
Exercise Sheet 10: Bernstein-Vazirani and Grover

The Bernstein-Vazirani algorithm

Here, we will work through a simple quantum algorithm that achieves something that is classi-
cally impossible: It learns an unknown n-bit string using only a single “quantum query” to the
string.

Exercise 1.7 P. The Bernstein-Vazirani problem is as follows: You are given access to a unitary Us
that acts on the computational basis as Us|x, b⟩ = |x, b⊕ s · x⟩, x ∈ {0, 1}n, b ∈ {0, 1}, where ⊕
denotes addition modulo 2, · denotes the inner product of two n-bit strings (again with addition
modulo 2), and where s ∈ {0, 1}n is an unknown n-bit string. Identify s using as few queries to
Us as possible.

(a)2 P. Show that Us can simulate the unitary Ũs that acts as on the computational basis as

Ũs|x⟩ = (−1)s·x|x⟩. That is, show that a single use of Us suffices to implement a single
use of Ũs.

Hint: What happens if you apply Us to |x⟩ ⊗ |−⟩?

Solution

By direct computation, we see that

Us(|x⟩ ⊗ |−⟩) = 1√
2
(Us|x, 0⟩ − Us|x, 1⟩)

=
1√
2
(|x, f(x)⟩ − |x, 1⊕ f(x)⟩)

= |x⟩ ⊗ 1√
2
(|f(x)⟩ − |1⊕ f(x)⟩)=

{
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩) if f(x) = 0

|x⟩ ⊗ 1√
2
(|1⟩ − |0⟩) if f(x) = 1

= |x⟩ ⊗ (−1)f(x)|−⟩
= (−1)f(x)|x⟩ ⊗ |−⟩ .

Thus, we can simulate a single use of Ũs on input |x⟩ with a single use of Us as
follows: “Attach” a tensor factor |−⟩ (which, if you want to start from |0⟩, you
can get by applying HX), apply Us to the composite system, then trace out the
“attached” subsystem.

(b)3 P. Recall the Hadamard gate H from Exercise Sheet 8. Show that H⊗nŨsH
⊗n|0n⟩ = |s⟩.

Hint: Remember that H⊗n|x⟩ = 1√
2n

∑
t∈{0,1}n(−1)t·x|t⟩, where the sums in the inner

products t · x are modulo 2. Also, in your proof, you may want to use the identity
1
2n
∑

x∈{0,1}n(−1)y·x = δy,0n.



Solution

By definition of the Hadamard gate, the action of H⊗n on the computational basis
is H⊗n|x⟩ = 1√

2n

∑
t∈{0,1}n(−1)t·x|t⟩. In particular, H⊗n|0n⟩ = 1√

2n

∑
x∈{0,1}n |x⟩.

Thus, we get ŨsH
⊗n|0n⟩ = 1√

2n

∑
x∈{0,1}n(−1)s·x|x⟩. It remains to include the last

layer of Hadamard gates:

H⊗nŨsH
⊗n|0n⟩ = H⊗n 1√

2n

∑
x∈{0,1}n

(−1)s·x|x⟩

=
1√
2n

∑
x∈{0,1}n

(−1)s·xH⊗n|x⟩

=
∑

t∈{0,1}n

 1

2n

∑
x∈{0,1}n

(−1)(s⊕t)·x

 |t⟩ .

Now, observe that

1

2n

∑
x∈{0,1}n

(−1)y·x =
n∏
i=1

1

2

∑
xi∈{0,1}

(−1)yixi


=

n∏
i=1

(δyi,0)

= δy,0n .

Plugging this into our computation above, we get

H⊗nŨsH
⊗n|0n⟩ =

∑
t∈{0,1}n

 1

2n

∑
x∈{0,1}n

(−1)(s⊕t)·x

 |t⟩

=
∑

t∈{0,1}n
δs⊕t,0n︸ ︷︷ ︸
δs,t

|t⟩

= |s⟩ .

(c)2 P. Using (a) and (b), describe a protocol that solves the Bernstein-Vazirani problem with
a single query to Us. How many single-qubit quantum gates are sufficient to implement
your protocol assuming all qubits start in |0⟩ (ignoring Us, because we imagine somebody
else is implementing that for you)?

