Springe direkt zu Inhalt

Dr. habil. Sven T. Stripp

I did my Ph.D. with Thomas Happe at Ruhr-Universität Bochum. In 2010, I joined the group of Joachim Heberle to focus on vibrational spectroscopy. As a biospectroscopist, my research includes both chemical and physical approaches and is motivated by biological questions. I am married and have two hilarious children. 

sven

Department of Physics

Institute of Experimental Physics

Experimental Molecular Biophysics

Researcher

Address
Arnimallee 14
Room 1.1.39
14195 Berlin
Homepage

2019 – now   Freie Universität Berlin, Group Leader/ PI  

2019 – 2021   Freie Universität Berlin, Habilitation in Physical Chemistry

2015 – 2019   Freie Universität Berlin, Group Leader   

2010 – 2015   Freie Universität Berlin, Postdoctoral scientist   

2007 – 2010    Ruhr-Universität Bochum, Dissertation in Biology

2001 – 2007    Ruhr-Universität Bochum, Studies of Chemistry and Biology

I develop and apply spectroscopic and electrochemical techniques to probe proteins under biologically relevant conditions. My key interests involve gas-processing metalloenzymes like hydrogenases, CO- and formate dehydrogenases, nitrogenases, as well as cytochrome-c oxidase and photosystem II. I try to understand the catalytic mechanisms of H2, O2, and CO/CO2 turnover as well as in vivo cofactor synthesis. 

Methode

Setup for in situ ATR FTIR spectroscopy under gas, light, and potential control.

53. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Stripp ST, Oltmanns J, Müller CS, Ehrenberg D, Schlesinger R, Heberle J, Adrian L, Schünemann V, Pierik AJ, Soboh B*. Biochem. J. 2021; 478: 3281–95

52. In situ infrared spectroscopy for the analysis of gas-processing metalloenzymes. Stripp ST*. ACS Catal. 2021; 11: 7845–62

51. Two ligand-binding sites in CO-reducing Vanadium Nitrogenase reveal a general mechanistic principle. Rohde M, Laun K, Zebger I, Stripp ST, Einsle O*. Science Adv. 2021; 7: eabg4474

50. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by FTIR Spectroelectrochemical Titrations. Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J*. Front. Chem. 2021; 9: 669452

49. Untersuchung elektroenzymatischer H2‐Produktion mithilfe von Rotierende‐Ring-Scheiben‐Elektrochemie und Massenspektrometrie. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie 2021; 133 (18): 10089–94

48. Following electroenzymatic hydrogen production by rotating ring disk electrochemistry and mass spectrometry. Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD*. Angew. Chemie Int. Ed. 2021; 60 (18): 10001–6

47. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel UP, Happe T, Senger M*, Stripp ST*. Dalton Trans. 2021; 5 (10): 3641–50

46. Bonds from Bands. Stripp ST*. Nat. Rev. Chem. 2021
https://www.nature.com/articles/s41570-021-00256-7

45. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Hulin T, Hirota S*, Stripp ST*. Acc. Chem. Res. 2021; 54 (1): 232–241

44. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. Abul-Futouh H*, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W*. New. J. Chem. 2021; 45: 36-44

43. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST, Mebs S, Haumann M*. Inorg. Chem. 2020; 59 (22): 16474 – 88

42. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Land H, Sekretaryova AL, Huang P, Redman HJ, Németh B, Polidori N, Mészáros L, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 12789 – 801

41. [FeFe]-Hydrogenase Maturation: H-Cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy. Németh B, Senger M, Redman HJ, Ceccaldi P, Broderick J, Magnuson A, Stripp ST, Haumann M, Berggren G*. J. Biol. Inorg. Chem. 2020; 25: 777 – 88

40. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. Land H, Senger M, Berggren G.*, Stripp ST*. ACS catal. 2020; 10 (13): 7069 – 86

39. Spectroscopic Investigations under in vivo Conditions Reveal the Complex Metal Hydride Chemistry of [FeFe]-hydrogenase. Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST*, Berggren G*. Chem. Sci. 2020; 11: 4608 – 17

38. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel UP, Happe T, Winkler M, Heberle J, Stripp ST*. J. Am. Chem. Soc. 2019; 141 (43): 17394 – 403

