
Exercise Sheet 11: Quantum Phase Estimation and

Gottesman-Knill

Quantum Phase Estimation

Perhaps at the heart of the majority of modern quantum algorithms lies the phase estimation
algorithm. The problem of phase estimation is the following: Given a unitary operator U
and one of its eigenvectors |u⟩ with eigenvalue e2πiϕ, output (an approximation to) the phase
ϕ ∈ [0, 1].

Exercise 1.12 P. In this exercise, we will investigate the standard quantum algorithm for solving
the phase estimation problem.

(a)1 P. On Sheet 9, the definition and the circuit of the quantum Fourier transform were discussed.
Show that the Quantum Fourier transform is invertible and give its inverse (by specifying
its effect on computational basis states, just as we did for the QFT).

Solution

On Sheet 9, we gave a quantum circuit consisting of unitary gates that implemented
the Quantum Fourier transform. Thus, the Quantum Fourier transform F , which

acts on computational basis states as F|j⟩ = 1√
N

∑N−1
k=0 e

2πikj
N |k⟩, is unitary and

in particular invertible, with the inverse F−1 = F† acting on computational basis
states as

F−1|k⟩ = F†|k⟩ = 1√
N

N−1∑
j=0

e−
2πikj
N |j⟩ .

With F|j⟩ = 1√
N

∑N−1
k=0 e

2πikj
N |k⟩ you can double-check that

F−1F|j⟩ = 1

N

N−1∑
k=0

N−1∑
j′=0

e
2πik(j−j′)

N |j′⟩ = 1

N

N−1∑
j′=0

Nδj,j′ |j′⟩ = |j⟩

and similarly for FF−1|j⟩.

The phase estimation algorithm is implemented via the following quantum circuit:
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The circuit consists of H, the Hadamard gate; controlled-U2k -gates, that apply the unitary
operator U for 2k times if the control qubit is |1⟩; and F−1, the inverse of the quantum Fourier



transform. At the beginning, the first register comprising t qubits is initialized as |0⟩⊗t and
the second register is prepared in the state |u⟩. This is then followed by a computational basis
measurement on the first t qubits.

(b)2 P. Express the state of the t qubits in the first register before the inverse Fourier transform
is applied in the computational basis {|x⟩}x∈{0,1}t .
Hint: Make use of the tensor product structure of (H|0⟩)⊗t. Also, you might find it helpful
to first show that CUk1→2(|+⟩ ⊗ |u⟩) = 1√

2

(
|0⟩+ e2πiϕk|1⟩

)
⊗ |u⟩. Here, CUk1→2 denotes

the controlled unitary in which Uk is applied to the second register controlled on the first
register being active.

Solution

Before applying the inverse Fourier transform, the first register will be in the state

1√
2t

(
|0⟩+ e2πi2

t−1ϕ|1⟩
)(

|0⟩+ e2πi2
t−2ϕ|1⟩

)
· · ·
(
|0⟩+ e2πi2

0ϕ|1⟩
)

=
1√
2t

2t−1∑
k=0

e2πiϕk|k⟩ .

This can be seen as follows: Written in terms of gates, the state of all qubits before
the inverse Fourier transform is

CU2t−1

1→t . . . CU
20

(t−1)→t(H|0⟩)⊗t ⊗ |u⟩

= CU2t−1

1→t . . . CU
20

(t−1)→t

(
1√
2
(|0⟩+ |1⟩)

)⊗t
⊗ |u⟩

= CU2t−1

1→t . . . CU
21

(t−2)→t

((
1√
2
(|0⟩+ |1⟩)

)⊗(t−1)

⊗
(
CU20

(t−1)→t

(
1√
2
(|0⟩+ |1⟩)

)
⊗ |u⟩

))

= CU2t−1

1→t . . . CU
21

(t−2)→t

((
1√
2
(|0⟩+ |1⟩)

)⊗(t−1)

⊗
(

1√
2

(
|0⟩|u⟩+ |1⟩e2πiϕ·20 |u⟩

)))

= CU2t−1

1→t . . . CU
21

(t−2)→t

((
1√
2
(|0⟩+ |1⟩)

)⊗(t−1)

⊗ 1√
2

(
|0⟩+ e2πiϕ·2

0 |1⟩
)
⊗ |u⟩

)
= . . .

