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Zusammenfassung
Die Entwicklung der Quantenmechanik war zweifellos ein Meilenstein bei der Beschrei-
bung physikalischer Gesetze über das Verhalten von Materie, ihrer Strukturen und deren
Interaktion mit Energie auf mikroskopischer Ebene. Durch sie wurde nicht nur die Ent-
wicklung in der modernen Physik, sondern auch unser Verständnis der Natur auf dieser
minuskulären Ebene revolutioniert. Durch sie wurde die absolute, ewige, omnipräsente
und allmächtige klassische Mechanik bei dem Versuch zur Beschreibung der Materie auf
Atom-und Molekularebene durch eine wellenähnliche Gleichung, für das Verhalten von
Materie auf zuvor unvorstellbaren Ebenen ersetzt. Hiermit hat die Materie probabilis-
tische wellenähnliche Eigenschaften erhalten, die in jedem Fall nicht nur die moderne
Wissenschaft, sondern auch unsere Vorstellung von Wahrnehmung und Realität beein-
flusst haben. Die Frage, ob mit der Quantentheorie tatsächlich beschrieben wird, wie die
Natur arbeitet oder ob dieses nur abstraktes mathematisches Werkzeug ist, bleibt offen.
Auch wenn die philosophischen perplexierenden Implikationen der Quantentheorie manch-
mal paradox und kontraintuitiv sind, so ist sie doch unzweifelhaft die exakteste Theorie,
die jemals entwickelt wurde. Mit der Entdeckung des Lasers und dem außerordentlichen
technologischen Fortschritt, der sich in den letzten Jahrzehnten vollzogen hat, wurde die
Erforschung der Elektron-Dynamik unter dem Einfluss von Laserfeldern zu einem ver-
heißungsvollen Verfahren zur Prüfung der Voraussage der Theorie. Bis heute hat die mit
der Quantentheorie begründete Voraussage sich beständig wieder und wieder bestätigt,
sodass sie sogar zur Goldenen Norm in der modernen Wissenschaft geworden ist. Es hat
sich dann gezeigt, dass die Entwicklung der neuen Licht- und Attosekunden-Laserpulse,
der modernen Spektroskopie, mit der die Photoionisierung von Atomen, Molekülen und
Festkörpern studiert werden kann, ein hohes Potential für die Extrahierung von wertvollen
Daten zur Elektron-Dynamik und zeitunabhängigen Phänomenen, die ausschließlich aus
den wellenähnlichen Eigenschaften der Materie erwachsen, besitzt. Sobald die Gesetze,
die die Quanten-Welt bestimmen, akzeptiert worden und die Wege zur Entdeckung der
unbekannten Welleneigenschaften, der festgestellten Materie, festgelegt worden waren,
hat ein enormes Interesse an der Manipulation dieser exotischen Eigenschaften zur Kon-
trolle der Materie, selbst eingesetzt, welches den Grundstein für die heute als Optimale
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Quantenkontrolle bekannte Theorie gelegt hat. Ziel dieser Theorie ist es, die Welleneigen-
schaften der Materie durch die technische Entwicklung von konstruktiven und destruk-
tiven Quantum-Interferenzen zwischen Licht und Materie in einer spezifischen Form mit
dem Zweck, die von Licht indizierte Dynamik in einer gewünschten Form zu steuern.
Somit wurde es durch Optimierung der Phasen und Amplituden von unterschiedlichen
Frequenz-Komponenten dem optimalen Feld ermöglicht, ein Interferenz-Muster zwischen
unterschiedlichen Quantenwegen zu ermitteln, um das gewünschte Ziel zu erreichen.
Dieses ist die Fragestellung, welches in dieser Doktorarbeit behandelt wird. Mit der
Doktorarbeit werden zwei Ziele verfolgt, und sie kann in zwei unterschiedlich, jedoch un-
trennbar miteinander verbundenen Kategorien eingestuft werden: (i) Entwicklung von
theoretischen Modellen zur Simulation der Elektron-Dynamik und, parallel hierzu (ii)
methodische Entwicklung von effizienten Algorithmen für die Adhoc-Kontrolle von pho-
toelektronischen und photoionisch-verwandten Beobachtungen. Schwerpunkt der ersten
Kategorie ist die Entwicklung von theoretischen Modellvarianten, mit denen die Interak-
tion von Licht und Materie für die Extraktion und die Kontrolle der quantenmechanischen
Beobachtungen beschrieben werden. In diesem Zusammenhang wird in der Doktorarbeit
dargestellt, wie spezifische Kontrollbeobachtungen und die Entdeckung, der sich darauf
begründenden Kontrollmechanismen, ein besseres Verständnis der damit verbundenen
Quanteneigenschaften ermöglichen können. Als Vorbedingung müssen spezifische und
gut definierte Optimierungsfunktionale vorhanden sein. Hierbei finden bei der Konstruk-
tion der Optimierungsfunktionalen für die Kontrolle der photoelektronischen Momentum-
Verteilung und Kohärenz im Photoion unter gleichzeitiger Berücksichtigung der Ein-
schränkungen durch das System und das Ionenfeld in Verbindung mit den analytischen
Techniken zur Erläuterung der asymmetrischen Eigenschaften in dem photoelektronischen
Spektrum von chiralen Molekülen besondere Bewertung. Es wird ein neuer Ansatz zur
Beobachtung von elektroschwachen Paritätsstörungseffekten besprochen und vorgeschla-
gen. Außerdem soll mit dieser Doktorarbeit auch gezeigt werden, wie es eine Begrenzung
der Kontrollressourcen ermöglicht, neue physikalische Mechanismen, die niemals zuvor
erforscht worden sind, festzustellen, dieses resultiert ausschließlich aus der Welleneigen-
schaft der Materie. Zuletzt wird unbedingt auch eine extensive Methodenentwicklung
von numerischen Algorithmen im Rahmen dieser Doktorarbeit benötigt. Hiermit wird
die zweite Kategorie beschrieben, durch die der Einsatz eines effizienten pseudospek-
tralen numerischen Propagationansatzes und die Entwicklung einiger neuer Optimierung-
stechniken zum Zwecke der Kontrolle spezifischer Eigenschaften, der photoelektronischen
Momentum-Verteilung und der Kohärenz in dem Photoion, zum Gegenstand gemacht
werden.
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Abstract
The development of quantum mechanics unquestionably made a peerless revolution on the
path to describe the physical laws describing the behavior of matter, its structure and the
interaction with energy at microscopic scales. It revolutionized not only the development
of modern physics, but also our understanding of nature at these minuscular scales. It de-
throned the absolute, eternal, omnipresent and all-mighty classical mechanics in the quest
of describing matter at the atomic and molecular level by placing a wave-like equation
to describe the behavior of matter at scales never imagined before. It endowed matter
a probabilistic wave-like character that would definitively revolutionize not only modern
science, but also our concept of perception and reality. Whether the quantum theory
indeed describes how natures works or whether it is just an abstract mathematical tool
remains unanswered. Although the philosophical perplexing implications of the quantum
theory tends sometimes to seem paradoxical and counterintuitive, it is undoubtely the
most accurate theory ever developed.

With advent of the laser and the extraordinary technological progress made over the
past decades, studying the electron dynamics under the influence of laser fields became
the propitious scenario to test the predictions of the theory. Until this day, the prediction
invoked by the quantum theory has been unequivocally reproduced again and again, to
the point of becoming the Golden standard in modern science. It became then clear
that with the development of new light and attosecond laser pulses, modern spectroscopy,
which study photoionization in atoms, molecules and solids, possesses a high potential to
extract invaluable information about electron dynamics and time-dependent phenomena
that arise exclusively from wave-like properties of matter.

Once the laws governing the quantum world were accepted and the ways to unravel
the unknown wave properties of matter established, an enormous interest in manipulat-
ing such exotic properties, for the control of matter itself, started, giving birth to what
is nowadays known as Quantum Optimal Control Theory. This theory is designed to
exploit and manipulate the wave properties of matter by engineering constructive and
destructive quantum interferences of light and matter in a specific fashion, with the pur-
pose of steering the dynamics induced by light into a desired way. Thus, by optimizing
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the phases and amplitudes of different frequency components, the optimal field is able to
excite an interference pattern among different quantum pathways to achieve the desired
target. This is the problem addressed in this thesis.

The object of this doctoral thesis is two-fold and can be classified into two, but in-
trinsically related categories: (i) development of theoretical models for the simulation of
electron dynamics and in parallel to this, (ii) method development of efficient numerical
algorithms for ad hoc control of photoelectron and photoion-related observables. The
first category primarily focuses on the development of a variety of theoretical models de-
scribing the interaction of light and matter for the extraction and control of quantum
mechanical observables. In this context, this doctoral work describes how controlling spe-
cific observables, and unraveling the underlying control mechanisms, allows for a better
understanding of the quantum properties that are involved. As precondition, specific
and well defined optimization functionals are required. Construction of the optimization
functionals for the control of photoelectron momentum distribution and coherence in the
photoion while taking into account constraints imposed over the system and ionizing field
are particularly emphasized, in conjunction with analytical techniques to explain asymme-
try properties in the photoelectron spectrum of chiral molecules. A new approach for the
observation of electroweak parity violation effects is discussed and proposed. Furthermore,
this thesis also shows how restricting the control resources allows to find novel physical
mechanisms, never explored before, which arises exclusively from the wave properties of
matter.

Last but not least, extensive method development of numerical algorithms were un-
avoidably needed over the course of this doctoral thesis. This defines the second category,
and introduces the implementation of an efficient pseudospectral numerical propagation
approach and development of a pair of new optimization techniques designed for the pur-
pose of controlling specific properties of the photoelectron momentum distribution and
coherence in the photoion.
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Introduction and overview of
the thesis
With the development of the laser and the advent of new light sources to produce short,
coherent electromagnetic radiation of high intensity and broad spectrum, the response
of atoms and molecules to controllable electromagnetic fields became a powerful tool to
unravel the quantum signature of matter and the fundamental interactions governing
scales never explored before. Electronic and nuclear dynamics induced by these ultrafast
and intense light sources allows to study the structure of matter at its most fundamental
level. In this context, photoelectron spectroscopy became a prime tool for characterizing
the light-matter interaction at these timescales. It also designed to study the inherent
electronic correlations. In fact, photoelectron momentum distributions contains not only
the fingerprints of the interaction of electrons with the ionizing electromagnetic field, but
also their interaction and their correlation with each other.

The present thesis is focused on the theoretical investigation of the electron dynamics
resulting from the interaction of atomic systems with optimized light pulses in the multi-
photon ionization regime. Optimized light pulses are referred to as engineered pulses
that steer the dynamics in a specific fashion with the purpose of achieving a desired
outcome. This requires the development of theoretical models to simulate the electron
dynamics and implementation of optimal control algorithms capable of engineering the
ionizing electromagnetic field in order to accomplish the desired “target”. In language of
optimal control theory, this is equivalent to a functional minimization problem. In the
context of this thesis, the functionals that we have constructed are often written in terms
of photoelectron-related quantities, such as photoelectron spectra, photoelectron angu-
lar distributions or total yield. Ultimately, inspection of the photoelectron momentum
distributions obtained with the optimized pulses serves as a prime tool to unravel the
underlying control mechanisms.

This doctoral thesis is partitioned into two main parts, each of them composed of sev-
eral chapters. Part I is intended to present, in general terms, the theoretical framework
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of this work, and collects the theoretical approaches and numerical methods utilized over
the course of my work for the solution of the many-body time-dependent Schrödiger equa-
tion. Additionally, it describes several state-of-the-art optimization techniques commonly
utilized, while explaining the performances and limitations of each of them. Part I and
the chapters thereof have been included to this thesis as a attempt to provide an elemen-
tal inspection to the general principles behind the improvement accomplished during the
preparation of my doctoral work.

Chapter 3 in Part I introduces several theoretical approaches for solving the many-
body Schrödinger equation and analyze the handicap of each of these while outlining the
urgent necessity of incorporating the electronic correlations. It also justifies our choice of
working in the context of the time-dependent configuration interaction singles.

Chapter 4 discusses several numerical grid-based approaches for solving the time-
dependent Schrödinger equation. Finite-Element-Lagrange-mesh-based methods, also
commonly referred to as FE-DVR, for finite-element discrete variable representation, and
the Dynamical Fourier method are of particular interest, due to their flexibility for evalu-
ating the representation of operators in their respective basis, as well as for their numerical
performances. Chapter 4 closes by covering two complementary approximation methods
for wavefunction propagation intensively utilized during my work, namely the Chebychev
and the Short Iterative Lanczos propagators, that can be used once the basis for repre-
senting the initial state and action of operators have been chosen, e.g. in the framework
of the FE-DVR or Dynamical Fourier methods.

Section 5 presents a concise survey of state-of-the-art numerical approaches for scalar
function optimization. Their interests, performances and limitations are emphasized. In
fact, although very efficient in particular situations, the efficiency of the optimization algo-
rithms can be drastically compromised depending on the complexity of the optimization
target. Of particular interest are the monotonically convergent Krotov’s optimization
method and Brent’s principal axis formalism. The goal here is to provide, in general
lines, a non-rigorous inspection of the most widely used optimization algorithms. This
brief introductory survey has been introduced to justify the modifications and adaptations
that have been required to be performed in the context of this thesis to improve their
performances in order to accomplish our optimization purposes.

Finally, Part I concludes with Chapter 6. It describes an efficient numerical formal-
ism for the evaluation of photoelectron momentum distributions. The approach has been
adapted to the TDCIS formalism and its efficiency relies on the so-called wave function
splitting method. The latter allows to significantly enhance the performances of the propa-
gation since the use of extremely large radial grids generally required for the computation
of photoelectron-related observables are systematically avoided.
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Part II is devoted to the most important results obtained during my doctoral work,
and discusses, in detail, six different projects in which I was involved. Since method
development of numerical algorithms as well as analytical techniques were extensively
utilized for the accomplishment of the different projects, they deserve a privilege place in
this thesis and therefore they have been carefully included in Part II or in the Appendix.