Solution

Start with |0n⟩. First apply H⊗n. Then, via (a), implement Ũs using one query
to Us. Afterwards, apply H⊗n and measure all qubits in the computational basis.
Because of (b), the observed string of outcomes will exactly be s.
Let’s count gates. We immediately see that we have 2n single-qubit Hadamard
gates. Additionally, to get from Us to Ũs, we need one single-qubit gate (HX, as
discussed in (a)) that maps |0⟩ to |−⟩. So, 2n + 1 single-qubit gates are sufficient
overall.

In the following bonus exercise, you can convince yourself of the fact that any classical
procedure for solving (the classical analog of) the Bernstein-Vazirani problem needs to make
linearly-in-n many queries to the unknown bit string.



Bonus Exercise 1.3 P. Consider the following classical version of the Bernstein-Vazirani problem:
You are given query access to the function {0, 1}n ∋ x 7→ s · x for some unknown n-bit string
s ∈ {0, 1}n. Here, a single query consists of you choosing an input x ∈ {0, 1}n and receiving the
output s · x ∈ {0, 1}. Identify s with as few queries to the function as possible.

In this exercise, we show that any classical algorithm that solves this problem with success
probability ≥ 2/3 has to make at least n many queries. This is to be contrasted with the
quantum solution from Exercise 1, which achieves success probability 1 with a single quantum
query.

(a)2 P. Suppose the first q queries of the algorithm lead to data (x1, s ·x1), . . . , (xq, s ·xq). Further
assume that the largest linearly independent subset of {x1, . . . , xq} has size ℓ ≤ q. Argue
that the set {t ∈ {0, 1}n | t · xi = s · xi ∀1 ≤ i ≤ q} of all candidate strings that are
consistent with the data has size 2n−ℓ.

Solution

The dataset imposes q many linear constraints on the unknown string. By assump-
tion, only ℓ of those are linearly independent. So, the set {t ∈ {0, 1}n | t · xi =
s · xi ∀1 ≤ i ≤ q} is an affine subspace of dimension n− ℓ. Thus, as we are over the
field {0, 1}, that set has cardinality 2n−ℓ.

(b)1 P. Conclude from (a) that any classical algorithm that solves our problem of interest with
success probability ≥ 2/3 has to make at least n many queries.

Solution

Suppose the classical algorithm makes m many, possibly randomized, queries. After
those queries, the algorithm holds a dataset (x1, s·x1), . . . , (xm, s·xm). In particular,
the largest linearly independent subset of {x1, . . . , xm} has size at most m. So, by
(a), after those queries, there are still at least 2n−m many candidate strings left.
The best the algorithm can now do is to guess uniformly at random among those,
then its success probability is 2m−n. Requiring this to be ≥ 2/3, we can rearrange
and get m ≥ n − log(3/2). As m has to be an integer and since log(3/2) < 1, this
implies m ≥ n.

Clearly, n classical queries, even deterministic ones, also suffice to solve the classical analogue
of Bernstein-Vazirani: Simply query e1, . . . , en for the unit basis vectors to learn the n entries
of the unknown string s.

Grover, one step further

Exercise 2.10 P. In this exercise we want to expand on what we learned in the lecture about Grover’s
algorithm, and extend the results to the case of multiple marked elements. Remember, Grover’s
algorithm allows to find the one marked element in a list of N elements in O(

√
N) queries. Now,

we want to see what happens if there are M marked elements.
Let us call S the set of marked elements, so S ⊂ {0, 1}n, with |S| = M and 1 < M ≪ N .

With that, let us first name the two main states of the derivation

uniform superposition |Ψ⟩ = 1√
N

N−1∑
x=0

|x⟩

marked superposition |S⟩ = 1√
M

∑
x∈S

|x⟩ .



Then, let us redefine the database operator

US = I− 2ΠS with ΠS =
∑
x∈S

|x⟩⟨x| .

Note that here, in contrast to the M = 1 case, US ̸= I − 2|S⟩⟨S|. Just as in the M = 1 case
however, the algorithm consists of initializing the state in |Ψ⟩ and then repeatedly applying the
Grover operator G = UΨUS , where UΨ = 2|Ψ⟩⟨Ψ| − I, until the state is close to the target state
|S⟩, and then measuring that.

