Springe direkt zu Inhalt

Publications

46. Bonds from Bands. Stripp ST*. Nat. Rev. Chem. 2021
https://www.nature.com/articles/s41570-021-00256-7

45. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Hulin T, Hirota S*, Stripp ST*. Acc. Chem. Res. 2021; 54 (1): 232–241

44. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. Abul-Futouh H*, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W*. New. J. Chem. 2021; 45: 36-44

43. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST, Mebs S, Haumann M*. Inorg. Chem. 2020; 59 (22): 16474 – 88

42. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Land H, Sekretaryova AL, Huang P, Redman HJ, Németh B, Polidori N, Mészáros L, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 12789 – 801

41. [FeFe]-Hydrogenase Maturation: H-Cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy. Németh B, Senger M, Redman HJ, Ceccaldi P, Broderick J, Magnuson A, Stripp ST, Haumann M, Berggren G*. J. Biol. Inorg. Chem. 2020; 25: 777 – 88

40. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. Land H, Senger M, Berggren G.*, Stripp ST*. ACS catal. 2020; 10 (13): 7069 – 86

39. Spectroscopic Investigations under in vivo Conditions Reveal the Complex Metal Hydride Chemistry of [FeFe]-hydrogenase. Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 4608 – 17

38. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel UP, Happe T, Winkler M, Heberle J, Stripp ST*. J. Am. Chem. Soc. 2019; 141 (43): 17394 – 403

37. Discovery of Novel [FeFe]-Hydrogenases for Biocatalytic H2-production. Land H, Ceccaldi P, Mészáros LS, Lorenzi M, Redman HJ, Senger M, Stripp ST, Berggren G*. Chem. Sci. 2019; 10: 9941 – 48

36. Geometry of the Catalytic Active Site in [FeFe]-Hydrogenases is Determined by Hydrogen Bonding and Proton Transfer. Duan J, Mebs S, Laun K, Wittkamp F, Heberle J, Happe T, Hofmann E, Apfel UP, Winkler M, Senger M, Haumann M, Stripp ST*. ACS Catalysis 2019; 9: 9140 – 49

35. Wasserstoff gewinnen mit biologischen Eisen-Schwefel-Zentren. Stripp ST*. Nachrichten aus der Chemie 2019; 67 (5): 55 – 58

34. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP1, Winkler M, Haumann M*. Inorg. Chem. 2019; 58 (5): 4000 – 16

33. Infrared Characterization of the Bidirectional O2-sensitive [NiFe]-hydrogenase from Escherichia coli. Senger M, Laun K, Soboh B, Stripp ST*. CATALYSTS 2018; 8: 530

32. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel Ulf-Peter, Hofmann E, Stripp ST, Happe T*, Winkler M*. Nat. comm. 2018; 9: 4726

31. The molecular proceedings of biological hydrogen turnover. Haumann M, Stripp ST*. Acc. Chem. Res. 2018; 51 (8): 1755 – 63

30. Spectroscopical Investigations on the Redoxchemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Laun K, Mebs S, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M*, Stripp ST*. MOLECULES 2018; 23: 1669

29. [FeFe]-hydrogenases: recent developments and future perspectives. Wittkamp F, Senger M, Stripp ST, Apfel UP*. Chem. Comm. 2018; 54: 5934 – 42

28. Wasserstoffproduktion nach dem Vorbild der Nature. Apfel UP, Stripp ST*. GIT Laborfachzeitschrift 2018; 6: 28 – 29

27. Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. Mebs S, Kositzki R, Duan J, Senger M, Wittkamp F, Apfel UP, Happe T, Stripp ST, Winkler M*, Haumann M*. BBA - Bioenergetics 2018; 1859: 28 – 41

26. Protonation/Reduction Dynamics at the Hydrogen-forming Cofactor of [FeFe]-Hydrogenases. Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M*, Haumann M*, Stripp ST*. Phys. Chem. Chem. Phys. 2018; 20: 3128 – 40

25. Protonengekoppelte Reduktion des katalytischen [4Fe‐4S]‐Zentrums in [FeFe]‐Hydrogenasen. Senger M, Laun K, Wittkamp F, Duan J, Happe T, Winkler M, Apfel UP*, Stripp ST*. Angew. Chem. 2017; 129 (52): 16728 – 32

24. Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Senger M, Laun K, Wittkamp F, Duan J, Happe T, Winkler M, Apfel UP*, Stripp ST*. Angew. Chemie Int. Ed. 2017; 56 (52): 16503 – 06

23. Bridging Hydride at Reduced H-Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry. Mebs S*, Senger M, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Stripp ST*, Haumann M*. J. Am. Chem. Soc. 2017; 139: 12157 − 60

22. Accumulating the Hydride State in the Catalytic Cycle of [FeFe]-Hydrogenases. Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST*, Happe T* Nat. Comm. 2017; 8: 16115

21. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. Senger M, Stripp ST, Soboh B*, J. Biol. Chem. 2017; 292(28): 11670 – 81

20. Wasserstoffkatalyse in Mikroalgen. Senger M and Stripp ST*. 2017 Nachrichten aus der Chemie. 2017; 65: 123 – 7

19. Stepwise Isotope Editing of [FeFe]-Hydrogenases Exposes Cofactor Dynamics. Senger M, Mebs S, Duan J, Wittkamp F, Apfel UP, Heberle J, Haumann M, Stripp ST*. Proc. Natl. Acad. Sci. U S A. 2016; 113(30): 8454 – 59