=

(
1√
2t

(
|0⟩+ e2πi2

t−1ϕ|1⟩
)(

|0⟩+ e2πi2
t−2ϕ|1⟩

)
· · ·
(
|0⟩+ e2πi2

0ϕ|1⟩
))

⊗ |u⟩ .

(c)2 P. Assume that ϕ can be written with exactly t bits, i.e. ϕ =
∑t

k=1 2
−kϕk. Show that the

measurement result at the end of the above circuit is |ϕ1 . . . ϕt⟩ with probability 1.

Hint: First compute the effect of the inverse quantum Fourier transform on the state
obtained in (b). Then observe that |l⟩ = |2tϕ⟩ is one valid contribution in the obtained
superposition. Find its amplitude using the definition of the delta function as a complex
sum over the unit circle.



Solution

Apply the inverse Fourier transform to get the output state (before the measure-
ment)

|ψ⟩ = 1

2t

2t−1∑
k,l=0

e
2πik
2t

(2tϕ−l)|l⟩ =
∑
l

ω(l)|l⟩

with

ω(l) :=
1

2t

2t−1∑
k=0

e
2πik
2t

(2tϕ−l) .

Notice that by assumption 2tϕ =
∑t

k=1 2
t−kϕk is an integer with 0 ≤ 2tϕ ≤ 2t − 1,

hence we can consider l = 2tϕ and see that ω(2tϕt) = 1. This already implies that
|ψ⟩ = |2tϕ⟩, since the total weight of all amplitudes is 1.

As a sanity check, let us also prove by hand that the other summands vanish: If
l ̸= 2tϕ we have for m = 2tϕ− l ̸= 0

ω(l) =
1

2t

2t−1∑
k=0

e
2πik
2t

m = 0 .

In summary, |ψ⟩ = |2tϕ⟩. Clearly, measuring |ψ⟩ in the computational basis gives
the measurement result |ϕ1 . . . ϕt⟩ with probability 1.

If the phase ϕ does not happen to have an exact t-bits representation, it is possible to show
that a measurement outcome close to ϕ occurs with high probability. For the rest of the exercise,
we will assume for simplicity that all phases mentioned have exact t-bits representations.

(d)1 P. Suppose now that, instead of applying the unitaries to a single eigenstate |u⟩, we apply
them to some superposition |ψ⟩ =

∑
i ci|ui⟩, where each |u⟩i is an eigenvector of U with

eigenvalue e2πiϕi . What does the quantum phase algorithm now output?

Hint: No need for any calculations.

Solution

By linearity, the procedure outputs ϕi with probability |ci|2.

(e)1 P. How many queries to the unitary operator U are used in the algorithm?

Solution

We use 1 + 2 + 4 + . . . + 2t−1 =
∑t−1

k=0 2
k = 2t−1

2−1 = 2t − 1 ∈ O(2t) queries to the
unitary U .

In the lecture, you saw how the problem of finding prime factors of an integer N can be
reduced to finding the period of a certain function defined as

f(x) = ax mod N.

If f(x+r) = f(x), where r is even and ar/2 ̸= −1 mod N , then ar−1 = (ar/2+1)(ar/2−1) = 0
mod N . This implies that ar/2±1 and N have nontrivial common divisors, which can be found
using Euclid’s algorithm, hence finding a nontrivial factor of N . An a such that r has the
right properties can be guessed with high probability. Here, the smallest integer r such that ar

mod N = 1, is called the order of a in ZN .



The crucial point of Shor’s algorithm is then to find the period of f . We want to elaborate
how this can be done through period finding. Consider the operator

U |x⟩ =

{
|xa mod N⟩ if x < N

|x⟩ otherwise
.

Notice that, by definition,

Uk|x⟩ =

{
|xak mod N⟩ = |xf(k) mod N⟩ if x < N

|x⟩ otherwise
.