(a)2 P. First, like in the case of only one marked element, we can restrict our attention to a two-
dimensional subspace of states in which the algorithm acts. For that, show that, given
the initial |Ψ⟩ state, the repeated application of the Grover operator keeps the state in
span{|Ψ⟩, |S⟩}.
Hint: Look at the effect of US and UΨ on both |Ψ⟩ and |S⟩.

Solution

Let us start with UΨ.

UΨ|Ψ⟩ = (2|Ψ⟩⟨Ψ| − I)|Ψ⟩ = 2|Ψ⟩ − |Ψ⟩ = |Ψ⟩
UΨ|S⟩ = (2|Ψ⟩⟨Ψ| − I)|S⟩ = 2⟨Ψ|S⟩|Ψ⟩ − |S⟩

In both cases, the output state is a linear combination of |Ψ⟩ and |S⟩, so it remains
in the stated subspace. Now for US .

US |S⟩ = (I− 2ΠS)|S⟩ = |S⟩ − 2

(∑
x∈S

|x⟩⟨x|

)
1√
M

(∑
x′∈S

|x′⟩

)

= |S⟩ − 2√
M

∑
x∈S

|x⟩ = −|S⟩

US |Ψ⟩ = (I− 2ΠS)|Ψ⟩ = |Ψ⟩ − 2

(∑
x∈S

|x⟩⟨x|

)
1√
N

(
N−1∑
x′=0

|x′⟩

)

= |Ψ⟩ − 2√
N

∑
x∈S

|x⟩ = |Ψ⟩ − 2
√
M√
N

|S⟩

Again, in both cases we have linear combinations of |Ψ⟩ and |S⟩. We can conclude
that, if starting withing the span of {|Ψ⟩, |S⟩}, the application of the Grover operator
will always return a state withing that subspace.
In case anyone is confused about the shape of the last state, one can verify it is a
valid state by checking the normalization

∥US |Ψ⟩∥22 =

(
⟨Ψ| − 2√

N

∑
x∈S

⟨x|

)(
|Ψ⟩ − 2√

N

∑
x′∈S

|x′⟩

)

= ⟨Ψ|Ψ⟩ − 2√
N

∑
x′∈S

⟨Ψ|x′⟩ − 2√
N

∑
x∈S

⟨x|Ψ⟩+

(
2√
N

∑
x∈S

⟨x|

)(
2√
N

∑
x′∈S

|x′⟩

)

= 1− 2√
N

∑
x′∈S

1√
N

− 2√
N

∑
x∈S

1√
N

+
4

N

∑
x∈S

1

= 1− 2M

N
− 2M

N
+

4M

N
= 1



(b)2 P. Show that in that subspace, UΨ acts as a reflection with respect to |Ψ⟩ and US as an
inversion with respect to |S⟩ respectively. With reflection and inversion, we mean

reflection Rψ(α|ψ⟩+ β|ψ⊥⟩) = α|ψ⟩ − β|ψ⊥⟩
inversion Iψ(α|ψ⟩+ β|ψ⊥⟩) = −α|ψ⟩+ β|ψ⊥⟩ .

Hint: Decompose the state of interest into a basis of the space span{|Ψ⟩, |S⟩}, choosing
the basis carefuly.

Solution

First UΨ. For any |ϕ⟩ ∈ span{|Ψ⟩, |S⟩} we can write it as a linear combination of
|Ψ⟩ and |Ψ⊥⟩ where |Ψ⊥⟩ is some state in span{|Ψ⟩, |S⟩} such that ⟨Ψ|Ψ⊥⟩ = 0.

UΨ|ϕ⟩ = (2|Ψ⟩⟨Ψ| − I)(α|Ψ⟩+ β|Ψ⊥⟩) = 2α|Ψ⟩+ 0− α|Ψ⟩ − β|Ψ⊥⟩
= α|Ψ⟩ − β|Ψ⊥⟩ = RΨ|ϕ⟩ .