Chapter 7 in Part II presents in detail an efficient grid-based approach for solving the
time-dependent Schrödinger equation. One of the most striking features of the scheme
we have developed is that it outperforms the well-known numerical efficiency of the Dy-
namical Fourier Method (DFM). The attractiveness of the DFM relies on the fact that
it avoids full matrix-vector operations when evaluating the action of the kinetic energy
operator by means of the Fast Fourier transformations. This procedure grants the DFM a
semi-linear scaling, compared to a cubic scaling for methods using differential operators.
The alternative approach we have developed takes ideas of the FE-DVR to construct
sparse matrix representations of the kinetic energy operator. Therefore, although our
method still relies on matrix-vector multiplications instead of Fourier transformations,
these evaluations concern now sparse matrix-vectors operations. For the same accuracy,
our propagation method is up-to four times faster, compared to the DFM. A detailed ex-
planation for the optimal choice of the pseudospectral grid parameters in order to achieve
such performance is presented. Our scheme then allows to significantly decrease the nu-
merical effort for optimization purposes, since optimization algorithms are generally based
on iterative propagation schemes.

The second project is presented in Chapter 8. Here, an efficient optimization toolbox
for the control of photoelectron momentum distributions is developed. Our formalism
is based on the many-body TDCIS approach. This allows to account for the electronic
correlation effects which are ultimately inferred from specific patterns in the photoelec-
tron distribution. Importantly, the algorithm is constructed in such a strategic way that
explicit knownledge of the final state is not required, only its energy and/or angular dis-
tribution. The method is exploited for (i) finding external field that initiate the dynamics
in such a way that the resulting photoelectron spectrum coincides with the desired pre-
scribed energy distribution. Alternatively, the method is used for (ii) maximizing of the
anisotropy of photoelectron emission between the upper and lower hemispheres. Single-
and multiple-channel systems, such as hydrogen and argon are used as paradigms. Scru-
tinizing the properties of the resulting photoelectron spectrum allows us to elucidate the
physical mechanisms for achieving maximal anisotropy of photoelectron emission.

Projects 3 and 4 are conjointly presented in Chapter 9. The purpose here is two-
fold: first, we aim to suppress the loss of coherence within the attosecond photoionization
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regime. This is achieved by optimizing pulses that create well-defined coherent superpo-
sition of states with prescribed population ratio. To characterize pulses that achieve such
perfect coherence, an extension of the performances of the standards optimization meth-
ods, due to technical specificities of the propagation scheme, become unavoidable. Thus,
we introduce and propose an efficient approach relying on a sequential parametrization
technique (SPA) and based on the principal axis optimization method, due to Brent.
Our approach significantly increases the performances of the latter, and thus allows us to
accomplish our optimization goals with extreme flexibility. Ultimately, the second goal is
to exploit the versatility of the SPA technique to inspect the physical mechanisms pro-
moting the suppression of decoherence among hole states . Argon and xenon are used as
paradigms. Our optimization technique allows to find well-established and new physical
mechanisms involving multi-photon processes that allow to generated perfect coherence
among the hole states.

In Chapter 10, a theoretical model for the description of photoelectron circular
dichroism (PECD) of chiral molecules in the (2+1) resonantly enhaced multi-photon ion-
ization (REMPI) regime is derived. Our model is based on two-photon pre-photoselection
from randomly oriented chiral molecules and successive one-photon ionization of the pho-
toselected molecules. The model relies on a perturbative treatment of the light-matter
interaction within the electric dipole approximation and combines an ab initio descrip-
tion of the non-resonant two-photon absorption with a single-center expansion of the
photoelectron wavefunction into hydrogenic continuum functions. This allows to account
for the Coulomb interaction between photoelectron and photoion as well as electronic
correlations in the transition to the intermediate electronically excited state. Making
heavily use of the symmetry properties of the Wigner rotation matrices, which describe
the frame-transformation between the molecular and laboratory frames of references while
accounting for the randomness of the distribution, we show that out model correctly re-
produces the basic symmetry behavior expected under exchange of molecular handedness
as well as exchange of light helicity. Fenchone and camphor are utilized as paradigms and
semi-quantitative agreement with the experimental data is found.

A proposal based on time-resolved spectroscopy approach for the observation of the
signature of electroweak parity violation effects is presented in Chaper 11. A direct
consequence of the electro-weak interaction is the admixture between different parity
states. Here, we show that information about such admixture can be transmitted by
the outgoing photoelectron and thus, signature of the parity non-conservation (PNC) can
be extracted upon inspection of specific properties of the photoelectron spectrum. The
magnitude of such admixture is, however, extremely small. In the hope of detecting such a



9

small effect, a pump-probe spectroscopy approach is suggested. Ultimately, we show that
combination of the pump-probe time-delay-dependent photoelectron yield obtained under
electric field reversal (combined signal) allows to separate the admixtures due to the weak
Hamiltonian and those generated by the electric field component of the ionizing laser field,
thus to isolate the admixture of interest. The combined signal then presents oscillations
as a function of the time-delay between the pump and probe pulses with well-defined
frequency components. These oscillations vanish if the PNC potential is omitted from
the equations of motion. Thus, spectral analysis of the combined signal with observation
of spectral components at well defined frequencies irrefutably indicates observation of the
PNC effect.

Finally, Chapter 12 provides a general summary and conclusion of this thesis pre-
senting the main achievements and outlining possible directions for future research in the
context of quantum optimal control of photoelectron spectroscopy.
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3.1 The Born-Oppenheimer approximation

Consider a multi-electron system consisting of a fixed number M of nucleons and Ne

electrons, such as an atom or molecule in the absence of any external electromagnetic
field. If we choose to represent each nucleon and electron by their position R ≡ R1, . . .RM

and r ≡ r1, . . . rNe , respectively, the full quantum mechanical state of the system, which
determines the nuclear and electronic structure and properties of the many-body system in
any of its available stationary states, is fully dictated by the many-body time-independent
Schrödinger equation,

Ĥ0(r,R)ΨN(r,R) = EΨN(r,R) (3.1)

13
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where ΨN(r,R) ≡ ΨN(r1, . . . rNe ,R1, . . .RM) is said to be the wave function of the sys-
tem, and where Ĥ0 is the non-relativistic field-free Hamiltonian defined by

Ĥ0 =
Ne∑

i

− 1
2mi

∇2
i

︸ ︷︷ ︸
T̂e

+
M∑

I

− 1
2MI

∇2
I

︸ ︷︷ ︸
T̂n

+ 1
2

M∑

I 6=J

ZI ZJ
RIJ

︸ ︷︷ ︸
V̂nn

+ 1
2

Ne∑

i6=j

1
rij

︸ ︷︷ ︸
V̂ee

−
Ne∑

i

M∑

I

ZI
|RI − ri|

︸ ︷︷ ︸
V̂ne

, (3.2)

where mi and MI denote the mass of the electron and nucleons labelled i and I, respec-
tively. The terms rij ≡ |ri−rj| and RIJ ≡ |RI−RJ | refer to the distance between the elec-
trons i and j and that between the nucleons I and J , respectively. Finally, ZI symbolizes
the electric charge of the nucleon I. Note that when relativistic corrections and spin-orbit
effects are important, cf. Section 11.2 in Chapter 11, their respective interaction Hamil-
tonian can can be simply added to the Hamiltonian Ĥ0. The first and second terms in
Eq. (3.2) describe the kinetic energy of the electrons and nuclei, respectively. The mutual
electron-electron and nucleon-nucleon electrostatic interaction (repulsion) are symbolized
by V̂ee and V̂nn, respectively. Last but not least, the term V̂ne defines the electrostatic
attraction between the electrons and the nuclei. It is this term, i.e. V̂ne, that couples the
electronic and nuclear degrees of freedom, thus preventing from treating the electronic
and nuclear motion separately. In particular, this term prevents from writing the solution
as a single product of electronic and nuclear parts, i.e. Ψ(r,R) = Ψe(r) Ψn(R). However,
assuming the nuclei to be nearly fixed at positions RI with respect to the motion of the
electronic cloud, which can be justified by the fact that the nuclei are much more massive
than electrons, allows to separate nuclear and electronic degree of freedom and hence to
write the total wave function as a simple product of nuclear and electronic states. The
validity of the fixed-nucleus model was first established by Born and Oppenheimer [1]
and such an approximation is known as the Born-Oppenheimer approximation. Within
this frozen-core picture, the nuclear positions RI enter merely as fixed parameters in
Eq. (3.2). In this approximation, the electronic wave function is obtained upon solution
of the so-called clampled-nuclei Schrödinger equation [2]

Ĥe(r) Ψe(r) = EeΨe(r) , (3.3)

where Ĥe(r) ≡ Ĥe(r; R), the electronic wave function Ψe(r) ≡ Ψe(r; R) and the electronic
energy Ee = Ee(R) 1 are R− parametrized. The electronic Hamiltonian reads

Ĥe(r; R) = T̂e + V̂ee(r) + V̂ne(r; R) . (3.4)

1Varying the nuclear positions R adiabatically, i.e. by small steps and iteratively solving the clampled-
nuclei equation for fixed R results in the so-called potential energy surface or adiabatic surface Ee(R).
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It is customary, although not systematic, to neglect V̂nn from Eq. (3.3) since it is just a
constant that shift Ee by some constant amount. The Hamiltonian Ĥe defines the field-
free electronic Hamiltonian and plays an important when studying the response of the
electronic wave function 2 to an external electromagnetic field, i.e. the electron dynamics3.

3.2 The many-body electron dynamics

Having defined Ĥe(r) and obtained the many-body electronic wave function Ψe(r) ≡
Ψe(r1, . . . rNe), we now focus our attention to the electron dynamics as a result of the
response of the system, initially dictated by the Hamiltonian in Eq. (3.2), to an external
time-dependent electromagnetic field. At first order, electromagnetic fields induce changes
in both, nuclear and electronic distributions [3]. As opposed to what we have previously
assumed, the nuclei is now allowed to move from its frozen equilibrium position, which
in turn, modifies the electronic density distribution. Furthermore, light-induced mod-
ifications of the electronic density may also affect the fixed nuclear geometry assumed
by frozen-core approximation, forcing the nuclear distribution to rearrange. Such rear-
rangements then react back on the electronic distribution, causing the latter to rearrange,
which again modifies the nuclear distribution, reacting back again on the electronic distri-
bution, and so on and so forth. In such a vicious circle, changes in the nuclear geometry
definitely affect, directly or indirectly, the electron density distribution. In simple terms,
the Born-Oppenheimer approximation breaks down. Nevertheless, in specific situations,
the frozen-core approximation may still be valid, even in the presence of an external time-
dependent excitation [4]. The physical motivation behind the latter assumption relies
on the fact that the time-scale of nuclear motion is several orders of magnitude larger
compared to that of electrons. In this context, the response of an atom or molecule
can be fully considered as a purely electronic process 4 and all relevant details of the
atomic and molecular dynamics may still be qualitatively explained in the context of the

2Having made the clamped-nuclei approximation, the second step in the Born-Oppenheimer approx-
imation consist in evaluating the nuclear wave function Ψn(R), which is obtained upon solution of
(T̂n + Ee)Ψn(R) = ETΨ(R), where ET is the total energy of the system, including the contributions
from electronic motions, nuclear vibrations, as well as rotation and translations of the system. Finally,
the total wave function can be obtained using an expansion of the form Ψ(r,R) =

∑
k Ψe,k(r; R)Ψn,k(R),

where k runs over all eigenfunctions obtained for a fixed R.
3assuming a fixed nuclei Tn = 0 and Vnn = const.
4Sensu stricto, a full quantum mechanical treatment of the coupled electronic and nuclear interaction is

required for a proper description of the electron- and nuclear dynamics. It has been shown, however, that
semi-classical treatment of coupled electronic (quantum) and nuclear (classical) dynamics in the context
of the Ehrenfest method [5] does not destroy the relevant picture of the electron dynamics, although it
can introduce fast dephasing in the electronic distribution, see e.g. Refs. [3, 6–8] and references therein.
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Born-Oppenheimer approximation. Within this picture, all eventual losses of electronic
coherence due to the interaction with the ionic core are neglected and electronic motion
and electronic density rearrangements are only due to the interaction with the driving
external field. This is the context assumed in this work. In this approximation, the
electron dynamics of a multi-electron system under the influence of a time-dependent
potential Ĥem(r, t) generated by an external electromagnetic field is fully dictated by the
time-dependent Schrödinger equation

i
∂

∂t
Ψe(r1, . . . , rNe , t) =

[
Ne∑

i

(
−∇

2
i

2 + V̂ne(ri) + Ĥem(ri, t)
)

(3.5)

+
Ne∑

j>i

V̂ee(ri, rj)

 Ψe(r1, . . . , rNe , t) ,

where V̂ee(ri, rj) refers to the electron-electron interaction potential arising from mutual
electrostatic repulsion between two electrons pairs, labeled i and j and located at ri and
rj, respectively, namely

V̂ee(ri, rj) = 1
|ri − rj|

. (3.6)

The term V̂ne(ri) in Eq. (3.5) describes the potential energy arising from the electrostatic
interaction of the electron in ri in the field of the charged particles in the nuclei, located
at fixed positions Rn, namely

V̂ne(ri) ≡ V̂ne(ri; {Rn}) =
Nn∑

n

Zn
|ri −Rn|

. (3.7)

Although the Born-Oppenheimer formalism allows to considerably reduce the numerical
effort for both time-dependent and time-independent problems by separating the nuclear
and electronic coordinates, and despite the fact that computation power have significantly
increased over the last decades, numerical solution of the multi-electron time-dependent
Schrödinger equation becomes prohibitively expensive, even for relatively small systems.
Fortunately, a plethora of alternative approaches, relying on relatively accurate context-
dependent approximations, exists. The following lines are intended to introduce the ap-
proximation methods adopted in the context of this thesis for the solution of both, the
many-body time-dependent and time-independent Schrödinger equation.
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3.3 Single-active-electron model

Undoubtedly one of the cheapest numerical approaches for solving the many-body electron
dynamics relies in the so-called single-active-electron (SAE) approximation [9]. The SAE
formalism reduces the entire many-body structure to a fronzen-core single-active electron
picture, whereby only a single protagonist electron is assumed to be exposed to an effective
time-independent local potential VSAE(r; γj). In the presence of a external interacting
electric field E(t) and within the strict dipole approximation, the electron dynamics is
described by the effective single-particle time-dependent Schrödinger equation, that, in
the framework of the SAE takes the form [10]

i
∂

∂t
Ψ(t, r) =

(
−∇2

2 + VSAE(r; {γj})− E(t) · r
)

Ψ(t, r) , (3.8)

where {γj} denotes a set of system-dependent variables that needs to be adjusted. Con-
struction of the local SAE potential is rather straightforward: in the vecinity of the origin,
the local potential is dominated by the nuclear potential [11]

lim
r→0+

VSAE(r; {γj}) ∼ −
Z

r
, (3.9)

where Z stands for the nuclear charge. On the contrary, the behavior for very large
distance is determined by the asymptotic expression,

lim
r→∞

VSAE(r; {γj}) ∼ −
1
r
. (3.10)