(f)2 P. Using that a and N are coprime, show that U is a unitary.

Hint: Look at the action of U on the computational basis.

Solution

U is a unitary if xa mod N = ya mod N implies x = y. (Why? If that is the
case, then U acts bijectively on the computational ONB.) So, let’s show that. If xa
mod N = ya mod N , then there are integers k and l s.t. xa + kN = ya + lN , or
a(x−y) = N(l−k) Thus, either x = y and l = k, or a and N have common factors.
As we assumed a and N to be coprime, we get x = y (and l = k).

(g)2 P. Show that U has eigenvalues of the form e2πik/r for integers 0 ≤ k < r. Find the corre-
sponding eigenvectors, knowing that they are of the form

|vs⟩ =
r−1∑
ℓ=0

αℓ,s|aℓ mod N⟩ ,

with integers 0 ≤ s < r.

Hint: By assumption, r is the order of a in ZN . What does that imply for U r?

Solution

By definition of the order of a in ZN , we have U r = I. That is, for the case x < N
(the other one is trivial),

xar mod N = xf(r) mod N = xf(0) mod N = x mod N = x .

This implies that the eigenvalues of U are r-th roots of unity. That is, the eigenvalues
are of the form e2πik/r, with integer 0 ≤ k < r.
Now, let’s consider the action of U on vectors |vs⟩ of the given form:

U |vs⟩ =
r−1∑
ℓ=0

αℓ,s|aℓ+1 mod N⟩ =
r−1∑
ℓ=0

α(ℓ−1) mod r,s|aℓ mod N⟩

where we used that ar mod N = 1. If |vs⟩ is an eigenvector of U with eigenvalue
e2πik/r, then – using our above form for the eigenvalues, we also have U |vs⟩ =
e2πik/r|vs⟩ for some 0 ≤ k < r. Then the coefficients must satisfy α(ℓ−1) mod r,s =

e2πik/rαℓ,s. Staring at this a bit, we see that k = s and αℓ,s = 1√
r
e−2πiℓs/r works.

(Here, the 1/
√
r is for normalization.)

So, using phase estimation (recall our result from (d)) with (a superposition over) the
eigenstates |vs⟩, we are able to get q = k/r for some random 0 ≤ k < r. We could use this to



find a guess of r by simply finding a fraction representation of q, but if k and r have a common
divisor d, this will yield r′ = r/d, as q = k′/r′ = (k/d)/(r/d). This can be dealt with by running
the algorithm multiple times for different eigenvectors and get k1/r = k′1/r

′
1, k2/r = k′2/r

′
2, . . .

With high probability, r is the least common multiple of the r′i.
We are almost done, the only element we’re missing is that in general we do not know how

to prepare the eigenvectors of U . We adress this in the final part of the exercise:

(h)1 P. What is the output of the phase estimation algorithm for the unitary U if we input the
vector |1⟩ (instead of |u⟩ in our circuit diagram)? Why does this solve the problem of not
knowing how to prepare the eigenvectors of U?

Solution

We have |1⟩ = 1√
r

∑r−1
s=0 |vs⟩. This can be seen via

1√
r

r−1∑
s=0

|vs⟩ =
r−1∑
k=0

(
1

r

r−1∑
s=0

exp

(
−2πisk

r

))
|xk mod N⟩ = |1⟩ ,

where we used 1
r

∑r−1
s=0 exp

(
−2πisk

r

)
= δk,0. So, recalling our result from (d), the

phase estimation algorithm when inputting |1⟩ in the eigenstate register outputs
k/r, where k is a random integer from 0 to r− 1. This is exactly what we had after
(g), so with the same reasoning as above one can find r (with high probability).

Stabilizer formalism for Clifford circuits

A celebrated result in quantum computation is a statement about the resource costs of simu-
lating quantum computations on a classical computers. The Gottesman-Knill theorem states
that quantum computations composed of Clifford gates with stabilizer states as inputs and a
final measurement in the computational basis can be classically simulated in the sense that
there exists a classical algorithm with polynomial runtime that can sample from the output
distribution of such a computation. Furthermore, the so-called stabilizer formalism plays an
important role in the development of quantum error correction.