The |Ψ⟩ component stayed unchanged, while the |Ψ⊥⟩ had a sign flip, thus it has
been reflected with respect to |Ψ⟩.
For US we can do the same, choosing the basis {|S⟩, |S⊥⟩}. Here, |S⊥⟩ =

1√
N−M

∑
x ̸∈S |x⟩. Then, any state can be written |ϕ⟩ = α̃|S⟩ + β̃|S⊥⟩. We now

want to show that US |ϕ⟩ = −α̃|S⟩+ β̃|S⊥⟩. The first term is easy, since we already
showed in (a) that US |S⟩ = −|S⟩. Then for the second

US |S⊥⟩ = (I− 2ΠS) |S⊥⟩ = |S⊥⟩ − 2

(∑
x∈S

|x⟩⟨x|

)
1√

N −M

∑
x′ ̸∈S

|x′⟩ = |S⊥⟩ ,

since all summands in the second part are zero, as ⟨x|x′⟩ = 0 if x ∈ S and x′ ̸∈ S.

(c)2 P. Show on the following sketches the effect of US on the state |ϕ⟩ (second sketch) and then
the effect of UΨ on the resulting state (third sketch). Give the angle between UΨUS |ϕ⟩
and |ϕ⟩ in terms of θ and φ.



Solution

After an application of the Grover operator, the angle between UΨUS |ϕ⟩ and |ϕ⟩ is
2φ, and the angle between UΨUS |ϕ⟩ and |S⟩ is θ − 2φ.

(d)1 P. Give the value of the angle φ in the previous question in terms of M and N

Solution

From the drawing, we have that cosφ = |⟨Ψ⊥|S⟩| and sinφ = |⟨Ψ|S⟩|. The second

is easy to compute and gives |⟨Ψ|S⟩| =
√

M
N . Then we have φ = arcsin

√
M
N .

(e)2 P. Just as in the case of a single marked element, the operator G rotates the state by a
certain angle, such that

θ(k) = θ(k−1) − 2φ .

We now want to find the number of steps necessary for the k-th iteration |ϕk⟩ to be close
to |S⟩. Identify such a k.

Hint: Remember that the algorithm is initialized in |Ψ⟩. You can also use the fact that
arcsinx ≈ x for small x to obtain the scaling mentionned in the script.



Solution

We have that θ(k) = θ(0) − 2kφ. From the previous question, we also know that

sinφ = |⟨Ψ|S⟩| =
√

M
N . At the beginning of the algorithm, the state is initialized to

|Ψ⟩, so θ(0) = π
2 − φ (see the figures above). Putting things together, we have that

θ(k) =
π

2
− (2k + 1) arcsin

(√
M

N

)

and we want θ(k) ≈ 0, so

k ≈ π

4 arcsin
(√

M/N
) − 1

2

Using the assumption thatN ≫M we can approximate arcsin
(√

M/N
)
≈
√
M/N

and obtain

k ≈ π

4

√
N

M
− 1

2
−O

(√
M

N

)

(f)1 P. After the adequate number of steps one reaches |ϕk⟩ ≈ |S⟩. The last thing to do is to
measure in the computational basis. Will a single measurement allow to know all marked
elements? Motivate your answer.

Solution

Let us assume that after the optimal number of steps the state is exactly the target
state |ϕk⟩ = |S⟩ (it will not be the case, but it is helpful for the sake of the argument).
Measuring in the computational basis corresponds to the projective measurement
where the projectors are Πx = |x⟩⟨x| for x = 0, . . . , N − 1. Then, for a specific basis
state x∗,

Πx∗ |S⟩ = |x∗⟩⟨x∗| 1√
M

∑
x∈S

|x⟩ =

{
1√
M
|x∗⟩ if x∗ ∈ S

0 else.

We obtain that a projective basis measurement will return one of the marked el-
ements with equal probability. That is sufficient if one wants to find one of the
marked elements, otherwise the procedure has to be repeated.

Recap

This exercise builds directly on top of the bonus exercise in Sheet 9. This time, instead of
talking about states, we want to shift our attention towards channels. For this exercise, we
adopt the definitions from the recap exercise of the previous sheet:

• Let HA,HB be two d-dimensional Hilbert spaces.

• TheOthonormal basis of unitaries of a d-dimensional Hilbert space is {Uj | j ∈ {1, . . . , d2}}.

• Let |ω⟩ ∈ HA ⊗HB be a maximally entangled state |ω⟩ = 1√
d

∑d−1
i=0 |ii⟩.

• Let B be an orthonormal basis of maximally entangled states: B := {|ψj⟩ = (I⊗Uj)|ω⟩ | j ∈
{1, . . . , d2}}.