In between these two limits, the model is interpolated by exploiting the semi-empirical
character of the latter, namely by fitting the parameters γj such that the ionization
potential and excitation energies reproduces the experimental values [12]. A myriad of
parametrization forms for the energy-consistent effective potential are widely available in
the literature and they are also known as pseudopotentials5. For instance, in the case
where the spin-orbit is not resolved, a standard didactic example of such model potentials
is given by [14]

VSAE(r;α, β, γ) = −1
r
− α e

−βr

r
−
(
Z − 1− α

)e−γr

r
. (3.11)

5Historically introduced in Ref. [13] as a “new approximation method in the problem of many-body
electrons” for closed-shell atoms, whereby the effective potential for potassium was parametrized as
V (r) = −1/r + (2.74/r) e−1.16 r
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More sophisticated approximations accounting for appropriate short-range background
screened interactions arising from core-polarization effects 6 [16, 17], split-orbit cou-
plings [18] and relativistic corrections [19–21] are also available. Consider, for in-
stance [16, 17]

VSAE(r;αD; β`;B`; ρ) = −Z
r
− αD

2r4

(
1− e−(r/ρ)2)2

+
`max∑

`=0
B` e

−β` r
2|`〉〈`| , (3.12)

where αD is the dipole polarizability of the core, and ρ a cut-off parameter. The term
|`〉〈`| denotes the projection operator and ` the angular momentum quantum number.
In practice, the parameters are αD, and ρ are tabulated, while B`, β` are fitted to
the experimental atomic valence and Rydberg states [17]. It has been shown that in
specific situations, i.e. when the frozen ionic core is a good approximation, the SAE
formalism quantitatively reproduces experimental observations such as ATI [22], HGG
spectra [23, 24] and single-ionization production [22, 24–26], which makes the SAE one
of the most attractive “many-body” approximations. However such attractiveness and
simplicity of implementation comes with a price. In fact, the SAE approximation re-
mains a single-channel theory –describing the full dynamics of the valence shell electron
while keeping the ionic ground state frozen, therefore still ignoring all electron correla-
tion effects and interaction among different orbitals. Furthermore, it neglects all relevant
details associated with the dynamical description of the residual ion, and the dynamical
interaction of the latter with the excited electron, focusing only on the wave-packet dy-
namics of the single electron [10]. Consequently, it usually breaks down when considering
molecules or even heavier noble gas atoms, for which the electronic correlations become
relevant [10, 25, 27]. An alternative procedure allowing to improve the theoretical calcu-
lations consist in extending the SAE approach by means of the time-dependent Density
Functional Theory (TDDFT) in the Kohn-Sham formulation [28]. However, calculation
of photoionization of atoms within the latter formulation [29] have shown to be affected
by similar limitations [10, 30–34]. In fact, although the TDDFT is formally an exact
reformulation of quantum theory and undoubtedly represents a good trade-off in terms
numerical costs and effectiveness, the current state of the theory relies on non-rigorous
non-first principles-based approximations of the exchange-correlation energy functional,
therefore failing even qualitatively in certain cases, particularly when considering strong

6Refers to the response of the ionic core to external electromagnetic fields causing the former to distorts
from its initially spherically symmetric equilibrium geometry, giving rise to an induced dipole moment
proportional to the polarizability of the ion, that in turn interact with the valence electron. The field of
the distorted core reacts back on the valence electron, adding to its potential energy a term proportional
to e2/2r4 [15].
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correlated systems [32–34], since relying on a single-determinant ansatz [35].

3.4 Hartree-Fock and post-Hartree-Fock approximations: An overview

Unquestionably one of the simplest and naivest approaches for constructing the N-electron
wave function is to assume that the latter can be expressed as an ordinary product of
non-interacting single particles states wave functions,

Φ0(r1, . . . rN) =
N∏

i=1
ϕi(ri) . (3.13)

Such an ansatz is the founding principle of the Hartree method [36]. The biggest hand-
icap of the Hartree approach is that the many-body wave function is not antisymmetric
under electron exchange. This prerequisite arises from the Pauli exclusion principle.
The antisymmetry requirement can be fulfilled, however, by invoking the so-called Self-
consistent-Hartree-Fock formalism. The latter assumes that the exact many-body wave
function of a fermionic system can be approximated by a single Slater determinant,

Φ0(r1, . . . rN) = 1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)

... ... ... ...
ϕN(r1) ϕN(r2) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.14)

In fact, with this single-determinant ansatz in hand, the N-electron wave function indeed
fulfills the Pauli exclusion principle, since the resulting wave function is anti-symmetric
under exchange of two electrons, namely

Ψ(r1, . . . , ri, . . . rj, . . . rN) = −Ψ(r1, . . . , rj, . . . ri, . . . rN) . (3.15)

The accuracy with which the resulting equations, known as Hartree-Fock equations are
solved, is directly determined by the completeness of the expansion basis in the Slater
determinant, cf. Eq. (3.14). Although the accuracy can be improved by increasing the
number of basis, there is still an enormous handicap in the Hartree-Fock theory: by writing
the many-body wave function as a single Slater determinant, Pauli’s exclusion principle
for fermions are now fulfilled, but the wavefunction is still written as a single product of
non-interaction single particle states. However exact wave functions, cannot generally be
expressed as single determinants. In fact, writing the wave function as a simple product
implies that the N-particle fermion system is formed by single particle states that do not
interact with each other, they are uncorrelated. Only correlation effects arising directly
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from the antisymetrization are accounted for. For instance, correlation effects due to
the electron exchange interaction term, also known as Fermi correlation, are accounted
for. This term prevent two parallel-spin electrons from being located at the same point
in space, and arises, by construction, from the indistinguishability and antisymetrization
ansatz that the Hartree-Fock formalism makes uses of.

However, The Hartree-Fock approximation does not account for the Coulomb corre-
lation, due to the fact, as already mentioned, of writing the N-electron wave function as
a single (determinant) product. Consequently, the total electronic energies are always
above the exact ones, and their difference is known as correlation energy [37].

In an attempt to include such Coulomb correlations, many approaches, often referred
to as post-Hartree-Fock methods have been developed over the past years. Among
the most prominent ones, the Coupled Cluster (CC) method [38–40], the Configuration
Interaction (CI) [41], the Møller-Plesset perturbation theory [42], Multi-configurational
self-consistent field (MCSCF) [43] are also available. In this thesis, the treatment of the
many-body structure and incorporation of the electronic correlations are described in
terms of the CI formalism. It is briefly described in the following.

3.4.1 The Configuration Interaction

The CI formalism makes a striking step forward on the path to include the unavoidable
electronic correlations by going beyond the single-determinant wavefunction ansatz. The
essence of the CI relies on expanding the many-body electron wave function in terms of
many-body electron basis, which are constructed by performing substitutions from the
original Hartree-Fock determinant. The latter describes the ground state of the many-
body wave function schematized in Fig. 3.1 (left).

Physically speaking, these substitutions are equivalent to excitations occurring from
the Hartree-Fock ground state determinant, |ΦN

0 〉, to higher unoccupied orbitals. Specif-
ically, the wave function is expanded in terms of singly |ΦN

1 〉, doubly |ΦN
2 〉, triply |ΦN

3 〉 ,
quadruply |Φ4

Q〉 and so forth excited Slater determinants, where electrons are promoted
from an occupied orbital to a virtual orbital starting from the Hartree-Fock ground state
Slater determinant, namely

|ΨN〉 = α0 |ΦN
0 〉︸ ︷︷ ︸

Hartree-Fock

+
∑

i,a

αai |Φa
i 〉

︸ ︷︷ ︸
single

+
∑

i<j,a<b

βa,bi,j |Φa,b
i,j 〉

︸ ︷︷ ︸
double

+
∑

i<j<k,a<b<c

γa,b,ci,j,k |Φa,b,c
i,j,k 〉

︸ ︷︷ ︸
triple excitations

+ . . . ,
(3.16)

where the indexes i, j, k, l exclusively symbolizes the occupied orbitals, whereas their
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Figure 3.1: Configuration Interaction: Schematic representation (not drawn to scale)
of the Hartree-Fock ground state (left), one-particle-one-hole (middle) and two-particle-
two-hole (right) excitations arising from the substitution of the occupied spin-orbitals in
the Hartree-Fock ground state with initially unoccupied spin-orbitals. Filled and unfilled
circles symbolize electrons and holes respectively, occupying the different spin-orbitals.

counterparts a, b, c, d are referred for labeling both, occupied and virtual orbitals.

For the single substitution (or excitation) scenario, each Slater determinant |Φa
i 〉 is

constructed by replacing the spin-orbital i in |Φ0〉 with the virtual (not occupied) spin-
orbital a. This substitution describes the excitation from the occupied orbital i in the
Hartree-Fock ground state to an unoccupied orbital a, cf. Fig. 3.1 (middle). For the double
excitation case, two electrons in the Hartree-Fock gound state lying in two different and
contiguous spin-orbitals i and j, with j > i are simultaneously promoted to energetically
higher orbitals: that on i being promoted to a and that on j to b with b > a in order
to fulfill the Pauli exclusion principle, cf. Fig. 3.1 (right). The sequence is repeated to
account for higher order processes. This set of different orbital occupancies is referred to
as configurations. The attractiveness of the CI relies on its generality and versatility: the
formalism not only applies to closed-shell systems, but also to open-shell atoms, excited
states and to complex systems even far from their equilibrium geometries [44]. Further-
more, the formalism is not exclusively restricted to simple atoms, but its domain of appli-
cability can be extended to large molecules [10]. While the full configuration interaction
contains all possible configurations, calculations accounting for very high order process
become very easily computationally prohibited. In order to render calculations manage-
able, truncation of the configuration-interaction-space becomes unavoidable. Thus, it is
almost universally customary, with a few exceptions, to delimit the configuration-space
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to single and doubles excitations at the most. These are referred to as Configuration
Interaction Singles (CIS) and doubles (CISD), respectively. The matrix representation
of the Hamiltonian operator in the configuration interaction formalism reads [45],

ĤN

0 =




〈Φ0|Ĥ|Φ0〉 0 〈Φ0|Ĥ|Φ2〉 0 . . . 0
0 〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 〈Φ1|Ĥ|Φ3〉 . . . 〈Φ1|Ĥ|ΦN〉

〈Φ2|Ĥ|Φ0〉 〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 〈Φ2|Ĥ|Φ3〉 . . . 〈Φ2|Ĥ|ΦN〉
0 〈Φ3|Ĥ|Φ1〉 〈Φ3|Ĥ|Φ2〉 〈Φ3|Ĥ|Φ3〉 . . . 〈Φ3|Ĥ|ΦN〉
... . . . . . . . . .

. . . ...
0 〈ΦN|Ĥ|Φ1〉 〈ΦN|Ĥ|Φ2〉 . . . . . . 〈ΦN|Ĥ|ΦN〉




, (3.17)

where the notation |ΦI〉 = |ΦN
I 〉 has been used to ease reading. It is worth mentioning

that the basis |ΦI〉 correspond to many-body fermionic wave functions, represented by
single Slater determinants. Note that in Eq. (3.17), all elements in the block 〈Φ0|Ĥ0Φ1〉
vanishes. This arises from so-called Brillouin’s theorem7. Application of this theo-
rem to the the matrix elements involving the singly-excited determinants |Φa

i 〉, which
differs from the Hartree-Fock determinant by only one spin-orbital, and the Hartree-Fock
ground states implies 〈Φ0|Ĥ0|Φa

i 〉 = 0. Additional vanishing block matrix elements for
higher order excitations may appear (for instance 〈Φ0|Ĥ0|Φa,b,c

i,j,k 〉 = 〈Φ0|Ĥ0|Φa,b,c,d
i,j,k,l 〉 = 0) by

virtue of the Slater-Condon Rule8 [46–48]. Single excitations do not couple, by virtue of
Brillouin’s theorem, to the Hartree Fock reference determinant. In fact, by virtue of the
Slater-Condon Rule, only double excitations can interact with the HF ground state, i.e.
〈Φ0|Ĥ|Φ2〉 ≡ 〈Φ0|Ĥ0|Φa,b

i,j 〉 6= 0 in Eq. (3.17). Consequently, it is therefore expected double
excitations to make the most relevant contributions to the CI wave function [45], which
is indeed was is observed in numerical simulations [49]. These contributions are particu-
larly relevant when correlations among different orbitals are important. However, when
it comes to describe one-electron properties, such as transition moments, et cetera, single
excitations become crucial, particularly when the laser field driving these transitions are
of moderate intensity, such that higher order excitations are less probable to occur. This is
the context adopted in this thesis. Also, the so-called frozen core approximation, whereby
the total and spin angular momenta of the ground state are assumed to be equal to zero, is
systematically invoked in our numerical calculations. We recall that the later approxima-

7The Brillouin’s theorem states that ”given two Slater determinants constructed from orthogonal
spatial spin-orbitals satisfying the Hartree-Fock equations, if both Slater determinants differ in only one
spatial orbital, then the matrix element of the many-body Hamiltonian between both determinants are
strictly zero”

8The Slater-Condon rule states that “any matrix element of a two-body operator with Slater deter-
minants differing in three or more spin-orbitals vanish”
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tion constrains all inner-shell electrons to remain doubly occupied. This approximation,
commonly used in the context of many-body calculations [10, 25, 28, 50–53] is found to be
justified by considering that the valence electrons are more sensitive to their environment
in comparison to their counterpart inner-shell electrons. From a numerical point of view,
such an approximation considerably reduces the numerical effort for the evaluation of the
matrix elements in the CIS picture. The field-free Hamiltonian Ĥ0, reads [10, 25]

Ĥ0 = F̂ + V̂C − V̂HF︸ ︷︷ ︸
≡Ĥ1

−EHF , (3.18)

where F̂ denotes the Fock operator, namely

F̂ = −1
2∇̂

2 − Z

r̂ +
∑

i

(2Ĵi + K̂i) , (3.19)

such that F̂|ϕp,σ〉 = εp|ϕp,σ〉. The four terms defining the Fock operator are described by
a kinetic part (−∇̂2

/2 ), an attractive Coulomb potential due to the nucleus, direct terms

Ĵj(r1)ϕi(r1) =
[ ∫

dr2|ϕj(r2)|2 r−1
12

]
ϕj(r1) , i 6= j , (3.20)

describing the mean field created by the remaining electrons, and the so-called exchange
terms,

K̂jϕk(r1) =
[ ∫

dr2ϕ
∗
j(r2) r−1

12 ϕi(r2)
]
ϕj(r1) , i 6= j , (3.21)

which describes the correction that originates from the anti-symmetrization. In Eq. (3.18),
EHF symbolizes the shift in energy corresponding to the Hatree-Fock ground state energy,
namely

EHF = 2
∑

i

εi + 〈Φ0|Ĥ1|Φ0〉 where 〈Φ0|Ĥ1|Φ0〉 = −
∑

i,j

{
vi,j,i,j − vi,j,j,i

}
, (3.22)

has been introduced to write the equation in a more compact form [10] and where the
matrix elements vp,q,r,s are given by

vp,q,r,s = 〈ϕpϕq|1/r12|ϕrϕs〉 =
∫ ∫

d3r1 d
3r2 ϕ

∗
p(r1)ϕ∗q(r2) 1

|r12|
ϕr(r1)ϕs(r2) . (3.23)

The electronic correlation effects are absorbed in the matrix elements of Ĥ1. In our
simulations, and following Refs. [10, 25], these matrix elements are evaluated by means
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of the Slater-Condom rules [10],

〈Φ0|Ĥ1|Φa
i 〉 = 0 Brillouin theorem

〈Φa
i |Ĥ1|Φa′

i′ 〉 = 2va,i′,i,a′ − va,i′,a′,i + δi,i′δa,a′〈Φ0|Ĥ1|Φ0〉 ,
(3.24)

where 〈Φ0|Ĥ1|Φ0〉 is defined in Eq. (3.22).

