Exercise Sheet 9: Quantum circuits for quantum computing

The Quantum Fourier Transform

9 P. Exercise 1. At the heart of many modern quantum algorithms lies the phase estimation algorithm. For this reason, it is crucial in the field of quantum computation to be familiar with phase estimation. It relies on an efficient implementation of the quantum Fourier transform, to which we devote this excercise.

In classical numerics the discrete Fourier transform (DFT) is defined as the linear map $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}, x \mapsto y$ with $y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \exp \left\{\frac{2 \pi i j k}{N}\right\}$. The quantum Fourier transform is analogously defined as the unitary operation $\mathcal{F}: \mathbb{C}^{2^{n}} \rightarrow \mathbb{C}^{2^{n}},|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \exp \left\{\frac{2 \pi i j k}{2^{n}}\right\}|k\rangle$. (Note the identification $N=2^{n}$.)

1 P . (a) What is the computational complexity of the fastest classical algorithm for the DFT? Look it up online.

The quantum Fourier transform can be implemented using the Hadamard gate H,

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right)
$$

the controlled phase gate that applies

$$
R_{k}=\left(\begin{array}{cc}
1 & 0 \tag{2}\\
0 & \mathrm{e}^{2 \pi i / 2^{k}}
\end{array}\right)
$$

on a target qubit if a control qubit is in the state $|1\rangle$ (and the identity if the control is in $|0\rangle$), and CNOT (aka controlled- X) gates. Note that in circuit diagrams controlled gates are conventionally represented by boxes on the target wires linked to dots on the control wires.
4 P. (b) Show that the following circuit implements the three-qubit quantum Fourier transform:

Hint: First argue that you can restrict your attention to computational basis states as inputs. To then show that the output state of the circuit on a computational basis state $|x y z\rangle$ coincides with $\mathcal{F}|x y z\rangle$, it will be helpful to use the binary representations of the integers involved. Our convention here is $k=2^{n-1} k_{n-1}+\ldots+2 k_{1}+k_{0}$.
2 P. (c) In (b), we fixed $n=3$. Describe how to generalize the circuit given there to obtain a circuit for implementing the n-qubit quantum Fourier transform for a general n.
2 P. (d) Based on (c), give an upper bound on the quantum circuit complexity of the n-qubit quantum Fourier transform. How does it compare to the classical DFT algorithm from (a)?

Hint: Here, the quantum circuit complexity is defined as the smallest number of 2-qubit gates sufficient to implement a desired (unitary) operation. The gates do not necessarily have to act on neighbouring qubits.

We note that the quantum Fourier transform can in fact be approximately implemented with only $\mathcal{O}(n \log n)$ gates ${ }^{11}$.

An Explicit Universal Gate Set

The aim of this exercise is to show that the gate set $\{C N O T, H, T\}$ is universal, i.e. we can approximate any unitary gate to an arbitrary accuracy just by using these three gates in a quantum circuit. Here, we only prove that we can use H and T to generate any single-qubit gate. The approximability of general n-qubit gates then follows from the known fact that CNOT along with arbitrary one qubit gates is universal.
Recall that the T gate is given by $\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right)$.
9 P. Exercise 2. We will start by showing that any single-qubit unitary U can be written as

$$
\begin{equation*}
U=e^{i \alpha} R_{z}(\beta) R_{y}(\gamma) R_{z}(\delta), \tag{3}
\end{equation*}
$$

where $R_{z}(\theta)=e^{-i \frac{\theta}{2} Z}=\left(\begin{array}{cc}e^{-i \theta / 2} & 0 \\ 0 & e^{i \theta / 2}\end{array}\right), R_{y}(\theta)=e^{-i \frac{\theta}{2} Y}=\left(\begin{array}{cc}\cos \theta / 2 & -\sin \theta / 2 \\ \sin \theta / 2 & \cos \theta / 2\end{array}\right)$.
3 P. (a) Let $U \in U(2)$ be a one-qubit unitary. Show that there exist real numbers x, y, z, t such that

$$
U=\left(\begin{array}{cc}
e^{i(x-y-t)} \cos z & -e^{i(x-y+t)} \sin z \tag{4}\\
e^{i(x+y-t)} \sin z & e^{i(x+y+t)} \cos z
\end{array}\right) .
$$

Hint: To get started, think about which conditions for the rows and columns of U are equivalent to U being unitary.