• Let p = (pj)
d2
j=1 be a discrete probability distribution: pj ∈ [0, 1],

∑
j pj = 1.



Bonus Exercise 2.11 P. Consider the following quantum channel Np acting on HA ⊗HB:

Np[ρ] =
d2∑
j=1

pj(I⊗ Uj)ρ(I⊗ Uj)
†. (1)

And consider again a maximally entangled quantum state Ω = |ω⟩⟨ω|.

(a)1 P. Find a p for which Np is a unitary channel.

Hint: Pick the simplest p you can, so that you can prove the desired property in a few
lines.

Solution

Since the Kraus operators of the channel are rescaled unitary operations, choosing
p = δk for some value of k ∈ {1, . . . , d2} will result in the channel being

Np[ρ] = (I⊗ Uk)ρ(I⊗ Uk)
†

which is unitary.

(b)1 P. Consider a p which is obtained from first sampling d numbers uniformly at random from
[0, 1], and then normalizing appropriately. Do you expect Np to be unitary?

Solution

The channel Np is unitary only if the distribution p is a delta function. As a
consequence, there are finitely many choices of p for which the channel is unitary.
In contrast, there are infinitely many choices for p that are not the delta function,
thus the channel not being unitary. In more mathematical terms, the probability of
the channel being unitary is zero

P[Np is unitary] = P[∃1 ≤ k ≤ d2 : p = δk]

≤
d2∑
k=1

P[p = δk]

= 0 ,

Here, the last step is due to the fact that p can be described by a continuous
probability density function. Any random realization of p has then probability
zero. This is in particular true for uniformly random p.

(c)1 P. Compute Np[Ω]. Have we seen it before (e.g., on the last sheet)?

Solution

Np[Ω] =

d2∑
j=1

pj(I⊗ Uj)|ω⟩⟨ω|(I⊗ Uj)
†

=
d2∑
j=1

pj |ψj⟩⟨ψj | = ρp .

This channel is constructed such that applying it to the maximally entangled state
gives ρp from Bonus Exercise 1 of Sheet 9. Note: Here, the channel acts on the
composite Hilbert space that the maximally entangled state lives in.



(d)3 P. Given a sufficiently large third Hilbert space HC give an isometry Vp : HA ⊗ HB →
HA ⊗HB ⊗HC such that

TrC(VpρABV
†
p ) = Np[ρAB].

Hint: For our purposes, an isometry is a matrix Vp such that V †
p Vp = IA ⊗ IB. Careful,

in contrast with unitaries where U †U = UU †, it is not true here.

Solution

Let us define
Vp =

∑
j

√
pj(I⊗ Uj ⊗ |j⟩)

Then

VpσV
†
p =

∑
j,j′

√
pj
√
pj′(I⊗ Uj ⊗ |j⟩)ρAB(I⊗ U †

j′ ⊗ ⟨j′|)

=
∑
j,j′

√
pj
√
pj′(I⊗ Uj)ρAB(I⊗ U †

j′)⊗ |j⟩⟨j′|) .

Tracing out the third subsystem leaves

TrC [VpσV
†
p ] = TrC

∑
j,j′

√
pj
√
pj′(I⊗ Uj)ρAB(I⊗ U †

j′)⊗ |j⟩⟨j′|)


=
∑
j,j′

√
pj
√
pj′(I⊗ Uj)ρAB(I⊗ U †

j′)δj,j′

=
∑
j

pj(I⊗ Uj)ρAB(I⊗ U †
j )

= Np[ρAB] .

We just built the Stinespring isometry from the Kraus decomposition of the channel.
We could extend the isometry Vp to be unitary Up, like in the script, for a certain
auxiliary state η such that

Np[ρAB] = TrC [Up(ρAB ⊗ ηC)U
†
p ]

but it would be somewhat more involved.

(e)1 P. Write down a set of Kraus operators for Np. Prove that the set you wrote down is actually
a valid set of Kraus operators and that it represents Np.



Solution

From Eq. (1), it is straightforward to read off the Kraus operators {√pj(I⊗Uj)}d
2

j=1.
To check that they are trace preserving, thus valid Kraus operators, we just compute

d2∑
j=1

(√
pj(I⊗ Uj)

)†√
pj(I⊗ Uj) =

d2∑
j=1

pjI⊗ U †
jUj︸ ︷︷ ︸
=I

=

 d2∑
j=1

pj


︸ ︷︷ ︸

=1

I⊗ I

= I⊗ I .