In this exercise we will retrace the reasoning underlying the Gottesman-Knill theorem.
Throughout, we will let n be the number of qubits and hence H = (C2)⊗n be the Hilbert
space. Let us start with some definitions

(i) Let G1 = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} be the single-qubit Pauli group where
multiplication is the group operation.1

(ii) Let Gn := {
⊗n

i=1 Pi | Pi ∈ G1} be the n-qubit Pauli group.

(iii) A stabilizer state is a quantum state |ψ⟩ ∈ H that is uniquely (up to a global phase)
described by a set S|ψ⟩ = {S1, . . . , Sn} ⊂ Gn satisfying Si|ψ⟩ = |ψ⟩. We call the generalized
Pauli operators Si the stabilizer generators of |ψ⟩.2 We note that such S1, . . . , Sn are
independent (in the sense that neither of these n operators can be written as a non-trivial
product of the others) and mutually commute.

(iv) A Clifford operator C is a unitary on H which leaves Gn invariant, i.e. for all g ∈ Gn it
holds that CgC† ∈ Gn. In group theory language, the Clifford group C ⊂ U(2n) is the
normalizer of Gn.

1Convince yourself that G1 is closed under multiplication and the unsigned Pauli matrices are not.
2More generally, we can talk about subspaces stabilized by a set S ⊂ Gn. This is a key insight in the theory

of error correction codes.



Exercise 2.12 P.

(a)2 P. Show that the set S = {Z1, Z2, . . . , Zn} stabilizes the state |0⟩⊗n and that this is the unique
state stabilized by S. Here, we use the notation Zi = I⊗ · · · ⊗ I⊗ Z︸︷︷︸

i-th qubit

⊗I⊗ · · · ⊗ I for

the operator acting as Z on the i-th qubit and as the identity on all other qubits.

Solution

For an arbitrary state |ψ⟩ to be stabilized by S, we have the n conditions Zi|ψ⟩ = |ψ⟩
for all 1 ≤ i ≤ n. Writing |ψ⟩ =

∑
x ψx|x1, . . . , xn⟩ the i-th condition reads

Zi|ψ⟩ =
∑
x

ψx(−1)xi |x1, . . . , xn⟩ = |ψ⟩,

from which we conclude that

|ψ⟩ =
∑
x

ψxδxi,0|x⟩ .

Putting all n conditions together we have

|ψ⟩ =
∑
x

ψx(
n∏
i=1

δxi,0)|x⟩ = ψ00...0|0⟩⊗n .

(b)2 P. Show that n stabilizers suffice to uniquely characterize an arbitrary state in the Clifford
orbit of |0⟩⊗n, that is the states |ψ⟩ for which there exists a (unique) Clifford operator C
such that |ψ⟩ = C|0⟩⊗n.

Solution

Suppose |ψ⟩ = C|0⟩⊗n. According to (a), |0⟩⊗n is uniquely determined by the
condition that it is stabilized by Z1, . . . , Zn, i.e., by the n relations Zi|0⟩⊗n = |0⟩⊗n.
Then CZi|0⟩⊗n = C|0⟩⊗n = |ψ⟩. Inserting an identity we obtain CZiC

†C|0⟩⊗n =
CZiC

†|ψ⟩. Defining Si = CZiC
†, we obtain

Si|ψ⟩ = CZiC
†C|0⟩⊗n

= CZi|0⟩⊗n

= C|0⟩⊗n

= |ψ⟩ ,

so each Si stabilizes |ψ⟩. As the the stabilizer {Z1, . . . , Zn} uniquely characterizes
|0⟩⊗n and as C is the unique Clifford operator with |ψ⟩ = C|0⟩⊗n, we conclude that
{S1, . . . , Sn} uniquely characterizes |ψ⟩.

(c)1 P. Give a stabilizer representation of |+⟩ ⊗ |0⟩ ⊗ |−⟩.