37. Discovery of Novel [FeFe]-Hydrogenases for Biocatalytic H2-production. Land H, Ceccaldi P, Mészáros LS, Lorenzi M, Redman HJ, Senger M, Stripp ST, Berggren G*. Chem. Sci. 2019; 10: 9941 – 48

36. Geometry of the Catalytic Active Site in [FeFe]-Hydrogenases is Determined by Hydrogen Bonding and Proton Transfer. Duan J, Mebs S, Laun K, Wittkamp F, Heberle J, Happe T, Hofmann E, Apfel UP, Winkler M, Senger M, Haumann M, Stripp ST*. ACS Catalysis 2019; 9: 9140 – 49

35. Wasserstoff gewinnen mit biologischen Eisen-Schwefel-Zentren. Stripp ST*. Nachrichten aus der Chemie 2019; 67 (5): 55 – 58

34. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP1, Winkler M, Haumann M*. Inorg. Chem. 2019; 58 (5): 4000 – 16

33. Infrared Characterization of the Bidirectional O2-sensitive [NiFe]-hydrogenase from Escherichia coli. Senger M, Laun K, Soboh B, Stripp ST*. CATALYSTS 2018; 8: 530

32. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel Ulf-Peter, Hofmann E, Stripp ST, Happe T*, Winkler M*. Nat. comm. 2018; 9: 4726

31. The molecular proceedings of biological hydrogen turnover. Haumann M, Stripp ST*. Acc. Chem. Res. 2018; 51 (8): 1755 – 63

30. Spectroscopical Investigations on the Redoxchemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Laun K, Mebs S, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M*, Stripp ST*. MOLECULES 2018; 23: 1669

29. [FeFe]-hydrogenases: recent developments and future perspectives. Wittkamp F, Senger M, Stripp ST, Apfel UP*. Chem. Comm. 2018; 54: 5934 – 42

28. Wasserstoffproduktion nach dem Vorbild der Nature. Apfel UP, Stripp ST*. GIT Laborfachzeitschrift 2018; 6: 28 – 29

27. Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. Mebs S, Kositzki R, Duan J, Senger M, Wittkamp F, Apfel UP, Happe T, Stripp ST, Winkler M*, Haumann M*. BBA - Bioenergetics 2018; 1859: 28 – 41

26. Protonation/Reduction Dynamics at the Hydrogen-forming Cofactor of [FeFe]-Hydrogenases. Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M*, Haumann M*, Stripp ST*. Phys. Chem. Chem. Phys. 2018; 20: 3128 – 40

25. Protonengekoppelte Reduktion des katalytischen [4Fe‐4S]‐Zentrums in [FeFe]‐Hydrogenasen. Senger M, Laun K, Wittkamp F, Duan J, Happe T, Winkler M, Apfel UP*, Stripp ST*. Angew. Chem. 2017; 129 (52): 16728 – 32

24. Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Senger M, Laun K, Wittkamp F, Duan J, Happe T, Winkler M, Apfel UP*, Stripp ST*. Angew. Chemie Int. Ed. 2017; 56 (52): 16503 – 06

23. Bridging Hydride at Reduced H-Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry. Mebs S*, Senger M, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Stripp ST*, Haumann M*. J. Am. Chem. Soc. 2017; 139: 12157 − 60

22. Accumulating the Hydride State in the Catalytic Cycle of [FeFe]-Hydrogenases. Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST*, Happe T* Nat. Comm. 2017; 8: 16115

21. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. Senger M, Stripp ST, Soboh B*, J. Biol. Chem. 2017; 292(28): 11670 – 81

20. Wasserstoffkatalyse in Mikroalgen. Senger M and Stripp ST*. 2017 Nachrichten aus der Chemie. 2017; 65: 123 – 7

19. Stepwise Isotope Editing of [FeFe]-Hydrogenases Exposes Cofactor Dynamics. Senger M, Mebs S, Duan J, Wittkamp F, Apfel UP, Heberle J, Haumann M, Stripp ST*. Proc. Natl. Acad. Sci. U S A. 2016; 113(30): 8454 – 59

For physicists affected by the war in Ukraine