3.4.2 Time-dependent Configuration-Interaction Singles (TDCIS)

Having presented the principles behind the CI formalism and explained why it may be
suitable in the quest for incorporating the electronic correlations to overcome the limita-
tions of the Hartree-Fock approximation, the extension of the theory to time-dependent
problems follows almost immediately. When ignoring magnetic fields and relativistic cor-
rections to the Hamiltonian such as spin-orbit coupling9, and assuming the electric field to
be linearly polarized along the z direction, the time-dependent Hamiltonian reads [10, 25],

Ĥ(t) = Ĥ0 + Ĥ1 − EHF − Ez(t)ẑ , (3.25a)

with Ĥ1 = V̂C − V̂HF, and where Ĥ0, V̂C and V̂HF are given in Eq. (3.18). Finally,
Ez(t) and ẑ refer to the laser electric field and position operator along the electric field
polarization direction10 , respectively [10]. The many-body time-dependent Schödinger
equation reads

i
∂

∂ t
|ΨN(t)〉 = Ĥ(t)|ΨN(t)〉 . (3.25b)

Defining the field-free N-electron wave function in terms of Eq. (3.16) and restricting
ourselves to single-particle-hole excitations, the time-dependent CIS wave packet can be
written, following the ansatz [10, 25, 28]

|Ψ(t)N〉 = α0(t)|Φ0〉+
∑

i

∑

a

αai (t)|Φa
i 〉 . (3.25c)

In order to solve the coupled equations of motion for the CIS expansion coefficients, the
coupling terms due to the dipole operator must be evaluated. The non-diagonal elements

9typically, three relativistic corrections are often considered: spin-orbit couping, s-shift correction and
mass-velocity correction [54], plus additional corrections to the magnetic moment of the electron [55, 56]

10which can be expressed in terms of the creation and anhilation operators as ẑ =
∑
p,q zp,q

∑
σ ĉ†pσ ĉq,σ

with zµ,ν ≡ 〈ϕµ|z|ϕν〉.
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zµ,ν ≡ 〈ϕµ|z|ϕν〉 are evaluated according to [10, 25]

zµ,ν =
∫
d3rϕµ(r) z ϕν(r) , (3.25d)

with ϕµ(r) a given spin-orbital. Equation (3.25d) is utilized to evaluate the matrix ele-
ments in the CIS basis used in Eq. (3.25c). These matrix elements reads [10],

〈Φ0|ẑ|Φ0〉 = 2
∑

i,i′
zi,i′

〈Φ0|ẑ|Φa
i 〉 =

√
2 zi,a

〈Φa
i |ẑ|Φa′

i′ 〉 = δi,i′ za,a′ − δa,a′ zi,i′ + δi,i′δa,a′
∑

j

zj,j

︸ ︷︷ ︸
≡0, zj,j=0

,

(3.26)

where the diagonal elements zi,i vanish for atomic systems [28]. Following Ref. [10, 25, 28],
the equations of motion for α0(t) and αai (t) are obtained by projecting Eq. (3.25c) onto
the basis defined by |Φ0〉 and {|Φa

i 〉}. The dynamics of the wave packet is obtained by
solving the coupled equations of motion [10, 25]

iα̇0(t) = −
√

2 ε(t)
∑

i

∑

a

αai (t) zi,a

iα̇ai (t) = (εa − εi)αai (t) +
∑

i′

∑

a′
αa
′

i′ (t)
(
2vai′ia′ − vai′a′i

)

−Ez(t)
{√

2α0(t) za,i +
∑

a′
αa
′

i (t) za,a′ −
∑

i′
αai′ zi,i′

}
,

(3.27)

with the initial condition given by α0(t) → 1 and {αai (t)} → 0 as t → −∞. In the
framework of this thesis, Eq. (3.27) is solved by means of the Short Iterative Lanczos
method, described in Section 4.2.2.

Finally, as introduced in Ref. [10], a partial summation over all single excitations from
each occupied orbital |ϕi〉 in the rhs in Eq. (3.25c), allows to rewrite the TDCIS formalism
in terms of a “channel wave function”, namely

|Ψ(t)N〉 = α0(t)|Φ0〉+
∑

i

|ϕi(t)〉 with |ϕi(t)〉 =
∑

a

αai |Φa
i 〉. (3.28)

The peculiarity of such “channel wave function” formalism is that it allows to describe
and calculate all quantities in a channel-resolved manner [10, 51]. It is this formalism
that has adopted throughout this work.
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This chapter is intended to provide an elemental inspection to the general principles
behind the state-of-the art techniques for the numerical solution of the Schrödinger equa-
tion adopted for the preparation of this thesis. Unless otherwise specified, atomic units
are used throughout.

In practice, numerical solution of the time-dependent Schrödinger equation consists of
three hierarchical steps. The first step consists in determining a suitable representation
for the wave function 1 to be propagated. This step is followed by evaluation of the
action of operators in this representation and finally, the third step involves the time
propagation properly speaking. While a plethora of numerical methods for solving the
Schrödinger equation are available [57], numerical efficiency of these techniques plays
a critical role when it comes to chose the appropriate method. In the context of this
thesis, adaptive grid-based radial representation [58–60] of the wave function allows to

1generally defined by the ground state, a field-free eigenstate, or a linear combination thereof.
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straightforwardly evaluate the action of the operators acting on single-particle and many-
body wave functions [25] while considerably reducing the numerical effort required for
propagation purposes. In the following lines, standard techniques for efficiently solving
both time-independent and time-dependent Schrödinger equation are briefly described.

4.1 Discrete Variable Representation

The Discrete Variable representation or DVR for short, is a pseudospectral method allow-
ing to represent functions on a discretized quadrature spatial grid, thereby simplifying the
representation of certain kind of operators. It is one of the most versatile numerical tech-
niques utilized in the applied mathematics community and has been widely applied to a
large class of problems involving polynomials approximation of differential equations: from
ordinary and partial differential equations [61, 61–63] to time-dependent problems [64, 65].
It became popular in the physics community after the pioneering work of Light and co-
workers [66–72], among others [57, 73–75]. In the context of quantum mechanics, the
attractiveness of the DVR relies on two striking features, namely (i) the matrix represen-
tation of the potential energy operator V̂ or any local operator in real space is diagonal in
this representation whereas (ii) the matrix form of the kinetic matrix operator, although
represented by a full matrix, K̂, enjoys simple analytic forms. These two features together
with its pseudospectral accuracy, makes the DVR an accurate numerical formalism easy
to implement to quantum mechanical problems.

Generally, the DVR formalism is based on the expansion of a wave function in an
orthonormal basis set Φn(r), n = 0, N and utilization of a Gaussian quadrature rule that
depends on the collocation points defining the coordinate grid. More specifically, in the
language of the pseudospectral approach, the wave function is evaluated at N + 1 distinct
interpolation points of a pseudospectral grid, namely

ψ(ri, t) =
N∑

n=0
an(t) Φn(ri) , (4.1)

where the interpolating points corresponds to the discretized points {rj} with j = 0, . . . N ,
and where {Φn(r)} are referred to as the interpolating functions. It is customary to
perform the expansion in terms of functions satisfying the property

N∑

n=0
Φ∗n(ri)Φ∗n(rj) = δi,j . (4.2)

This property allows to find the expression of the expansion coefficients as a function of
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the interpolating function ψ(r), namely

an(t) =
N∑

j=0
ψ(rj, t) Φ∗n(rj) , (4.3)

with the property

ψ(ri, t) =
N∑

j=0
ψ(rj, t)

N∑

n=0
Φ∗n(rj)Φn(ri) ≡

N∑

j=0
ψ(rj, t) δi,j . (4.4)

The interpolating functions Φn(r) are defined in terms of polynomials which are orthogonal
to each other with respect to a specific weight function ω̃(r) [76] within a given interval
D, namely

〈Φn|Φn′〉 =
∫

D
ω̃(r)Φ∗n(r)Φn′(r) = δn,n′ , (4.5)

where the weight function ω̃(r) ensures a proper decay of the wave function for infinite
or semi-infinite intervals [77]. These weight functions depend on the polynomials as well
as on the integration interval [76, 78]. Four our part, we will limit ourselves to the cases
where ω̃(r) = 1, which is the case for the Lagrange polynomials and Legendre cardinal
functions, defined in Eqs. (4.10) and (A.34), respectively, both utilized in the context of
this doctoral work. By virtue of the Gaussian quadrature rule, Eq. (4.5) is, for ω̃ = 1,
exactly equivalent to

N∑

j=0
ω(rj)Φ∗n(rj)Φn′(rj) = δn,n′ , (4.6)

for any polynomial of degree 2N − 1, and where ω(rj) refers to the Gaussian quadrature
weights [77, 78]. The expression of the expansion coefficients become, with ωj ≡ ω(rj),

an(t) =
N∑

j=0
ωj ψ(rj, t) Φ∗n(rj) . (4.7)

Inserting Eq. (4.7) into Eq. (4.1), we are now in a position to represent the n th derivative
operator in the DVR formalism, namely

dn

drn
ψ(r) =

N∑

j=0
ωjΦ(rj)

N−1∑

i=0
Φ∗i (rj)

dnΦi(r)
drn

. (4.8)

So far, no specific requirements, except for the orthogonality condition, were made on the
basis Φi(r). Writing Eq. (4.8) in a matrix form, upon renormalization of the basis functions
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as we will see later, is a suitable way to solve the time-independent Schrödinger equation.
Furthermore, the attractiveness of the DVR approach lies in the fact that Eq. (4.8) can
be evaluated analytically for certain kind of basis set. In this case, the expression of
the n−th order derivative depends only on the interpolantion polynomials as well as on
the domain of integration D [78, 79]. Although the choice of the polynomials {Φn(r)}
is arbitrary, the error due to the approximation of truncating the series expansion will
enjoy different convergence properties depending on the interpolanting polynomials [78].
Typically, the strategy consist in making use of the Garlekin method [78], which, for the
case of the time-independent Schödinger, allows to determine the expansion coefficients
{an} and eigenvalues E upon solution of a set algebraic equations, namely

N∑

m=0

(
K̂n,m + V̂n,m − E〈Φn|Φm〉

)
am = 0 ∀m = 0, . . . N , (4.9a)

which is solved by diagonalizing the matrix equation,

(
Ĥ− E1̂1Ñ×Ñ

)
· a = 0 (4.9b)

with Ñ = N + 1, and where Ĥ = K̂ + V̂ and a sumbolizes the Hamiltonian and the vector
representation of the expansion coefficients {an}, respectively. The matrix elements of
the local potential energy operator reads

V̂i,j =
∫ ∞

0
Φi(r)V (r)Φj(r) dr . (4.9c)

Conversely, the matrix elements of the kinetic matrix operator reads

K̂i,j = − 1
2m

∫ ∞

0
Φi(r)

d2

dr2 Φj(r) dr (4.9d)

As already mentioned, DVR-based methods allow for constructing simple non-local an-
alytical forms for the kinetic energy operator, whilst keeping the representation of local
operators at a minimum. This is important in a view of exploiting the versatility of the
DVR approach in the context of time-dependent calculations, as discussed in Chapter 7.
Needless to say, a plethora of choices for the functions Φn(r) is available. The same applies
to the best choice of the interpolation points {rj}. We briefly introduce and describe a
few of the most prominent alternatives commonly utilized. These are briefly outlined in
the following.
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4.1.1 Lagrange-mesh method

In the Lagrange-mesh method, a grid is associated with a basis set with the peculiar
characteristic that each continuous basis function spanning the Hilbert space vanishes
at all mesh points except at the collocation mesh point to which the basis function is
associated [80–82]. Among the family of polynomials enjoying this property, the Lagrange
polynomials defined by

Φj(r) =
N∏

p=0,p6=j

r − rp
rj − rp

(4.10)

= (r − r0)
(rj − r0) . . .

(r − rj−1)
(rj − rj−1) . . .

(r − rj+1)
(rj − rj+1) . . .

(r − rN)
(rj − rN) ,

are among the most popular ones. They belong to a class of polynomials fulfilling Eq. (4.2),
and they are a particular category of Cardinal functions [78]. These functions play an
important role in this thesis and they refer to a special class of analytical functions
enjoying the remarkable property,

Φj(ri) = δi,j =





1 , i = j

0 i 6= j .