Solution

We have that

(X ⊗ I⊗ I)(|+⟩ ⊗ |0⟩ ⊗ |−⟩) = |+⟩ ⊗ |0⟩ ⊗ |−⟩ ,
(I⊗ Z ⊗ I)(|+⟩ ⊗ |0⟩ ⊗ |−⟩) = |+⟩ ⊗ |0⟩ ⊗ |−⟩ ,

(I⊗ I⊗−X)(|+⟩ ⊗ |0⟩ ⊗ |−⟩) = |+⟩ ⊗ |0⟩ ⊗ |−⟩ .

Then, {X1, Z2,−X3} is a stabilizer representation of |+⟩ ⊗ |0⟩ ⊗ |−⟩.



Any Clifford operator can be expressed as a product of single- and two-qubit Clifford oper-
ators, and indeed as a product from the generating set {CNOT,H, S}, where

S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
. (1)

(d)2 P. Show that the gate set {CNOT,H, S} is sufficient to generate all Pauli strings, that is,
all elements of {I, X, Y, Z}⊗n, starting from any non-trivial (non-identity) single-qubit
Pauli matrix. Here, the allowed steps in generating an arbitrary Pauli matrix are of
the form P 7→ GPG†, where P is a Pauli matrix that we can already reach, and where
G ∈ {CNOT,H, S}.
Hint: First show that is is true for a single qubit and then look at the case CNOT (X ⊗
I)CNOT †.

Solution

First, let’s look at a single qubit. Here, H allows us to switch between X and Z via
HXH† = Z. Similarly, S switches between X and Y via SXS† = Y . So, {H,S}
is sufficient to generate all single-qubit Pauli matrices on some qubit starting from
any non-trivial single-qubit Pauli matrix on that qubit.
Now, how do we get to tensor products of Paulis? Here, the CNOT can be used to
couple to qubits. Explicitly, we have CNOT12X1CNOT

†
12 = X1 ⊗X2. So, starting

from any non-trivial single-qubit Pauli matrix on qubit i, we can, e.g., first use
conjugation with H and/or S to get to Xi. Then we use conjugation with suitable
CNOT s to get Xj on all qubits j that have non-trivial Pauli tensor factors. Finally,
for each such j, we use conjugation with H and/or S to get to whichever among
Xj , Yj , or Zj we are aiming for on that qubit.

(e)2 P. Argue that one can efficiently (i.e., with a number of classical computation steps polyno-
mial in the number of qubits and gates) determine the stabilizer set of a state generated
by a (known) Clifford circuit (comprising CNOT,H, S gates) applied to a stabilizer state.

Solution

Let G be the number of gates, and we use n for the number of qubits. The initial
stabilizer state is described by n stabilizer generators S1, . . . , Sn according to (b).

Let S
(g)
1 , . . . , S

(g)
n denote the stabilizer generators after the gth Clifford gate, with

S
(0)
i = Si. For every Clifford gate Cg, 1 ≤ g ≤ G, in the computation, we can

update the stabilizer generators as S
(g)
i = CgS

(g−1)
i C†

g . (That these are actually
the stabilizer generators for the state after the action of the first g gates can be
proved as in (b).) As we are dealing with Pauli strings (with a phase) throughout,
each update just involves changing one (for H and S) or two (for CNOT ) tensor
factors, which can be done with a constant number of operations. Thus, overall,
this procedure uses O(nG) operations, which is polynomial in n and G.

From the above reasoning, we conclude that we can efficiently simulate the effect of a Clifford
circuit applied to a stabilizer state by keeping track of the stabilizers.

Now, let us assume that we measure the first qubit in the Z basis.

(f)1 P. Assume Z1 commutes with all stabilizers of |ψ⟩. What is the probability of obtaining
outcome +1 when measuring Z1 on |ψ⟩?
Hint: Start from Z1|ψ⟩ = Z1Si|ψ⟩ for an arbitrary stabilizer generator Si of |ψ⟩.



