Figure: Heating a magnet without changing its magnetization

Figure: Heating a magnet without changing its magnetization

(A) A ferrimagnet consists of two spin sorts of opposite orientation (green and blue arrows). In the experiment, the atomic lattice of the ferrimagnet is heated by an extremely short terahertz laser pulse. This situation is analogous to heating the air (=atomic lattice) inside an oven that contains a pot with water (=spins). (B) Heat is transferred into the spin system and decreases the magnetization of each spin type by exactly the same amount. This process arises because spin is transferred from the blue to the green spin sort. Thus, the magnet is heated without changing its total magnetization! In the pot analogy, heat is transferred from the air outside the pot to the water inside. While the amount of water in the pot has not changed, an overpressure has built up. (C) Finally, the hot spins release their overpressure to the atomic lattice, thereby reducing the total magnetization. In the analogy, water overpressure is released through little leaks in the pot lid.