(4.11)

It follows that one of the striking properties of the so-called cardinal functions is that
the expansion coefficients, i.e. the an in Eq. (4.7), correspond to the value of the wave
function at each interpolating point rn. Another consequence is that any local operator
in coordinate representation such as V̂(r) conserves a diagonal representation in the DVR
basis, namely

V̂i,j ≡
∫ ∞

0
Φi(r)V (r)Φj(r) dr =

N∑

m=0
Φi(rm)V (rm)Φj(rm)ω(rm) (4.12)

= δi,j V (ri)ωi , (4.13)

where we have made used of the Gaussian quadrature rule [78, 83] and where the standard
notation ω(rm) ≡ ωm is used throughout this work. The matrix representation of the
kinetic energy operator T̂ = −d2/dr2, assuming vanishing Dirichlet boundary conditions,
reads

T̂i,j = −
∫ ∞

0
Ψi(r)

d2

dr2 Φj(r) dr =
∫ ∞

0

d

dr
Φi(r)

d

dr
Φj(r) dr

=
N∑

m=0

d

dr
Φi(rm) d

dr
Φj(rm)ωm , (4.14)
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where we made used of the Green formula (integration by parts) in order to construct a
symmetric matrix2. In practice, the matrix elements T̂i,j are known analytically [78, 82].
The task consist then in solving the eigenvalue problem via a set of linear algebraic
equations

N∑

j=0

(
1

2mT̂i,j + V̂i,j − E 〈Φi|Φj〉︸ ︷︷ ︸
=ωi δi,j

)
ψj = 0 ∀i = 0, . . . N . (4.15)

However, the eigenvalue problem formulated in the cardinal basis alone results in a gen-
eralized eigenvalue problem due to the Gaussian weight arising from the discretization
(collocation). In fact, evaluation of the inner product using the Gaussian quadrature rule
gives

〈Φi|Φj〉 ≡
∫ ∞

0
Φi(r)Φj(r) dr =

N∑

m=0
Φi(rm)Φj(rm)ω(rm) (4.16)

= ωi δi,j . (4.17)

The eigenvalue problem can be formulated in the standard form Ĥ ·a = λa upon normal-
ization of the Lagrange polynomials according to

Φj(r) = 1
√
ωj

N∏

p=0,p6=j

r − rp
rj − rp

, (4.18)

which takes into account the collocation weights due to the discretization. Such normal-
ization is also known as Lagrange condition. It is worth mentioning that the Gauss
quadrature is exact for products of Lagrange functions [80, 81].

An important criterion for minimizing the error due to the discretization consists on
properly choosing the collocation points. In fact, for relatively extended grids consisting
of evenly spaced collocation points, a well-known pathology consisting in the divergence
near the endpoints resulting from the interpolation known as the Runge-phenomenon can
be avoided by a suitable choice of the distribution of collocation points [78]. In general,
the distribution of points consists in a non-evenly spaced set of points concentrated to-
wards the ends or middle of the grid depending on the criteria with which the construction
of such distribution of points was based on. For instance, roots of specific polynomials
or alternatively, of its derivatives. Among the most commonly employed, the so-called
Legendre-Gauss-Lobatto, also known as “extrema plus end-points”. This set of inter-
polating points is obtained by fixing the extremities at r0 = −1 and rN = 1 while the N−1
remaining points coincides with the extrema of the Legendre polynomials, i.e. the N − 1

2with respect to the exchange i↔ j in Eq. (4.14)
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roots of dPN(x)/dx [78]. For a interpolated function defined in a interval different from
[−1, 1], a linear transformation mapping both intervals is performed [60]. Of course, the
choice of such suitable distribution of points is not exclusively restricted to the extrema
of PN(x). Alternative ensemble of points, such that the extrema of the Chebychev poly-
nomials also exists [78, 84]. The same applies to the interpolating function which are not
restricted to the Lagrange polynomials. In fact, a mesh method fulfilling the Lagrange
condition can be associated to every family of orthogonal polynomials [73, 78]. This,
combined with the versatility of the finite-element approach, cf. Section 4.1.2, defined
the motivation that allowed us to construct a very efficient pseudospectral-finite-element-
based propagation approach, described in Ref. [60].

4.1.2 Finite-Element Discrete Variable Representation

The non-local character of the kinetic matrix operator is reflected by the fullness (non-
sparseness) of the Hamiltonian matrix representation. The numerical performance for
matrix operations involving dense (full) matrices may be seriously compromised, partic-
ularly when treating with large Hilbert spaces. This corresponds to the case where large
spatial grids are required. Consequently, global methods, such as the DVR approach,
characterized by a full matrix representation of the Hamilton operator are in practice
computationally demanding, if not prohibited.

Fortunately, the Finite-Element Discrete Variable representation [58], or FE-DVR
for short, makes a considerable step forward on the path to improve the numerical perfor-
mances by constructing a semi-local representation of the Hamiltonian while conserving
the desired accuracy. This is achieved by combining the efficiency of the well established
finite-element method (FEM) [85, 86] and the spectral accuracy of the pseudospectral
approach [87]. The essence of the FEM lies in partitioning the entire spatial coordinate
into small contiguous sub-domains, also referred to as elements. On each element, a set
of arbitrary functions with compact support3 on each element, centered around each col-
location point is chosen [88]. Because these functions (basis) are compactly supported on
each element, the matrix elements involving two basis belonging to the same and different
elements, which is required to be computed for the construction of the global representa-
tion of the Hamiltonian matrix, takes non-vanishing values only if the operation involves
two compactly supported functions belonging to the same element. As a result, the ma-
trix representation of the kinetic energy operator has now a semi-local representation, as
opposed to the global representation of the DVR. Consequently, the matrix form of the
Hamiltonian in the finite-element basis results in a sparse representation, therefore con-

3A function has compact support if its support is a compact set, or equivalently, if the function is
identically zero outsize its compact support.
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siderably reducing the numerical effort in terms of storage and matrix-vector operations.
Generally speaking, the FE-DVR may be viewed as a DVR formalism on each element.
It is to outline nonetheless that generally, global representations benefits superior conver-
gence performances with respect to their semi-local counterparts [78]. However, several
standard procedures seeking for minimizing the lost of accuracy due to the semi-local rep-
resentation are available. Such procedures generally involves manipulation of the number
of elements, or alternatively, of the number of collocation points per elements, e.g. p− and
h− refinement, or a better choice of the interpolating polynomial on each element. Herein
lies the essence of the FE-DVR [58, 83, 89–92], whereby the error of approximation due
to the semi-local character is considerably reduced by choosing orthonormal polynomials
of arbitrary order with compact support on each element, thus significantly improving
the convergence error while benefiting from the sparsity of the representation for storage
and matrix-vector operation purposes. In the context of the Lagrange-mesh method, the
compactly supported polynomials are defined in terms of the global Lagrange polynomials
defined in Eq. (4.10) which are now compactly supported on each element m, namely

Φ(m)
i (r) =

∏

k 6=m

(r − r(k)
i )

(r(m)
i − r(m)

i )
, (4.19)

where m = 1, . . .M is used to label the mth element. The compactly supported Lagrange
functions have the property

Φ(m)
i (r(m′)

j ) = δi,j δm,m′ , (4.20)

where r ≡ r
(m′)
j defines a particular discretized point that belongs to the m′ th element.

Each element Ω(m) is discretized into a set of N + 1 different points, rj, with j = 0, . . . N .
The matrix elements are evaluated and approximated in the usual way, i.e., by means of
the Gaussian quadrature rule. Thus, the product of two compactly supported Lagrange
polynomials gives

∫ ∞

0
Φ(m)
i (r)Φ(m′)

j (r) dr =
M∑

k=1

∫ r
(k)
N

r
(k)
0

Φ(m)
i (r)Φ(m′)

j (r) dr (4.21)

≈
M∑

k=1

N−1∑

s=0
Φ(m)
i (r(k)

s )Φ(m′)
j (r(k)

s )ω(k)
s

= ω
(m)
i δi,j δm,m′ .

If follows that, just as for the global DVR formalism, any local operator conserves a
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diagonal representation, namely

V̂m,m′

i,j ≡
∫ ∞

0
Φ(m)
i (r)V (r)Φ(m′)

j = V (r(m)
i )ω(m)

i δi,j δm,m′ . (4.22)

The global representation of the Hamiltonian matrix requires assembling of all two con-
tiguous elements. These are “connected” at the M − 1 interelement points r(m−1)

N = r
(m)
0 ,

∀m = 2, . . .M . The continuity of the interpolated wave function at each interelement
point follows from the continuity of the interpolanting basis at these points. Since the
global grid has been intentionally split into M elements, continuity of the basis functions
at the at the M − 1 contiguous points should be performed manually. Continuity at the
interelement points r(m−1)

N = r
(m)
0 is achieved by re-defining the basis functions according

to

ζ
(m)
i (r) =





Φ(m)
i (r) , i = 1, . . . , N − 1

Φ(m)
N (r) + Φ(m+1)

0 (r) , i = 0, N .

(4.23)

Again, the Lagrange condition, cf. Eq. (4.18), is employed to solve an ordinary eigenvalue
problem of the form Ĥϕ = Eϕ. In the framework of the FE-DVR the Lagrange condition
reads

ζ
(m)
i (r) =





Φ(m)
i (r)√
ω

(m)
i

, i = 1, . . . , N − 1

Φ(m)
N (r) + Φ(m+1)

0 (r)√
ω

(m)
N + ω

(m+1)
0

i = 0, N .

(4.24)

The Gaussian weights in Eq. (4.24) are referred to as “effective weights”. They take into
account the continuity of the basis functions at the interelement points. The matrix
elements of the kinetic energy operator in the compactly supported Lagrange [83, 93]
basis reads

T̂m,m′

i,j = 1
2
(
δi,j + δi,j±1

)∫ ∞

0
dr

d

dr
ζ

(m)
i (r) d

dr
ζ

(m′)
j (r) . (4.25)

These matrix elements can be evaluated either numerically or analytically by means of the
first order derivatives of the Lagrange polynomials at the quadrature points [78, 83, 93, 96].
By virtue of the compact support on each element, the global representation of the kinetic
energy operator is sparse with connections that represent the interelement points of the
global grid, see e.g. Figure 7.4 in Section 7.3. Finally, due to the introduction of the
“weighted” basis set, i.e. Eq. (4.24), proper representation of the eigenvectors requires the
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transformation

ψ(rmi )→ ψ(r(m
i )/

√
ω

(m)
i (4.26)

where ω are the “effective” weights defined in Eq. (4.24) and where the ψ(rmi ) is obtained
upon diagonalization of the Hamiltonian matrix in the compactly supported Lagrange
basis.

4.1.3 The Fourier Hamiltonian Grid and Dynamical Fourier methods

The Fourier method is a special case of pseudospectral method resolved in a evenly spaced
coordinate grid and whereby the functions {Φn(x)} are chosen to be [57, 94],

Φn(x) = exp
[
2iπnx/L

]
/
√
L , with n = −(N/2− 1), . . . 0, N/2 (4.27)

with −∞ < x < +∞ discretized in a box of size L composed of N sampling points [94].
There exist two main kinds of implementation of such approach, namely the Fourier Grid
Hamiltonian method, also referred to as Cartesian mesh, as opposite to the Lagrangian-
mesh method [73] and the so-called Dynamic Fourier Method [94]. While the former
requires construction of the full Hamiltonian matrix in the pseudospectral Fourier basis
in order to evaluate the action of the momentum operator, the latter avoids any kind of
matrix storage by evaluating the action of the kinetic operator via Fast Fourier trans-
form [94].

Fourier Hamiltonian Grid method

Historically, in the Fourier Grid Hamiltonian [95] case, the Hamiltonian matrix is con-
structed in the Fourier basis and diagonalized to obtain eigenvalues and eigenvectors. In
the Fourier basis, the matrix representation of any local operator is diagonal is space
representation, while the matrix representation of the kinetic energy operator enjoys a
simple analytical form, namely [94]

〈Φi|T̂(p)|Φj〉 = 1
m





(π/∆x)2

6 (i = j)

1
(∆x)2

(−1)j−i
(j − i)2 (i 6= j) ,

(4.28)

where m and ∆x refer to the mass and the interval between two consecutive evenly
spaced discretized points, respectively. Despite its simplicity, the Fourier grid Hamiltonian
method is not well suited for propagation schemes involving matrix-vector operations,
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cf. Section 4.2.1, since the Hamiltonian matrix is represented by a dense (full) matrix due
to the non-local character of the momentum operator in space-representation. In fact, for
large Hilbert spaces, such an approach may become easily prohibited in terms of storage
and propagation effort.

Dynamic Fourier method

To remedy the limitations of the Fourier Grid Hamiltonian method, the so-called Dy-
namic Fourier method, due to Feit and Feck [96] and Kosloff and Kosloff [97] makes use
of the locality the kinetic energy operator T̂ in momentum representation. As usual,
the action of the position operator in space representation conserves locality. The Dy-
namic Fourier method exploits the fact that the kinetic operator is local in momentum
representation, while any position-dependent operator is local in coordinate space repre-
sentation. Therefore, a practical application of this approach consist in separating the
Hamiltonian in p̂-dependent and r̂-dependent operators. Generally, such partitioning
implies Ĥ = T̂(p̂) + V̂(̂r). Exploiting the locality of both terms in momentum and coor-
dinates representations, the application of the total Hamiltonian operator is performed in
two-parallelizable steps:

1. action of potential energy operator: the operation V̂|ψ〉 is merely given by a
point-by-point product V (rj)ψ(rj), since local in spatial representation.

2. action of the kinetic operator: is also evaluated locally, but in momentum-
representation in a sequence involving three steps, namely

(a) Fourier transforming the wave function from spatial to momentum representa-
tion.

(b) This is followed by multiplying the transformed wave function and the
momentum-dependent kinetic operator, ie. p2 Ψ(p), resulting in Υ̃(p) by means
of Fast-Fourier Transformation (FFT) and finally,

(c) transforming back Υ̃(p) from momentum to spatial representation.

As a result, the numerical effort scales semi-linearly with the volume of phase-space. The
Dynamic Fourier method presents two major advantages with respect to any standard
pseudospectral method. First, no prior selection of the expansion basis (polynomials)
set is required. This is a non-negligible improvement since it has been shown that dif-
ferent family of orthonormal polynomials commonly used in the framework of the DVR
formalism possesses different convergence properties [78]. The second advantage is that it
benefits from the efficiency and accuracy of the FFT techniques, therefore being limited
only by the machine precision. The only requirement for accuracy is the choice of adequate
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sample points in both, space and time domain for the numerical solution, which should
fulfill the well-known requirement dictated by the Nyquist sampling theorem to avoid
alliasing errors [96]. Compared to the dense matrix-vector operation-based approach, the
Dynamical Fourier methods allows to decrease considerably the number of operations
from O(N2) to NO(log(N))/2 [94, 97], where N is the dimension of the Hilbert space.

Despite its outstanding efficiency, we show in Chapter 7 that this approach can be
outperformed using special techniques based on the FE-DVR formalism briefly introduced
in Section 4.1.2.