1 P. (b) Show that any one-qubit unitary U can be expressed as

$$
\begin{equation*}
U=e^{i \alpha} R_{z}(\beta) R_{y}(\gamma) R_{z}(\delta) \tag{5}
\end{equation*}
$$

for some real numbers $\alpha, \beta, \gamma, \delta$.
It is possible, but tedious, to show that we can find an analogous decomposition using any pair of linearly independent axes \vec{n} and \vec{m}. You do not have to prove this here.

We will now see how to approximate an arbitrary single-qubit rotation around two linearly independent axes by using the Hadamard gate and the T gate. A single-qubit rotation with rotation axis \vec{n} can be written as $R_{\vec{n}}(\theta) \equiv \exp (-i \theta \vec{n} \cdot \vec{\sigma} / 2)=\cos (\theta / 2) \mathbb{I}-i \sin (\theta / 2)\left(n_{x} X+\right.$ $n_{y} Y+n_{z} Z$), and any single-qubit gate can be written as a rotation around some axis.

3 P. (c) Calculate THTH, and find suitable θ and $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)$ for it.
Hint: Use that $T=e^{-i \pi / 8 Z}$ and $H Z H=X$. First show $H T H=e^{-i \pi / 8 X}$.
2 P . (d) The rotation angle $\frac{\theta}{2 \pi}$ in (c) is known to be an irrational number. Use this to explain that you can approximate an arbitrary rotation about the axis \vec{n} in the previous point by some product of the operators H and T.

Let us define another rotation about an axis \vec{m} as $R_{\vec{m}}(\theta)=H R_{\vec{n}}(\theta) H$. Because H is a rotation about $X+Z$ axis, the axis \vec{m} is not equal to \vec{n}. Then from the comment in (b), we can generate an arbitrary single-qubit unitary by $R_{\vec{m}}$ and $R_{\vec{n}}$, and we can get the latter via (d).

[^0]
(No-)Programming Quantum Computers

6 P. Exercise 3. In this exercise, you will prove the so-called Quantum No-Programming Theorem. Consider a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{\text {sys }} \otimes \mathcal{H}_{\text {pro }}$ given as a tensor product of a system Hilbert space and a program Hilbert space. A unitary $U \in \mathcal{U}(\mathcal{H})$ is an (exact) programmable quantum processor for a set of unitaries $\left\{V_{i}\right\}_{i=1}^{n} \subseteq \mathcal{U}\left(\mathcal{H}_{\text {sys }}\right)$ if for every $1 \leq i \leq n$ there exists a pure quantum state $\left|\pi_{V_{i}}\right\rangle \in \mathcal{H}$ pro such that

$$
\begin{equation*}
U\left(|\psi\rangle \otimes\left|\pi_{V_{i}}\right\rangle\right)=\left(V_{i}|\psi\rangle\right) \otimes\left|\pi_{V_{i}}^{\prime}\right\rangle \forall|\psi\rangle \in \mathcal{H}_{\text {sys }}, \tag{6}
\end{equation*}
$$

with some state $\left|\pi_{V_{i}}^{\prime}\right\rangle \in \mathcal{H}_{\text {pro }}$.
2 P. (a) In Eq. (6), we implicitly assume that $\left|\pi_{V_{i}}^{\prime}\right\rangle$ is independent of the input state $|\psi\rangle$ on the system register. Show that this can indeed be assumed without loss of generality.
Hint: Start from a version of Eq. (6) with $|\psi\rangle$-dependent $\left|\pi_{V_{i}}^{\prime}(\psi)\right\rangle$ and take inner products of two such equations for different input states $|\psi\rangle$ and $|\phi\rangle$.

