results achieved in Exercise 4 from ϵ = 1 to arbitrary
ϵ ∈ [0, 1]. Hint: Don’t start from scratch. Rather, determine the respective representations for
the part of the channel that you are still missing, then appropriately combine that with your
results from Exercise 4.

Solution

Linearity of the Choi-Jamio lkowski isomorphism can be used to determine the Choi states
for general ϵ ∈ [0, 1] now that we know the Choi states for ϵ ∈ {0, 1}. Concretely, this
looks as follows:

J(Fϵ) =
ϵ

2

∑
i,j

|i⊕ 1, i⟩⟨j ⊕ 1, j| + (1 − ϵ)|Ω⟩⟨Ω| ,

J(Dϵ) =
ϵ

d2
I⊗ I + (1 − ϵ)|Ω⟩⟨Ω| .

For the Kraus representation, we first observe that the identity channel A 7→ A has a
Kraus representation with the single Kraus operator I. Now, as our channels of interest
are convex combinations of channels with known Kraus operators, we can easily con-
struct their Kraus operators by combining the (suitably weighted) Kraus operators of the
constituents:

• Fϵ has Kraus operators {
√
ϵX,

√
1 − ϵI} .

• Dϵ has Kraus operators {
√

1 − ϵI,
√
ϵ
2 I,

√
ϵ
2 X,

√
ϵ
2 Y,

√
ϵ
2 Z}. If we summarize the two

Kraus operator proportional to the identity into a single one, we get the set of Kraus

operators {
√(√

1 − ϵ
)2

+
(√

ϵ
2

)2
I,

√
ϵ
2 X,

√
ϵ
2 Y,

√
ϵ
2 Z} = {

√
1 − 3ϵ

4 I,
√
ϵ
2 X,

√
ϵ
2 Y,

√
ϵ
2 Z}.

For the Stinespring representation, we can now use the same recipe as before (U(|·⟩⊗|0⟩) =∑
iKi|·⟩ ⊗ |i⟩) to get the Stinespring isometry for general ϵ from the Kraus operator for

general ϵ that we just derived.

Total Points: 26 (+4)