4.2 Numerical simulation of Quantum Dynamics

The details revealing the quantum signature imprinted in the electron dynamics of atomic
and molecular systems exposed, for instance, to a classical electromagnetic field requires
a proper description of the laser-matter interaction and solution of the time-dependent
Schrödinger equation becomes unavoidable. Having introduced the DVR and FE-DVR
formalisms to represent the atomic or molecular system and the action of operators in
this representation, the electron dynamics is obtained by solving the time-dependent
Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (4.29a)

where Ĥ(t) includes the field-free Hamiltonian Ĥ0 and the interaction Hamiltonian Ĥem(t),
namely

Ĥ(t) = Ĥ0 + Ĥem(t). (4.29b)

A formal solution to Eq. (4.29a) reads

|ψ(t)〉 = Û(t; t0)|ψ(t0)〉 ≡ T̂ exp
[
− i

∫ T

t0
Ĥ(t′) dt′

]
|ψ(t0)〉 , (4.30)

where |ψ(t0)〉 and Û(t; t0) denote the initial condition for the initial state and the evolution
operator, respectively, and where T̂ is the time-ordering operator. In practice, solution of
Eq. (4.30) has two main difficulties. The fist obstacle concerns the analytical expression
for the exponentiation of the Hamiltonian operator, and second, the construction of the
time-ordering operator.

It is possible, however, to approximate Eq. (4.30) by assuming Ĥ(t) to be piecewise
constant over a small time interval dt. This is equivalent to divide the time grid in very
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short segments dt in which Ĥem(t) does not change significantly, namely

Û(t; t0) ≈ T̂ exp
[
− i

N−1∑

j=1
Ĥ(tj+1/2) dt

]
=

N−1∏

j=1
exp

[
− iĤ(tj+1/2) dt

]
. (4.31)

with tj+1/2 = tj + dt/2. From Eq. (4.31), it is apparent that the propagation problem
reduces to find an efficient approach to evaluate the operation

|Ψj+1〉 ≡ exp
[
− iĤ(tj+1/2) dt

]
|Ψj〉. (4.32)

Among the most prominent alternatives, two broad categories are commonly used. The
first category is based on a polynomial approximation of the exponential of operators
which requires prior knowledge of the polynomial to be used for the expansion. A second
method that does not require prior choice of the polynomial is also conceivable [94]. These
two alternatives are represented by the Chebychev and short iterative Lanczos propaga-
tors, respectively. They are briefly described in sections 4.2.1 and 4.2.2, respectively.

4.2.1 The Chebychev propagation method

The essence of the Chebychev approach [57, 98, 99] relies on approximating every term
in the product series of the rhs of Eq. (4.31) by a polynomial expansion of the expontial
operator Û(tk), namely

|Ψj+1〉 = Ûk |Ψj〉 ≡ exp
[
− iĤ(tk) dt

]
|Ψj〉

≈
NC∑

n=0
an Pn

(
Ĥ(tk)

)
|Ψj〉 (4.33)

with k = j + 1/2 for consistency with the notation of Eq. (4.31) and where Pn(·) is a
polynomial of degree n and {an} the expansion coefficients.

It can be shown that for an analytical scalar function in the interval [−1, 1], the
polynomial approximation based on the Chebychev polynomials are optimal since the
approximation error converges faster in comparison to almost all possible polynomial
approximations [57, 78, 98, 99]. The propagation then reduces to a series of repeated
applications of the argument of the polynomial, i.e. Ĥ on |Ψ〉. It is for this reason that
the Dynamical Fourier grid method, or alternatively sparse matrix representations (FE-
DVR) of the Hamiltonian operator together with special libraries for storage and (sparse)
matrix-vector operations are suitable when it comes to polynomial approximations of the
evolution operator. For the Chebychev polynomials, the necessity of having the argu-
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ment in the range [−1, 1] translates into the requirement of normalizing the Hamiltonian
operator according to [57, 98, 99]

Ĥnorm = 2Ĥ− Emin 11
∆E

− 11 , (4.34)

where ∆E = Emax − Emin denotes the spectral radius and where Emin and Emax refer
to the smallest and largest eigenvalue of Ĥ, respectively. A condition for the numerical
stability of the propagation is that spectrum of the Hamiltonian lies in ∆E at all times.
Therefore, in the case of a time-dependent Hamiltonian, a good empiric procedure consists
in defining the spectral radius according to [100],

∆E =
[
Ĥ0 + mint

{
Ĥem

}
, Ĥ0 + mint

{
Ĥem

}]
. (4.35)

With this normalization in hand, the approximated time evolution of the wave packet
is obtained via successive applications of the Hamiltonian to the auxiliary vector state
|ζn(tj)〉, namely [98]

|Ψ(tj+1)〉 ≈
N∑

n=0
an |ζn(tj)〉 (4.36a)

and where we have defined,

|ζn(tj)〉 ≡ Pn
[
− iĤnorm(tj+1/2)

]
|Ψ(tj)〉 , (4.36b)

with Pn(·) being the complex Chebychev polynomials of degree n that takes the complex
argument −iĤnorm. The expansion coefficients an are evaluated analytically as a function
of the Bessel functions Jn(·), namely [57, 98, 100]

an = (2− δn,0) exp
[
− i

(
∆E/2 + Emin

)
dt

]
Jn

(
∆E dt

2

)
, (4.37)

where the phase shift in the rhs arises from the energy scaling, due to the normalization
and where the auxiliary vector states |ζ(tj)〉 defined in Eq. (4.36b) are computed using
the three-term recursion formula

|ζn(tj)〉 = −2iĤnorm |ζn−1(tj)〉+ |ζn−2(tj)〉 (4.38)

with |ζs(tj)〉 = 0 for s < 0 and |ζ0(tj)〉 = |Ψ(tj)〉. The Chebychev propagator effectively
propagates in a single time step of length dt. Intermediate time results can be cheaply
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obtained since the Bessel function coefficients defined in Eq. (4.37) contain information
about the time dependency but does not depend on the coordinate discretizaton [94].
Furthermore, since Ψ(0) and Ĥnorm are both normalized, the propagation scheme pre-
serves normalization and the error convergence properties of the Chebychev expansion
guarantees high levels of accuracy only limited by the machine precision [57, 94].

4.2.2 Short iterative Lanzcos propagator

The Lanczos method [101] is an extension of the power method4[102] to find certain
eigenvalues and eigenvectors of a linear system, initially conceived as a method for di-
agnonalizing tridiagonal matrices [103]. It inexorably introduces the notion of Krylov
subspace. The latter is defined as a sub-space of dimension N of the full Hilbert space
whereby the vectors spanning the sub-space are generated by acting a linear operator on
a initial state |Ψ(0)〉, N times. If the linear operator is the Hamiltonian, then the vectors
spanning the Krylov sub-space are [94]

|uj〉 = Ĥj |ψ(0)〉. (4.39)

The essence of the Lanczos approach consists in constructing a matrix representation of
the Hamiltonian taking as a basis the vectors spanning the Krylov sub-space. The Hamil-
tonian is then diagonalized and the diagonal form is utilized to propagate |Ψ(0)〉 within
the Krylov sub-space [94]. In order to construct a set or orthogonal basis, each Krylov
vector is sequentially orthogonalized with respect to the previous vectors. In practice,
the first vector is defined to be the initial state, i.e., |q0〉 ≡ |Ψ(0)〉. The construction of
second vector is achieved by acting Ĥ on |q0〉 and subtracting off the component of the
first vector [94], namely

Ĥ |q0〉 = α0 |q0〉+ β0 |q1〉 , (4.40a)

with α0 = 〈q0|Ĥ|q0〉 and β0 = 〈q0|Ĥ|q1〉. This procedure is performed recursively using
the three-term recursion equation [94, 103, 104]

Ĥ |qj〉 = βj−1 |qj−1〉+ αj |qj〉+ βj |qj+1〉 , (4.40b)

where the scalars αj and βj have the following expression

αj = 〈q0|Ĥ|q0〉 and βj = 〈qj+1|Ĥ|qj〉 . (4.40c)

4also known as iteration method or Von Mises iteration method.
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A direct consequence of Eq. (4.40b) is that any projection 〈qi|Ĥ|qj+1〉 vanishes for i ≥ 2,
namely

〈qj+2|Ĥ|qj〉 = βj−1 〈qj+2|qj−1〉+ αj 〈qj+2|qj〉+ βj 〈qj+2|qj+1〉 (4.41)

= 0 ,

since by construction 〈qi|qj〉 = δi,j. As a consequence, the matrix representation of the
Hamiltonian Ĥ in the Lanczos basis has a tridiagonal matrix form [94, 103, 104],

ĤN =




α0 β0 0 . . . . . . . . . 0
β0 α1 β1 0 . . . . . . 0
0 β1 α2 β2 0 . . . 0
... ... . . . . . . ... ... 0
0 . . . . . . . . . βN−3 αN−2 βN−2

0 . . . . . . . . . . . . βN−2 αN−1




. (4.42)

Once the matrix representation of Ĥ is obtained, it is diagonalized as follows

D̂N = Ẑ†ĤN Ẑ , (4.43)

and the approximation of the evolution operator reads

Û(∆t) ≈ ÛN(∆t) = exp
[
− i∆t ĤN

]
= exp

[
− i∆t Ẑ D̂N Ẑ†

]
, (4.44a)

which can be written in the followin form

Û(∆t) ≈ ÛN(∆t) = Ẑ exp
[
− i∆t D̂N

]
Ẑ† . (4.44b)

Finally, propagation from t = 0 to an arbitrary t = ∆t is obtained upon operating the
approximate ÛN on |Ψ(0)〉, namely

|Ψ(∆t)〉 ≈ ÛN(∆t) |ψ(0)〉 = Ẑ e−i∆t D̂N Ẑ† |Ψ(0)〉 . (4.44c)

Having defined the propagation formalism, an important point should be stressed in
regard to the dimensionality of the Krylov space. As pointed out in Ref. [94], the larger
the number of vectors spanning the Krylov space, the longer (larger ∆t) the wave packet
can be propagated without leaving such subspace. This opens up two alternatives: (i)
generate a large Krylov space (large order) to propagate longer times, or (ii) generate
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a smaller number of Krylov vectors (low order) for shorter propagation times with the
additional cost of updating it more frequently by generating new Krylov spaces using the
propagated vector as initial |q0〉 for the next iterations. The second alternative is referred
to as Short iterative Lanczos method (SIL) [94]. Apart from inherent errors arising
from the approximation properly speaking, external error sources such as those due to
the orthogonalization process might also appear, particularly when the dimensionality of
the Krylov space becomes relevant. This is why the method is best suited to be applied
to short times and relatively low order with successive restarting of the procedure [104].
A detailed comparison of different propagations approaches, such as the Chebychev and
the Lanczos schemes among others, can be found in Ref. [104].
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Controlling external radiation fields in order to influence the electron dynamics to
achieve a desirable outcome is the ultimate goal of quantum control. Typically, the
optimization problem is formulated by defining the optimization target containing the
desired output, plus eventual constraints1 on the field ε(t), namely

J [ϕ, ε] = JT [ϕ(T ), ϕ†(T )] +
∫ T

0
ga[ε(t)] dt+

∫ T

0
gb[ϕ(t), ϕ†(t)] dt , (5.1)

where ϕ(t) ≡ |ϕ(t)〉 is the state subject to (s.t) the time-dependent Schrödinger equation
and where ϕ†(t) ≡ 〈ϕ(t)| with t = [0, T ]. In Eq. (5.1), JT [ϕ(T ), ϕ†(T )] is referred to as the
final-time cost functional. It depends exclusively on the propagated state evaluated at
the final time T . In contrast, the term gb[ϕ(t), ϕ†] depends on intermediate times during
the propagation. Finally, ga[ε(t)] refers to the functional associated to the driving field,
i.e. specific constraints that the “optimized” driving field must fulfill, e.g. in view of
experimental feasibility.

1inclusion of the constraints on the field in Eq. (5.1) can be avoided in the context of gradient-free
optimization methods by defining a mapping procedure in the parametrization of the control field to
constraints the optimization variables in the desired range, cf. Ref. [50]
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The optimization problem then reads

arg min
ε(t)∈E

J [ϕ, ε(t)]
s.t. ϕ̇(t)+iĤ[ε]ϕ(t)=0

, (5.2)

where E denotes the space of feasible solutions, i.e. specific properties required for the
optimal field to fulfill such as maximal field peak amplitude, spectral components, smooth-
ness et cetera. On the assumption that the optimization problem is to identify a suitable
field ε(t) to steer the dynamics from the initial state |ϕ0〉 to a desired state |Ψtarget〉
without accounting for the phase, the target functional reads [105, 106],

JT [ϕT , ϕ†T ] = |〈Ψtarget|ϕ(T )〉|2

= 〈Ψtarget|ϕ(T )〉〈ϕ(T )|Ψtarget〉 , (5.3)

with ϕT ≡ ϕ(T ). Of course, the final-time cost functional is not restricted to target-state
optimization. In this thesis, construction of functionals for photoelectron spectrum opti-
mization, anisotropy of photoeletron emission as well as suppression of hole decoherence
have also been considered, see e.g. Chapters 8 and 9.

Specific constraints on the control field can be incorporated via the second term in
Eq. (5.1). For instance, it is customary to define ga as a penalty function that minimizes
the field intensity while requiring smoothly behavior when the field is switched on and
off. This requirement is accomplished by defining

ga[ε(t)] = λa′

S(t)ε
2(t) + λa

S(t)
(
ε(t)− εref (t)

)2
, (5.4)

where λ′a and λa are optimization weights that stress the relative importance of all the
terms in the functional to be minimized. The term S(t) is a penalty function that takes
large (positive) values at times where the maximal peak intensity is constrained to be
minimized. Typically, this coincides with times at which the field is switched on and off.
The presence of a reference field εref (t) in Eq. (5.4) is used in the esprit of avoiding drastic
changes in the updated field during the update procedure. For the update protocol in the
context of the monotonically convergent Krotov’s method see Section 5.1.2.

The optimization problem may also involve time-dependent constraints imposed on
the state |ϕ(t)〉 at every intermediate time t, or alternatively, at a given time interval
[tb, ta]. It is possible address such constraints by defining [105, 106]

gb[ϕ(t)] = λb
∆ba

〈ϕ(t)|P̂(t)|ϕ(t)〉 11∆ba
(t) , (5.5)
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with ∆ba = tb−ta and 11∆ba
(t) = 1 ∀ t ∈ [tb, ta], 0 otherwise. As usual, λb is a optimization

weight. The operator P̂ refers to a time-dependent operator defining the control objective
at intermediate times [105, 107], enforcing the dynamics to a predefined trajectory [107].
For instance, it can be introduced to “enforce” the dynamics such that |ϕ(t)〉 is allowed
to explore (avoid) prescribed desirable (undesirable) subspaces [105, 106].