(f)3 P. The unitarity of a channel can be defined as the purity of its corresponding Choi state.
Compute the unitarity of Np, for an arbitrary given p. Compute the Choi rank of Np.
Careful! Np as a channel acts on HA ⊗HB. In order to find the Choi state, you need to
consider a maximally entangled state between two copies of HA⊗HB: |ω̃⟩ ∈ (HA⊗HB)

⊗2.
This would be, for example |ω̃⟩ = 1

d

∑d−1
i,j=0|ij⟩ ⊗ |ij⟩. This is slightly different from what

we are used to seeing, so proceed with care, one step at a time.



Solution

Version 1: direct computation.
We compute first the Choi-state, and then evaluate the required quantities from it.
By definition, Np acts on HA⊗HB, so in order to compute the Choi state, we need
to consider another copy of this tensor product space. In total, we will have the
Hilbert space HA ⊗HB ⊗HA ⊗HB.
The next thing we need is to consider the density matrix of the new, larger, maxi-
mally entangled state:

Ω̃ = |ω̃⟩⟨ω̃| (2)

=

1

d

∑
ij

|ij⟩ ⊗ |ij⟩

(1

d

∑
kl

⟨kl| ⊗ ⟨kl|

)
(3)

=
1

d2

∑
ijkl

|ijij⟩⟨klkl|. (4)

We are dealing with 4-indexed kets and bras, so we need to be careful. We next
do a small trick in which we re-order the indices that correspond to each of the
subsystems. To be clear, |ω̃⟩ the way we wrote it now is a maximally entangled
state living in (HA ⊗HB)⊗ (HA ⊗HB). The parenthesis indicate the “cut” across
which we consider the entanglement. We did not dwell on why this is important
before, but recall that we have always talked about entanglement in the context of
bipartite systems. In this exercise we are dealing with 4 different Hilbert spaces,
which we group into two parts, as indicated by the parenthesis. In the following, we
refer to the four Hilbert spaces with the subscripts A1, B1, A2, and B2, respectively.
That being said, let us expand the kets and bras into all their tensor factors, and
then re-group them differently:

Ω̃ =
1

d2

∑
ijkl

|ijij⟩⟨klkl| (5)

=
1

d2

∑
ijkl

(|i⟩A1 |j⟩B1 |i⟩A2 |j⟩B2) (⟨k|A1⟨l|B1⟨k|A2⟨l|B2) (6)

=
1

d2

∑
ijkl

|i⟩⟨k|A1 ⊗ |j⟩⟨l|B1 ⊗ |i⟩⟨k|A2 ⊗ |j⟩⟨l|B2 (7)

=
1

d2

∑
ijkl

|i⟩⟨k|A1 ⊗ |i⟩⟨k|A2 ⊗ |j⟩⟨l|B1 ⊗ |j⟩⟨l|B2 (8)

=
1

d2

∑
ijkl

|ii⟩⟨kk|A1A2 ⊗ |jj⟩⟨ll|B1B2 (9)

=

(
1

d

∑
ik

|ii⟩⟨kk|A1A2

)
⊗

1

d

∑
jl

|jj⟩⟨ll|B1B2

 (10)

= ΩA1A2 ⊗ ΩB1B2 . (11)

This might be surprisinga: the maximally entangled state across the (1, 2) cut is a
product state across the (A,B) cut. Indeed, we see that Ω̃ is the tensor product of
two maximally entangled states, one between both copies of HA, and one between
both copies of HB. This will be useful in the next step.

aFor some intuition, you can look at this object in graphical notation.



Solution

Next we must apply a channel on Ω̃, and namely I⊗Np: which corresponds to doing
nothing on the first copy of the Hilbert space, and applying Np on the second one.
Let us also expand this new channel out in the four tensor product indices. For
each of the orthonormal basis of unitaries Uk, we introduce the curly notation Uj
for the unitary channels Uj [ρB] = UjρBU

†
j .