2 P. (b) Fix some $1 \leq i \neq j \leq n$. Suppose $V_{i} \neq e^{i \varphi} V_{j}$ holds for all $\varphi \in[0,2 \pi)$. Show that $\left\langle\pi_{V_{i}} \mid \pi_{V_{j}}\right\rangle=0$.
Hint: Start from Eq. (6) and take inner products of two such equations for V_{i} and V_{j}. You will want to exclude the case $\left\langle\pi_{V_{i}}^{\prime} \mid \pi_{V_{j}}^{\prime}\right\rangle \neq 0$ with a proof by contradiction.

1 P. (c) Suppose that $V_{i} \neq e^{i \varphi} V_{j}$ holds for all $\varphi \in[0,2 \pi)$ and for all $1 \leq i \neq j \leq n$. Conclude from (b) that any any exact programmable quantum simulator for $\left\{V_{i}\right\}_{i=1}^{n}$ needs a program space $\mathcal{H}_{\text {pro }}$ of dimension $\operatorname{dim}\left(\mathcal{H}_{\text {pro }}\right) \geq n$.

1 P. (d) Conclude that there is no universal (exact) programmable quantum simulator with finitedimensional program space. That is, if $\operatorname{dim}\left(\mathcal{H}_{\text {sys }}\right)>1$, then any (exact) programmable quantum simulator for $\mathcal{U}\left(\mathcal{H}_{\text {sys }}\right)$ requires a program space $\mathcal{H}_{\text {pro }}$ of $\operatorname{dimension} \operatorname{dim}\left(\mathcal{H}_{\text {pro }}\right)=$ ∞.

Recap

Now that the lecture has started to shift from sheer quantum information towards quantum computation, let us look back into how mixed states and non-unitary channels are related to pure states and unitary operations on a larger Hilbert space. In these exercises we again present you with a quantum state or channel acting on a given Hilbert space. Then, we ask you to enlarge the Hilbert space in a way that turns mixed into pure, and non-unitary into unitary. Although we have already formalized these concepts with theorems and definitions, our approach here is more direct: can you come up with direct ways to solve the following exercises, without invoking fancy math?

Let $\mathcal{H}_{A}, \mathcal{H}_{B}$ be two d-dimensional Hilbert spaces, with their computational bases $\{|0\rangle, \ldots, \mid d-$ 1)\}. Now, we look back to Section 3.1.2 All teleportation schemes in the lecture notes, and recover the concept of an othonormal basis of unitaries of a d-dimensional Hilbert space:

$$
\left\{U_{j} \mid j \in\left\{1, \ldots, d^{2}\right\}\right\} .
$$

Let $|\omega\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ be a maximally entangled state $|\omega\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}|i i\rangle$. Then, as we saw in the context of general teleportation schemes, we can use the ONB of unitaries together with a maximally entangled state to reach an orthonormal basis of maximally entangled states, \mathcal{B} :

$$
\mathcal{B}:=\left\{\left(\mathbb{I} \otimes U_{j}\right)|\omega\rangle \mid j \in\left\{1, \ldots, d^{2}\right\}\right\} .
$$

Just as a reminder, this ONB of maximally entangled states \mathcal{B} spans exactly the same space as the computational basis of $\mathcal{H}_{A} \otimes \mathcal{H}_{B}:\{|i j\rangle \mid i, j \in\{0, \ldots, d-1\}\}$. The only difference is that the basis elements themselves are maximally entangled in one case versus minimally entangled (product) in the other case.