Solution

We have by assumption that Z1|ψ⟩ = Z1Si|ψ⟩ = Si(Z1|ψ⟩) for all i. Z1|ψ⟩ is, thus,
stabilized by {S1, ..., Sn}. Since states are uniquely defined (up to global phases)
by the set of n stabilizers (by (b)), this implies Z1|ψ⟩ = eiφ|ψ⟩ for some phase
φ ∈ [0, 2π). Since Z1 has eigenvalues −1 and 1, we see that φ ∈ {0, π} and the
probability of measuring 1 is either 0 (if φ = π) or 1 (if φ = 0).

One can show that in case Z1 does not commute with all stabilizers, one can find an alter-
native set of stabilizers such that it anti-commutes with one of them but commutes with all
remaining ones.

(g)2 P. Use the existence of such a stabilizer representation to show: If Z1 does not commute
with all stabilizers of |ψ⟩, then the measurement outcome when measuring Z1 on |ψ⟩ is
uniformly random.

Hint 1: It will be useful to establish that S1 = S†
1 is Hermitian. To do so, argue that −I

cannot be part of any stabilizer group.

Hint 2: compute the value of ⟨ψ|Z1|ψ⟩ using the anticommutation relations with the one
anticommuting stabiliser.

Solution

Variant 1 for proving that the measurement outcome is uniformly random: Let S1 be
the anticommuting stabilizer. Using that the eigenprojector onto the +1 eigenspace
of Z1 is given by I+Z1

2 , we then have

Pr[Z1 = +1] =
1

2
tr[(I+ Z1)|ψ⟩⟨ψ|] =

1

2
⟨ψ|(I+ Z1S1)|ψ⟩ (2)

=
1

2
⟨ψ|(I− S1Z1)|ψ⟩ = ⟨ψ|(I− Z1)/2|ψ⟩ (3)

= Pr[Z1 = −1] (4)

Hence, Pr[Z1 = −1] = Pr[Z1 = +1] = 1/2. In absorbing S1 into ⟨ψ| we used that
S1 is Hermitian. This is necessarily the case because −I cannot be part of the
stabilizer group: −I stabilizes the trivial vector space only for obvious reasons.
Since |ψ⟩ is a state it must be non-zero. If −I is not in the stabilizer group, it must

be the case that S2
i = I for all i, so S†

i = Si.

Variant 2 for proving that the measurement outcome is uniformly random: Consider
⟨Z1⟩ψ = ⟨ψ|Z1|ψ⟩ = Pr[1]−Pr[−1]. We have (using that S1 and Z1 are Hermitian)

⟨ψ|Z1|ψ⟩ = ⟨ψ|Z1S1|ψ⟩ = −⟨ψ|S1Z1|ψ⟩ = 0. (5)

In fact, this generalizes beyond Z1 to the measurement of an arbitrary Pauli operator P ∈ Gn.
Therefore, we see that checking commutation with the stabilizers gives us a recipe for efficiently
simulating samples resulting from computational basis measurements.

Recap

In exercise sheet 6 we have seen the concept of majorization and one central result on LOCC
that builds on it. We want to use this result to build some physical intuition on what can or
cannot be done using LOCC operations.



Bonus Exercise 1.6 P. Remember the key result

|ψ⟩ LOCC−−−−→ |ϕ⟩ ⇔ TrB[|ψ⟩⟨ψ|] ≺ TrB[|ϕ⟩⟨ϕ|]. (6)

In words: conversion of |ψ⟩ into |ϕ⟩ under LOCC is possible if and only if the reduced state
TrB[|ϕ⟩⟨ϕ|] majorizes the reduced state TrB[|ψ⟩⟨ψ|]. Here, majorization of density matrices is
understood as the fact that the two sets of ordered eigenvalues fulfill the conditions

ρ ≻ σ ⇔ λ(ρ) ≻ λ(σ) ⇔
k∑
j=1

λj(ρ) ≥
k∑
j=1

λj(σ) for all 1 ≤ k ≤ n, (7)

with, for all j, λj(ρ) ≥ λj+1(ρ) and λj(σ) ≥ λj+1(σ).