(IA1B1 ⊗Np) [Ω̃] =

IA1 ⊗ IB1 ⊗ IA2 ⊗

∑
j

pjUj


B2

 [Ω̃] (12)

=

IA1 ⊗ IB1 ⊗ IA2 ⊗

∑
j

pjUj


B2

 [ΩA1A2 ⊗ ΩB1B2 ] (13)

= (IA1 ⊗ IA2)[ΩA1A2 ]⊗

IB1 ⊗

∑
j

pjUj


B2

 [ΩB1B2 ] (14)

= ΩA1A2 ⊗
∑
j

pj(I⊗ Uj)ΩB1B2(I⊗ Uj)
† (15)

= ΩA1A2 ⊗ (ρp)B1B2
, (16)

where ρp was defined in question (c). What we did was use the re-writing of the
maximally entangled state as a product to show that the Choi state is a tensor
product between the maximally entangled state on the two copies of HA and the
channel Np applied on the two copies of HB.
Since Np[ρAB] = (I ⊗ Mp)[ρAB] for the channel M given by the unitaries, in the
end, it is a local operation (only on system B). From this one can be less surprised
that the Choi operator on AB is a product state.
With this, we have found the Choi state of Np. From here, we can directly compute
the unitarity and the Choi rank of the channel by computing the purity and the
rank of the state. We do not need to use any formulas, we just port the results
from Sheet 9. The Choi state being a product state between the pure maximally
entangled state Ω and the state ρp from sheet 9, it follows that:

• The purity of the Choi state is the purity of ρp, which we know is
∑

j p
2
j , or,

said otherwise, the variance of the distribution p.

• The rank of the Choi state is the rank of ρp, which we know is equal to the
number of non-zero entries of p.



Solution

Version 2: using that the channel is separable.
In this version, we reach the same results but using some information from the
channel to reduce some of the calculation. Starting from the hint, we can rewrite
the maximally entangled state

|ω̃⟩ = 1

d

d−1∑
i,j=0

|ij⟩A1B1 ⊗ |ij⟩A2B2

=
1

d

d−1∑
i,j=0

|i⟩A1 ⊗ |j⟩A2 ⊗ |j⟩B1 ⊗ |j⟩B2

=

(
1√
d

d−1∑
i=0

|i⟩A1 ⊗ |j⟩A2

)(
1√
d
⊗ |j⟩B1 ⊗ |j⟩B2

)
= |ω⟩A1A2 ⊗ |ω⟩B1B2 .

Then, the density matrix is given by Ω̃ = |ω̃⟩⟨ω̃| = ΩA1A2⊗ΩB1B2 . Then to compute
the Choi state, observe that the channel of interest is separable, and we have that

Np[ρ] =
(
I(A) ⊗M(B)

p

)
[ρ]

where I(A) and M(B)
p are local quantum channels, with Kraus operators {I} and

{√pjUj} respectively

I(A)[ρ] = ρ

M(B)
p [ρ] =

d2∑
j=1

pjUjρU
†
j .

Putting things together, we can separate the action of the two channels on the
respective maximally entangled states

J(Np) = (IA1B1 ⊗Np) [Ω̃A1B1A2B2 ]

=
(
IA1 ⊗ IB1 ⊗ I(A) ⊗M(B)

p

)
[ΩA1A2 ⊗ ΩB1B2 ]

=
(
IA1 ⊗ I(A)

)
[ΩA1A2 ]⊗

(
IB1 ⊗M(B)

p

)
[ΩB1B2 ]

= ΩA1A2 ⊗
∑
j

pj(I⊗ Uj)ΩB1B2(I⊗ Uj)
†

= ΩA1A2 ⊗ (ρp)B1B2

= J(I(A))⊗ J(M(B)
p )

(g)1 P. Find a channel for which Np[Ω] is the Choi state.



Solution

From the previous question, we already have that Np[Ω] = ρp = J(M(B)
p ). Let us

make this observation explicit again. By definition, for some channel

T (ρ) =
∑
k

EkρE
†
k

the Choi state is the result of applying that channel to one half of a maximally
entangled state with a second (auxiliary) system of the same size

J(T ) = (I⊗ T )(Ω) =
∑
k

(I⊗ Ek)Ω(I⊗ E†
k).

This is exactly Np[Ω] if we choose Ek =
√
pkUk. So Np[Ω] is the Choi state of the

channel whose Kraus decomposition is

M(B)
p (ρ) =

∑
j

pjUjρU
†
j .

Total Points: 17 (+14)


