
Exercise Sheet 10: Bernstein-Vazirani and Grover

The Bernstein-Vazirani algorithm

Here, we will work through a simple quantum algorithm that achieves something that is classi-
cally impossible: It learns an unknown n-bit string using only a single “quantum query” to the
string.

Exercise 1.7 P. The Bernstein-Vazirani problem is as follows: You are given access to a unitary Us
that acts on the computational basis as Us|x, b⟩ = |x, b⊕ s · x⟩, x ∈ {0, 1}n, b ∈ {0, 1}, where ⊕
denotes addition modulo 2, · denotes the inner product of two n-bit strings (again with addition
modulo 2), and where s ∈ {0, 1}n is an unknown n-bit string. Identify s using as few queries to
Us as possible.

(a)2 P. Show that Us can simulate the unitary Ũs that acts as on the computational basis as

Ũs|x⟩ = (−1)s·x|x⟩. That is, show that a single use of Us suffices to implement a single
use of Ũs.

Hint: What happens if you apply Us to |x⟩ ⊗ |−⟩?

(b)3 P. Recall the Hadamard gate H from Exercise Sheet 8. Show that H⊗nŨsH
⊗n|0n⟩ = |s⟩.

Hint: Remember that H⊗n|x⟩ = 1√
2n

∑
t∈{0,1}n(−1)t·x|t⟩, where the sums in the inner

products t · x are modulo 2. Also, in your proof, you may want to use the identity
1
2n

∑
x∈{0,1}n(−1)y·x = δy,0n.

(c)2 P. Using (a) and (b), describe a protocol that solves the Bernstein-Vazirani problem with
a single query to Us. How many single-qubit quantum gates are sufficient to implement
your protocol assuming all qubits start in |0⟩ (ignoring Us, because we imagine somebody
else is implementing that for you)?

In the following bonus exercise, you can convince yourself of the fact that any classical
procedure for solving (the classical analog of) the Bernstein-Vazirani problem needs to make
linearly-in-n many queries to the unknown bit string.

Bonus Exercise 1.3 P. Consider the following classical version of the Bernstein-Vazirani problem:
You are given query access to the function {0, 1}n ∋ x 7→ s · x for some unknown n-bit string
s ∈ {0, 1}n. Here, a single query consists of you choosing an input x ∈ {0, 1}n and receiving the
output s · x ∈ {0, 1}. Identify s with as few queries to the function as possible.

In this exercise, we show that any classical algorithm that solves this problem with success
probability ≥ 2/3 has to make at least n many queries. This is to be contrasted with the
quantum solution from Exercise 1, which achieves success probability 1 with a single quantum
query.

(a)2 P. Suppose the first q queries of the algorithm lead to data (x1, s ·x1), . . . , (xq, s ·xq). Further
assume that the largest linearly independent subset of {x1, . . . , xq} has size ℓ ≤ q. Argue
that the set {t ∈ {0, 1}n | t · xi = s · xi ∀1 ≤ i ≤ q} of all candidate strings that are
consistent with the data has size 2n−ℓ.

(b)1 P. Conclude from (a) that any classical algorithm that solves our problem of interest with
success probability ≥ 2/3 has to make at least n many queries.

Clearly, n classical queries, even deterministic ones, also suffice to solve the classical analogue
of Bernstein-Vazirani: Simply query e1, . . . , en for the unit basis vectors to learn the n entries
of the unknown string s.



Grover, one step further

Exercise 2.10 P. In this exercise we want to expand on what we learned in the lecture about Grover’s
algorithm, and extend the results to the case of multiple marked elements. Remember, Grover’s
algorithm allows to find the one marked element in a list of N elements in O(

√
N) queries. Now,

we want to see what happens if there are M marked elements.
Let us call S the set of marked elements, so S ⊂ {0, 1}n, with |S| = M and 1 < M ≪ N .

With that, let us first name the two main states of the derivation

uniform superposition |Ψ⟩ = 1√
N

N−1∑
x=0

|x⟩

marked superposition |S⟩ = 1√
M

∑
x∈S

|x⟩ .

Then, let us redefine the database operator

US = I− 2ΠS with ΠS =
∑
x∈S

|x⟩⟨x| .

Note that here, in contrast to the M = 1 case, US ̸= I − 2|S⟩⟨S|. Just as in the M = 1 case
however, the algorithm consists of initializing the state in |Ψ⟩ and then repeatedly applying the
Grover operator G = UΨUS , where UΨ = 2|Ψ⟩⟨Ψ| − I, until the state is close to the target state
|S⟩, and then measuring that.