We use $\left|\psi_{j}\right\rangle$ to denote the elements of the maximally entangled ONB: $\mathcal{B}=\left\{\left|\psi_{j}\right\rangle \mid j \in\right.$ $\left.\left\{1, \ldots, d^{2}\right\}\right\}$. Consider $p=\left(p_{j}\right)_{j=1}^{d^{2}}$ a discrete probability distribution: $p_{j} \in[0,1], \sum_{j} p_{j}=1$.
10 P. Bonus Exercise 1. For any given p as defined above, consider the quantum state

$$
\rho_{p}:=\sum_{j=1}^{d^{2}} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| .
$$

1 P. (a) Find a p for which ρ_{p} is a pure, entangled state. Compute its entanglement entropy explicitly.
Hint: Pick the simplest p you can, so that you can prove each property in a few lines.
1 P. (b) Are there values of p for which ρ_{p} is again pure and entangled, but with a different entanglement entropy than the one you found in Exercise (a)?

3 P. (c) Find a p for which ρ_{p} is a mixed, entangled state. Compute the purity, and prove that it is an entangled state using the PPT criterium. For this question, assume that the dimension of the Hilbert space is $d=2$, so we look at pairs of qubits, and you can choose a specific orthonormal basis of unitaries.
Hint: Remember the Bell states

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & =\left|\Phi^{00}\right\rangle \\
\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=(\mathbb{I} \otimes Z)\left|\Phi^{+}\right\rangle & =\left|\Phi^{01}\right\rangle \\
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=(\mathbb{I} \otimes X)\left|\Phi^{+}\right\rangle & =\left|\Phi^{10}\right\rangle \\
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=(\mathbb{I} \otimes X Z)\left|\Phi^{+}\right\rangle & =\left|\Phi^{11}\right\rangle .
\end{array}
$$

Use the fact that $\left|\Phi^{x y}\right\rangle\left\langle\left.\Phi^{x y}\right|^{\Gamma}=\frac{1}{2} \mathbb{I}-\mid \Phi^{\bar{x} \bar{y}}\right\rangle\left\langle\Phi^{\bar{x} \bar{y}}\right|$ where \bar{x} is the negation of the bit x. Here ρ^{Γ} is the partial transpose and it fulfills $\left(\rho_{1}+\rho_{2}\right)^{\Gamma}=\rho_{1}^{\Gamma}+\rho_{2}^{\Gamma}$.

1 P. (d) Find a p for which ρ_{p} is a mixed, separable state. Compute the purity and give the expression as a convex combination of product states explicitly.
Hint: Pick the simplest p you can, so that the computation and the proof do not take more than a few lines.

3 P. (e) Let p be such that ρ_{p} is not pure. Give a third Hilbert space \mathcal{H}_{C} and a pure quantum state $\tilde{\rho}_{p}=\left|\tilde{\Psi}_{p}\right\rangle\left\langle\tilde{\Psi}_{p}\right|$ living in $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$ such that

$$
\operatorname{Tr}_{C}\left[\left|\tilde{\Psi}_{p}\right\rangle\left\langle\tilde{\Psi}_{p}\right|\right]=\rho_{p}
$$

For which dimension of \mathcal{H}_{C} can we be sure that such a pure state exists?
Hint: Remember the Schmidt decomposition of a pure state $|\psi\rangle_{D E}=\sum_{j} \sqrt{\lambda_{j}}\left|b_{j}\right\rangle_{D} \otimes$ $\left|\tilde{b}_{j}\right\rangle_{E}$ with $\sqrt{\lambda_{j}}$ the singular values and $\left\{\left|b_{j}\right\rangle\right\}_{j}$ and $\left\{\left|\tilde{b}_{j}\right\rangle\right\}_{j}$ some ONBs for \mathcal{H}_{D} and \mathcal{H}_{E} respectively. What is the reduced state $\operatorname{Tr}_{E}[|\psi\rangle\langle\psi|]$?
1 P. (f) Compute the entanglement entropy of $\tilde{\rho}_{p}$ from (e) w.r.t. the the bipartition $A B \mid C$.

[^0]: ${ }^{1}$ Cleve, Richard, and John Watrous. "Fast parallel circuits for the quantum Fourier transform." Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE, 2000.