(a)1 P. Can the two states |ψ⟩AB = |0⟩A⊗|+⟩B and |ϕ⟩AB =
(√

5
8 |0⟩+

√
3
8 |1⟩

)
A
⊗
(

1√
2
|+⟩+ eiπ/6

√
2
|−⟩
)
B

be transformed into each other (both ways) using LOCC operations? Justify your answer
based on Eq. (6). Are the states entangled?

Solution

Yes, those are two product states (thus not entangled), so they can be converted
into each other using LOCC operations. Observe that the definition given in the
question is already a valid Schmidt decomposition, with a single coefficient of value
1. Both have pure-state reduced density matrices, with only one eigenvalue of value
1. Then,

k∑
j=1

s2j (ψ) =
k∑
j=1

s2j (ϕ) for all 1 ≤ k ≤ 2 ,

where sj(ψ) are the singular values, or coefficients of the Schmidt decomposition.
The majorization relations go both ways, so they can be transformed into each other
using only LOCC operations.

(b)1 P. What about the states |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) and |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)? Can they be

converted into each other (both ways) under LOCC? And are they entangled?

Solution

Both states are maximally entangled, with singular values {1/
√
2, 1/

√
2}. The re-

duced density matrices then both have eigenvalues {1/2, 1/2} (actually, both are
the normalized single qubit identity). Again, the majorization conditions are ful-
filled with equality, so both states can be converted into each other through LOCC
operations.
Note that we even already know from previous exercise sheets which operation gives
the desired transformation, as

|Ψ−⟩ = (I⊗XZ)|Φ+⟩ .

(c)1 P. What about |Φ+⟩ from (b) and |ψ⟩ from (a)? Can they be converted into each other (both
ways) under LOCC?



Solution

We have a maximally entangled state |Φ+⟩ and a product state |ψ⟩, with

TrB
[
|Φ+⟩⟨Φ+|

]
=

1

2
I2 and TrB [|ψ⟩⟨ψ|] = |0⟩⟨0|

with respective eigenvalues {1/2, 1/2} and {1}. Since 1/2 < 1 and 1/2+1/2 = 1+0,
TrB [|Φ+⟩⟨Φ+|] ≺ TrB [|ψ⟩⟨ψ|] but TrB [|ψ⟩⟨ψ|] ̸≺ TrB [|Φ+⟩⟨Φ+|]. So, |Φ+⟩ can be
transformed into |ψ⟩ using LOCC but not the other way around.

(d)1 P. What about |Φ+⟩ from (b) and |η⟩ = 1√
3
|++⟩+

√
2
3 | − −⟩? Can they be converted into

each other (both ways) under LOCC?

Solution

Both states are entangled, and

TrB
[
|Φ+⟩⟨Φ+|

]
=

1

2
I2 and TrB [|η⟩⟨η|] = 1

3
|+⟩⟨+|+ 2

3
|−⟩⟨−|

The eigenvalues are {1/2, 1/2} and {2/3, 1/3} respectively, so TrB [|Φ+⟩⟨Φ+|] ≺
TrB [|η⟩⟨η|] but TrB [|η⟩⟨η|] ̸≺ TrB [|Φ+⟩⟨Φ+|]. So, |Φ+⟩ can be transformed into |η⟩
but not the other way around.

(e)2 P. Compute the entanglement entropy of all states above (you can give an approximate
numerical value if necessary). Conclude on the role of entanglement in the allowed trans-
formations using LOCC operations.

Solution

Remember the definition of entanglement entropy:

E(|ψ⟩AB) = −ρA log2 ρA = −
d∑
j=1

λj log2 λj , with ρA = TrB[|ψ⟩⟨ψ|] .

Then, for all the states considered above:

E(|ψ⟩) = E(|ϕ⟩) = −1 log2 1 = 0

E(|Φ+⟩) = E(|Ψ−⟩) = −2

(
1

2
log2

1

2

)
= 1

E(|η⟩) = −1

3
log2

1

3
− 2

3
log2

2

3
≈ 0.918296

In all the cases, states can be transformed into other states with equal or less
entanglement entropy, but not into states with more.

Total Points: 24 (+6)