(a)2 P. First, like in the case of only one marked element, we can restrict our attention to a two-
dimensional subspace of states in which the algorithm acts. For that, show that, given
the initial |Ψ⟩ state, the repeated application of the Grover operator keeps the state in
span{|Ψ⟩, |S⟩}.
Hint: Look at the effect of US and UΨ on both |Ψ⟩ and |S⟩.

(b)2 P. Show that in that subspace, UΨ acts as a reflection with respect to |Ψ⟩ and US as an
inversion with respect to |S⟩ respectively. With reflection and inversion, we mean

reflection Rψ(α|ψ⟩+ β|ψ⊥⟩) = α|ψ⟩ − β|ψ⊥⟩
inversion Iψ(α|ψ⟩+ β|ψ⊥⟩) = −α|ψ⟩+ β|ψ⊥⟩ .

Hint: Decompose the state of interest into a basis of the space span{|Ψ⟩, |S⟩}, choosing
the basis carefuly.

(c)2 P. Show on the following sketches the effect of US on the state |ϕ⟩ (second sketch) and then
the effect of UΨ on the resulting state (third sketch). Give the angle between UΨUS |ϕ⟩
and |ϕ⟩ in terms of θ and φ.



(d)1 P. Give the value of the angle φ in the previous question in terms of M and N

(e)2 P. Just as in the case of a single marked element, the operator G rotates the state by a
certain angle, such that

θ(k) = θ(k−1) − 2φ .

We now want to find the number of steps necessary for the k-th iteration |ϕk⟩ to be close
to |S⟩. Identify such a k.

Hint: Remember that the algorithm is initialized in |Ψ⟩. You can also use the fact that
arcsinx ≈ x for small x to obtain the scaling mentionned in the script.

(f)1 P. After the adequate number of steps one reaches |ϕk⟩ ≈ |S⟩. The last thing to do is to
measure in the computational basis. Will a single measurement allow to know all marked
elements? Motivate your answer.

Recap

This exercise builds directly on top of the bonus exercise in Sheet 9. This time, instead of
talking about states, we want to shift our attention towards channels. For this exercise, we
adopt the definitions from the recap exercise of the previous sheet:

• Let HA,HB be two d-dimensional Hilbert spaces.

• TheOthonormal basis of unitaries of a d-dimensional Hilbert space is {Uj | j ∈ {1, . . . , d2}}.

• Let |ω⟩ ∈ HA ⊗HB be a maximally entangled state |ω⟩ = 1√
d

∑d−1
i=0 |ii⟩.

• Let B be an orthonormal basis of maximally entangled states: B := {|ψj⟩ = (I⊗Uj)|ω⟩ | j ∈
{1, . . . , d2}}.

• Let p = (pj)
d2
j=1 be a discrete probability distribution: pj ∈ [0, 1],

∑
j pj = 1.

Bonus Exercise 2.11 P. Consider the following quantum channel Np acting on HA ⊗HB:

Np[ρ] =

d2∑
j=1

pj(I⊗ Uj)ρ(I⊗ Uj)
†. (1)

And consider again a maximally entangled quantum state Ω = |ω⟩⟨ω|.



(a)1 P. Find a p for which Np is a unitary channel.

Hint: Pick the simplest p you can, so that you can prove the desired property in a few
lines.

(b)1 P. Consider a p which is obtained from first sampling d numbers uniformly at random from
[0, 1], and then normalizing appropriately. Do you expect Np to be unitary?

(c)1 P. Compute Np[Ω]. Have we seen it before (e.g., on the last sheet)?

(d)3 P. Given a sufficiently large third Hilbert space HC give an isometry Vp : HA ⊗ HB →
HA ⊗HB ⊗HC such that

TrC(VpρABV
†
p ) = Np[ρAB].

Hint: For our purposes, an isometry is a matrix Vp such that V †
p Vp = IA ⊗ IB. Careful,

in contrast with unitaries where U †U = UU †, it is not true here.

(e)1 P. Write down a set of Kraus operators for Np. Prove that the set you wrote down is actually
a valid set of Kraus operators and that it represents Np.

(f)3 P. The unitarity of a channel can be defined as the purity of its corresponding Choi state.
Compute the unitarity of Np, for an arbitrary given p. Compute the Choi rank of Np.
Careful! Np as a channel acts on HA ⊗HB. In order to find the Choi state, you need to
consider a maximally entangled state between two copies of HA⊗HB: |ω̃⟩ ∈ (HA⊗HB)

⊗2.
This would be, for example |ω̃⟩ = 1

d

∑d−1
i,j=0|ij⟩ ⊗ |ij⟩. This is slightly different from what

we are used to seeing, so proceed with care, one step at a time.

(g)1 P. Find a channel for which Np[Ω] is the Choi state.

Total Points: 17 (+14)