In order to solve the optimization problem stated in Eq. (5.2), two different basic
iterative-based approaches are available: non-variational and variational methods. Non-
variational-based methods, also called “gradient-free” methods, are extremely versatile
since they only require successive evaluations of the functional. They are also straightfor-
ward to implement and no adjustments due to specificities of the propagation scheme is
required, since as opposite to gradient-base methods, they do not require backward prop-
agation of any Lagrange multiplier or co-state. They require, however, parametrization of
the control field. Consequently inequalities and equalities constraints on the control field
can be easily incorporated and the second term in Eq. (5.1) can be omitted. Paradoxi-
cally, they are prone to converge very slowly or to a local minima for a wrong choice of
the parametrization form[50]. For a “good” parametrization form, convergence might also
be seriously compromised particularly for a large number of control parameters. Para-
doxically, gradient-free methods can suffer from the same limitations for relatively small
number of control parameters. As a rule of thumb, direct method should only be used
sparingly or when information about the gradient is not accessible. On the other side of
the coin, variational or gradient-based methods make use of directional derivative infor-
mation to evaluate the changes in the functional to update the control field. This speeds
up considerably the convergence of the algorithm. In the following, a pair of examples of
both categories are briefly described.

5.1 Gradient-based methods

5.1.1 Gradient Ascent Pulse Engineering

The GRAPE method, for Gradient Ascent Pulse Engineering [108] is gradient-based op-
timization method relying on the analytical evaluation of the minimization functional J
with respect to any control parameter εj. The iterative update of the field is performed
according to [108]

ε
(i+1)
j = ε

(i)
j + α

∂J (i)

∂εj
, (5.6)

where εj denotes the jth control parameter and α an arbitrary parameter that controls the
descent step. The form of Eq. (5.6) invokes an ordinary application of the well-established
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gradient descent method [109], a first order iterative optimization algorithm for finding
the minimum of a function. If α > 0, the displacement is towards the gradient and the
algorithm converge towards the minimum.

In the GRAPE formalism, the functional to be minimized is explicitly written in terms
of the control parameters {εj(t)}. This requires to write the propagated state |ϕ(T )〉 in
terms of the evolution operator Û(T, 0). In the case of the functional defined by the
projection of the propagated stated onto a target state |Ψtarget〉 the functional to be
maximized reads

JT,sm[ε] = 〈Ψtarget|ϕ(T )〉
≡

〈
Ψtarget

∣∣∣Û[ε]
∣∣∣ϕ(0)

〉
, (5.7)

which is used to evaluate the gradient with respect to the control parameters εj, namely

∂JT,sm[ε]
∂εj

=
〈

Ψtarget

∣∣∣∣∣
∂Û[ε]
∂εj

∣∣∣∣∣ϕ(0)
〉
. (5.8)

Alternatively, a time-grid parametrization of the pulse can be envisaged. In this case,
every single point in time of the discretized time-grid is iteratively updated following
Eq. (5.6), and the gradient reads [100]

∂JT,sm[ε]
∂ε(tk)

= ∂

∂ε(tk)

〈
Ψtarget

∣∣∣∣∣ÛN−1 . . . Ûk′ . . . Ûk . . . Û1

∣∣∣∣∣ϕ(0)
〉

=
〈

Ψtarget

∣∣∣∣∣ÛN−1 . . . Ûk+1
∂Ûk

∂ε(tk)
Ûk−1 . . . Û1

∣∣∣∣∣ϕ(0)
〉

≡
〈
χ(tk+1) ∂Ûk

∂ε(tk)

∣∣∣∣∣ϕ(tk)
〉
, (5.9)

where |χ(tk+1)〉 is the backward propagated target state |Ψtarget〉 that needs to be propa-
gated backwards in time from t = T to tk+1 < T . It is customary to write exponential of
the time-evolution operator as a Taylor expansion, namely

∂

∂ε(tk)
Ûk = ∂

∂ε(tk)
e−

i
~ Ĥ(tk) dt ≡

∞∑

n=1

(−i dt)n
n!

n−1∑

p=0
Ĥp(tk)

(
∂Ĥ(tk)
∂ε(tk)

)
Ĥn−p−1(tk) . (5.10)

The GRAPE algorithm is started by choosing any arbitrary guess field. The guess field is
used to propagate the initial state and the final-time cost functional is evaluated. Once
the gradient is evaluated following the prescription outlined above, the field is iteratively
updated using Eq. (5.6), with the proper sign for α for minimization (α > 0) and max-
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imization (α < 0) of the final-time cost functional. The algorithm needs to be executed
until some desired fidelity is achieved. Using the gradient information alone may suffer
from slow convergence behavior, in particular near the optimum. This limitation can be
circumvented by taking into account the Hessian

Hk,k′ = ∂2J [ε]
∂ε(tk)∂ε(t′k)

, (5.11)

which is the essence of the Newton method. However, evaluation of the of the Hessian is
extremely expensive. To remedy this, the so-called quasi-Newton approaches [110, 111],
rely on constructing the Hessian from gradient information instead. Among the most
prominent ones, the BFGS [112–115] and a more refined version, the BFGS-B [116] are
usually employed.

5.1.2 Krotov’s optimization method

Let JT = JT [ϕT , ϕ†T ] be the final-time cost functional to be minimized and ϕT the prop-
agated the wave function at the end of the propagation time t = T . Without loss of
generality and following Ref. [105], we employ the notations ϕ ≡ |ϕ〉 and ϕ† ≡ 〈ϕ| for all
the state vectors appearing in the equations below. The essence of the Krotov’s mono-
tonically convergent method [106, 117] relies on the introduction of an arbitrary scalar
function Φ(t, ϕ, ϕ†) [105] and extended functionals GT [ϕT , ϕ†,ΦT ] and R[ϕ, ϕ†, ε,Φ] de-
signed to separate the dependency on ϕ and ε of the optimization task. The latter refers
to the control field that drives the dynamics to the target path. Let the functionals be
defined as,

GT [ϕT , ϕ†T ,ΦT ] ≡ JT [ϕT , ϕ†T ] + Φ[T, ϕT , ϕ†T ] (5.12)

and

R[ϕ, ϕ†, ε,Φ] ≡ −(ga(ε) + gb(ϕ, ϕ†)) + d

dt
Φ(t, ϕ(t), ϕ†(t))

−(ga(ε) + gb(ϕ, ϕ†)) +
(
∂Φ
∂ϕ

)
ϕ̇+

(
∂Φ†
∂ϕ†

)
ϕ̇† , (5.13)

where ϕ̇ denotes the total time-derivative of ϕ(t). Minimization of the auxiliary functional
L[ϕ, ϕ†, ε,Φ] defined as

L[ϕ, ϕ†, ε,Φ] = GT (ϕT , ϕ†T ,ΦT )− Φ(t0, ϕt0 , ϕ
†
t0)−

∫ T

t0
R(ϕ, ϕ†, ε,Φ) , (5.14)
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is equivalent to minimization JT = JT [ϕT , ϕ†T ]. In fact, inserting Eq. (5.13) into Eq. (5.14)
together with the expression of GT [ϕT , ϕ†T ,ΦT ] in Eq. (5.12), it is straightforward to show
that L[ϕ, ϕ†, ε,Φ] = J [ϕ, ϕ†] for any arbitrary scalar function Φ[t, ϕ, ϕ†]. The question
that arises is how to construct the scalar function Φ(t, ϕ, ϕ†). In the Krotov’s optimization
formalism, the latter is determined up to a given expansion order, which is accomplished
upon requirement of the extremum condition on L[·], or equivalently

(
∂R

∂ϕ

)
= 0 ,

(
∂R

∂ϕ†

)
= 0 . (5.15)

The function Φ(t, ϕ, ϕ†) is constructed by writing the extremum condition in a explicit
form [105]2

0 =
(
∂R

∂ϕ†

)
= − ∂gb

∂ϕ†
+
(
∂Φ
∂ϕ†

)
∂ϕ̇

∂ϕ†
+
(
∂ϕ̇†

∂ϕ†

)
∂Φ
∂ϕ†

+ d

dt

(
∂Φ
∂ϕ†

)
. (5.16)

As a further step, new functions defining the co-state χ(t) and its complex conjugate χ†(t)
are defined according to

χ(t) ≡ ∂Φ
∂ϕ†

and χ†(t) ≡ ∂Φ
∂ϕ

, (5.17)

which allows to construct Φ = Φ(t, ϕ, ϕ†) up to first order in terms of ϕ and ϕ†, namely

Φ(t, ϕ, ϕ†) = χ†(t)ϕ(t) + ϕ†(t)χ(t) . (5.18)

Furthermore, Eq. (5.17) allows to rewrite Eq. (5.16) in the following form

d

dt
χ(t) = ∂gb

∂ϕ†
− χ†(t) ∂ϕ̇

∂ϕ†︸ ︷︷ ︸
=0

−
(
∂ϕ̇†

∂ϕ†

)

︸ ︷︷ ︸
iĤ(t)

χ(t) . (5.19a)

Making use the Schrödinger equation for ϕ(t) and ϕ†(t), namely ϕ̇(t) = −iĤ(t)ϕ(t) and
ϕ̇†(t) = iϕ†Ĥ†(t), Eq. (5.19a) becomes

d

dt
χ(t) = ∂gb

∂ϕ†
− iĤ(t)χ(t) , (5.19b)

where we have made use of the conditions ∂ϕ̇†/∂ϕ = ∂ϕ̇/∂ϕ† = 0. Equation (5.19b)
describes the equation of motion for χ(t). To fully determine the dynamics of the co-

2were we have used d

dt

(
∂Φ
∂ϕ†

)
= ϕ̇

∂

∂ϕ†

(
∂Φ
∂ϕ†

)
+ ϕ̇†

∂

∂ϕ†

(
∂Φ
∂ϕ†

)
+ ∂

∂t

(
∂Φ
∂ϕ†

)
.



51 5.1 Optimal control algorithms in a nutshell

state χ(t), information about its value at some particular point in time is required. The
extremum condition on GT [ϕT , ϕ†T ,ΦT ], is exploited to evaluate its final time condition,
namely [105]

∂GT

∂ϕ†
= ∂JT
∂ϕ†

+ ∂Φ
∂ϕ†

∣∣∣∣∣
t=T

!= 0 , (5.20)

which gives, using the definition of χ(t) in Eq. (5.17), the “initial” condition for the
co-state χ(t), namely

χ(T ) = − ∂JT
∂ϕ†

∣∣∣∣∣
t=T

(5.21)

For gb = 0, and hermitian Hamiltonians, the equation for the co-state reduces to an
ordinary Schödinger equation which needs to be solved backwards in time, starting from
χ(T ). The “initial” condition is then fully determined by the final-time cost functional
JT = JT [ϕT , ϕ†T ]. For intermediate-time cost functionals, i.e. gb 6= 0, the latter acts as a
inhomogeneity and an inhomogeneous Schrödinger equation needs to be solved [118–120].

Once χ(t) obtained, it is used to update the control field ε(t). Krotov’ s update
procedure ensures construction of better control fields as the protocol proceeds iteratively.
This is, for the minimization case, the updated control field allows for monotonically
decreasing the value of the functional as the iteration proceeds. It can be shown that the
monotonically convergent update of the control field is given by [106]

ε(i+1)(t) = ε(i) − Im
{〈

χ(i)(t)
∣∣∣∣∣
∂Ĥ
∂t

∣∣∣∣∣
(i+1)

ϕ(i+1)(t)
〉

+ 1
2σ(t)

〈
∆ϕ(i)(t)

∣∣∣∣∣
∂Ĥ
∂t

∣∣∣∣∣
(i+1)

ϕ(i+1)(t)
〉}

, (5.22)

with ∆ϕ(i)(t) = ϕ(i+1)(t)−ϕ(i)(t) and i the iteration, and where the Dirac’s bra-ket notation
have been introduced and will be used in what follows. The expression for σ(t) required
to ensure monotonic convergence of the algorithm has been discussed in Ref. [106]. It is to
note, however, that the second term alone is necessary to ensure monotonic convergence
of the algorithm [106].

A practical application of the algorithm requires, at each iteration i, forward propa-
gation of the vector state |ϕ(i)(t)〉 according to

i
∂

∂t
|ϕ(i)(t)〉 = Ĥ[ε(i)(t)] |ϕ(i)(t)〉 with |ϕ(i)(0)〉 = |ϕ(0)〉 , (5.23)
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where |ϕ(0) refers to the initial condition (usually the ground state) of the state be-
ing propagated. Conversely, the co-state |χ(i)(t)〉 is obtained, assuming linearity of the
Schrödinger equation in ϕ(t), upon backward propagation according to [105, 106]

∂

∂t
|χ(i)〉 = −iĤ†[ε(i)(i)]|χ(i)〉+ ∂

∂ϕ
gb(ϕ, ϕ†)

∣∣∣∣∣
ϕ(i)(t)

. (5.24)

The ”initial condition” |χ(i)(T )〉, assuming the final-time cost functional in Eq. (5.1) with
a target-state functional JT [ϕT , ϕ†T ] of the form

JT [ϕT , ϕ†T ] = |〈Ψtarget|ϕ(T )〉|2

= 〈Ψtarget|ϕ(T )〉〈ϕ(T )|Ψtarget〉 , (5.25a)

is obtained with the help of Eq. (5.21), namely

|χ(i)(t)〉 = −〈Ψtarget|ϕ(i)(T )〉 |Ψtarget〉 . (5.25b)

Equations (5.22) and (5.24) together with Eq. (5.23) must be solved simultaneously. The
algorithm is started at the iteration i = 0 by solving Eq. (5.23) exposed to some guess
field ε(0)(t) to obtain |ϕ(0)(T )〉 and evaluate Eq. (5.25b). Once the expression for |χ(0)(T )〉
is known, the differential equation for χ0(t), namely Eq. (5.24) must be solved backwards
in time. The procedure is followed by sequentially updating the field ε(1)(t), by means of
Eq. (5.22). The procedure is computed iteratively until reaching the desired tolerance.

5.2 Gradient-free methods

In the previous section, we have considered a non-exhaustive list of optimization methods
that allows to minimize a given cost function f(x) provided that f(x) is differentiable
and its gradient ∇f(x), can be evaluated analytically or at least, accurately estimated
by finite differences [121]. These methods relies on the necessary condition that for any
differentiable function f(x), a given minimizer x0, fulfills the condition ∇f(x0) = ~0, i.e.
its gradient vanishes.

In practice, however, analytical expression or numerical approximation of ∇f(x) may
be inaccessible or untrustworthy. Since numerical stability of gradient-based methods
strongly relies on the accuracy of the gradient [122], another kind of optimization methods,
often referred to as direct search methods or gradient-free methods are available. This
family of optimization algorithms allows, under certain conditions, to efficiently minimize
a differentiable cost function with respect to the design variables without recourse of its
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gradient.

5.2.1 Nelder-Mead optimization algorithm

The Nelder-Mead method, named after J. Nelder and R. Mead [123], also known as
downhill simplex method or amoeba method, is an heuristic “gradient-free” search
method relying on the evaluation of the target functional only, without requiring explicit
evaluation of its gradient. It is intended to find the minimum (maximum) of an mul-
tidimensional objective function. Typically, it is well suited for optimization problems
requiring a relatively small number of optimization parameters and often employed when
numerical stable gradient of the target functional is whether not accessible, nor reliable. It
exploits the concept of simplex, a N -dimensional polytope provided with N + 1 vertices,
which undergoes a set of linear transformations such as contraction and expansion as the
algorithm proceeds iteratively, generating new points yielding with improvement in the
functional value.

The essence of the method relies in determining the point xM ∈ RN where the func-
tion is maximal and to replaced it by its reflexion with respect to the center of gravity
generated by the N remaining points [123–125]. If the new point yields to a functional
value smaller than that obtained with the N remaining points, the simplex is expanded
along the new point. If not, the simplex is centered at the point where the functional is
locally minimal [110, 123]. In detail, for an optimization problem consisting in minimizing
f(x), with x ∈ RN , a standard application of the Nelder-Mead method consists in the
implementation of the following steps,

1. Generation of N + 1 sample points in RN : Generate a set of test points
{x1,x2, . . . ,xN+1}

2. Functional evaluation and ordering: evaluate the target functional, or cost func-
tion f(x), and order the resulting values according to f(x1) ≤ f(x2) ≤ · · · ≤
f(xN+1). It is sufficient to know the best and two worst points.

3. Evaluation of the center of gravity x0: the center of gravity is evaluated using all
points except the worst, i.e. xN+1.

4. Reflexion: Evaluate the reflected point xr = x0 + γr(x0 + xN+1), with γ0 > 0.

(a) If the reflected point is better than the second worst point xN , but not better
than the best point, i.e. x1 ≤ xr < xN , then replace the worst point xN+1 with
the reflected one xr, and go to step 2.

(b) if not, go to step 5.
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5. Expansion: If it turns out that the reflected point is the best one, i.e. f(xr) ≤ f(x1),
then compute the expanded point xe = x0 + γe(xr − x0) with γe > 1

(a) If the expanded point is better than the reflected point, i.e. f(xe) < f(xr),
then replace the worst point xN+1 with the expanded point xe and go to step
2.

(b) If not, replace the worst point xN+1 with the reflected point xr and go to step
2.

6. Contraction: At this point f(xr) ≤ f(xN). Evaluate the contracted point xc =
x0 + γc(xN+1 − x0)), with 0 < γc ≤ 0.5.

(a) If the contracted point xc is better than the worst point, i.e. f(x) < f(xN+1),
then replace the worst point xN+1 with the contracted point xc and go to step
2.

(b) If not, go to step 7.

7. Homothety with respect to the best point : Replace all points except the best
one x1 with x̃n = xn + γh(xi) − x1 and go to step 2. At this stage the vertices of
the new simples are x1, x̃2, . . . This stage is alternatively known as shrink.

The algorithm proceeds iteratively until the simplex is sufficiently small, eventually con-
verging to a global (local) minimum when the simplex dimension does not change signifi-
cantly as the iteration proceeds. However, a brief word of caution is in order: the algorithm
itself strongly depends on the initial simplex, which is constructed from the test or guess
points x1,x2, . . .xN+1. In this context, this method frequently gives satisfactory improve-
ments in the very few iterations, producing noticeable reduction in the functional value.
However, the lack of convergence theory of the protocol described above is commonly
reflected in the stagnation of the algorithm, in particular for large number of iterations.
In this case, the algorithm performs a significant number of functional evaluations for
an insignificant improvement, even if the simplex is far from a local minimum [112, 126–
129]. Needless to say, this pathology strongly penalizes the numerical efficiency of the
optimization, particularly when long propagation times are required for the simulation of
the electron dynamics. This problem is reviewed in detail in Sec. 9, where we study the
limitation the Nelder-Mead method and propose an alternative algorithm that allows to
circumvent this limitation.

5.2.2 Brent’s principal axis optimization method

Brent’s principal axis optimization algorithm, due to Richard P. Brent [130] refers
to a gradient-free minimization method, based on an adaptive coordinate-descent ap-
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proach [131] that iteratively performs a set of transformations of the coordinate system,
that are designed to disentangle the updated coordinates as much as possible with re-
spect to the cost function to be minimized3. The essence of the method relies on re-
peatedly updating a set of conjugate search directions4 allowing the algorithm to move
towards the minimum. Brent’s principal axis method is a modification of the well es-
tablished and widely known Powell’s conjugate direction method [132]. The essence
of Powell’s method, together with the modifications introduced by Brent [130] to ensure
quadratic convergence are briefly described in the following lines and requires the following
steps [133],

1. Set of initial conjugate directions: the algorithm is started by choosing a guess
set of parameters x(0) ∈ RN , with N being the number of optimization parameters.
A set of N search directions u(1), . . .u(N) is then arranged to the columns of an
identity matrix.

2. Evaluation of the functional: the cost function or target functional is evaluated N
times, and the optimization problem

arg min
λ(i)∈R

f
(
x(i−1) + λ(i)u(i)

)

i=1,...N
(5.26)

is solved and the scalars λ(i) obtained.

3. update of control parameters: using the optimized scalars obtained from
Eq. (5.26), a first update of the control parameter is performed according to

x(i) = x(i−1) + λ(i)u(i) , (5.27)

for i = 1, . . . N

4. Update of the conjugate directions: upon obtaining λ(i) ∈ R, for i = 1, . . . N , a
set of new directions is judiciously generated upon update of the previous ones,

(a) for i = 1, . . . N − 1, each direction u(i) is replaced according to u(i) = u(i+1)

(b) u(N) is replaced with u(N) = x(N) − x(0).

3assuming quadratic form of the objective function
4Let a multivariate scalar function f(x) ∈ R such that x ∈ RN , two vectors (u,v) ∈ R2N are said

to form a conjugate pair if they fulfill the property uTAv = 0 together with ∇f · u = 0 such that
∇f(x + δx) = Ax+ b.
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5. Second optimization: at this point, a second optimization takes place, where the
task to be accomplished is to find λB ∈ R such that

arg min
λB∈R

f
(
x(0) + λBu(N)

)
. (5.28)

6. Once the optimization problem in Eq. (5.28)is solved, the previous step is followed
by updating the guess x(0) according to

x(new) = x(0) + λBu(N) . (5.29)

7. The procedure is repeated using x(new) as guess set of optimization parameters for
the next iteration, i.e. x(0) = x(new), until the minimum is reached according to
some predefined tolerance criterion.

In Powell’s algorithm described in the above lines, the search directions are iteratively
updated until a set of conjugate directions, with respect to a quadratic form, is obtained
after N iterations. As a consequence, a minimum will be found at the next iteration if
the cost functional is quadratic. In Ref. [130] Brent formally showed in a accessible form
that for a quadratic function, the procedure above will reach a minimum in exactly N

iterations. We recall that N is the dimensionality of the optimization problem. One of the
disadvantages of the algorithm is that when replacing u(N) = x(N)−x(0) in step 4(b), the
updated directions tend to become linearly dependent among them, thereby yielding to a
minimum lying only in a subspace of the originally N-dimensional problem. To fix this and
other inherent problems, Brent [130] improved the strategy by (i) incorporating automatic
rescaling of the different variables, (ii) randomizing steps into the procedure to avoid
“resolution ridge” problems [133] and perhaps more importantly, by (iii) replacing the
original matrix of the search direction by its principal axes, thus ensuring that conjugacy
was fulfilled [130, 133].
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6.1 Wave function splitting method

Photoelectron spectroscopy [134–136] is a powerful tool to scrutinize and rationalize pho-
toionization processes as a result of the laser-matter interaction. The process of photoion-
ization contains not only the specific details about the electron dynamics triggered by the
ionizing field, but also the fingerprints of the inherent interactions of the field-free Hamil-
tonian, thus revealing crucial information about the underlying electronic structure as well
as intrinsic electronic interactions and their correlations with each other [51, 137, 138].
From a theoretical perspective, the photoelectron spectrum can be evaluated upon pro-
jection of the propagated wave packet onto the eigenstates of the field-free continuum
wave functions after the pulse is over [51]. In the particular context of strong and long
ionizing light pulses, the spatial extension of the propagated wave packet poses a particu-
lar challenge in terms of numerical efficiency. In fact, numerical propagation under strong
fields during long times with subsequent evaluation of the photoelectron-related observ-
ables becomes prohibitively expensive due to the extension of the propagated continuum
wave packet and large number of basis set required to properly represent the outgoing
photoelectron. Furthermore, large coordinate grid sizes are also required to avoid spurious
reflections of the propagated wave packet once the latter reaches the boundaries of the
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grid [25, 51, 139, 140]. This situation, already detrimental to the numerical performances
in terms of storage and CPU time, poses an additional computational challenge in the
context of numerical optimization, since typically generic optimization methods rely of
iterative schemes demanding a few hundreds, or even more evaluations of the optimization
functional requiring non-parallelizable propagations. This significantly compromises the
numerical efficiency for the purpose of optimization. In the context of this thesis, this is
remedied by extracting the asymptotic photoelectron momentum distribution, which is
required for the evaluation of the photoelectron-related observables, in the context of the
so-called wave function splitting method (WFSM) based on Ref. [141] and extended to
a channel-resolved formalism of the TDCIS for the calculation of photoelectron spectrum
(PES) and photoelectron angular distributions (PAD) proposed in Ref. [51, 142]. Briefly,
the essence of the WFSM is based on (i) splitting the overall time grid interval [0, T ] into
a set of “splitting times” tj ∈ [0, T ], and (ii) application of a “split operator” to the prop-
agated wave function at each splitting time. At each tj, the propagated wave function is
split into an inner and an outer part using a smooth radial splitting function defined by
the operator [51]

Ŝ =
[
1 + e−(̂r−rc)/∆

]−1
, (6.1)

where the “smoothing” parameter ∆ in Eq. (6.1) controls how steep the slope of the
splitting function is. The parameter rc denotes the “splitting” radius and defines the
distance from which the “split operator” becomes active. Application of Ŝ to a given
wave function splits the latter into an inner (r ≤ rc) and outer (r > rc) parts. Inner and
outer parts are defined by the portion of the split wave function whose radial extension
is smaller and larger than rc, respectively. In the context of the TDCIS, the “channel
wave functions” |ΨN(t)〉, defined in Eq. (3.28) in Section 3.4.2, are used to calculate the
spectral components in a channel-resolved manner. This is accomplished by projecting
the resulting outer parts onto the Volkov states. In detail, each channel wave function
(basis set) |ϕi(t)〉 is split into inner and outer parts at every splitting time tj, namely [51]

|ϕi(tj)〉 = |ϕi,in(tj)〉+ |ϕi,out(tj)〉 , (6.2a)

where the “channel wave functions” |ϕi(t)〉 are those defined by the partial trace of the
single-particle-single-hole excitation in Eq. (3.28) in Section 3.4. It it worth mentioning
that Ŝ does not, and should not, affect the Hatree-Fock ground state |Φ0〉. The inner and
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outer parts in Eq. (6.2a) are respectively defined by

|ϕi,in(tj)〉 = (1− Ŝ)|ϕi(tj)〉 and |ϕi,out(tj)〉 = Ŝ|ϕi(tj)〉 . (6.2b)

At each splitting time, the inner part, |ϕi,in(tj)〉, is represented in the CIS basis and further
propagated with the ”full Hamiltonian”, defined in (3.25a) in Section 3.4.2, from tj to the
next splitting time tj+1. The outer part having reached a sufficiently large extension of the
grid, it is assumed not to be affected by the field-free Hamiltonian. Therefore, it is stored
and propagated analytically from tj to a large T by means of the Volkov Hamiltonian
defined by

ĤV (τ) = 1
2 [p̂ + A(τ)]2 , (6.3)

where p̂ and A(τ) refer to the momentum operator and vector potential associated to
the driving electric field E(τ), respectively. This procedure is repeated iteratively for all
splitting times. Thus, the outer parts of the wave function that have been stored can be
analyzed separately in order to obtain information about the photoelectron momentum
distribution and evaluate observables such as (i) energy-integrated photoelectron angu-
lar distribution (PAD), (ii) angle-integrated photoelectron spectrum (PES), (iii) full
momentum distribution and (iv) total yield. Furthermore, since the outgoing part of
the wave function is absorbed efficiently at the splitting times, large box sizes are avoided
in the inner region, which significantly increases the numerical performance of the prop-
agation [51].

6.2 Photoelectron spectrum and angular distributions

This section introduces the formal description for the evaluation of the full momentum
distribution, PES and PAD of the emitted photoelectrons in the framework of the WFSM.
The spectral coefficient ϕi(p, T ; tj) describing the continuum part of the propagated wave
packet originating from a given channel i at the splitting time tj and evaluated at the
final time t = T , reads [51]

ϕi,out(p, T ; tj) = 〈p|ÛV (T, tj)Ŝ|ϕi(tj)〉

=
∫
d3p′〈p V |ÛV (T, tj)|p ′V 〉〈p ′V |ϕi,out(tj)〉 , (6.4)

where |pV 〉 refers to the Volkov states and where ÛV (T, tj) is the evolution operator acting
on the outer part of the propagated wave packet. It propagates the outer parts from the
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splitting time tj to a final time t = T . The parameter T must be a sufficiently long time
so that all parts of the wave function that are of interest have reached the outer region
and therefore contribute to the PES. The evolution operator associated with the Volkov
Hamiltonian defined in Eq. (6.3), reads

ÛV (t2, t1) = exp
(
−i
∫ t2

t1
ĤV (τ)dτ

)
. (6.5)

In the velocity form, the Volkov states |pV 〉 corresponds to planes waves, 〈r|pV 〉 =
(2π)−3/2 eip·r [51]. Making use of multipole expansion for the exponential function1 [143–
146] allows to rewrite Eq. (6.4) in the following form [51],

ϕi,out(p, T ; tj) = 2
π
e−iϑV (p)∑

a

(−i)laβai (tj)Y la
ma

(Ωp)
∫ ∞

0
r dr una

la
(r)jla(pr) , (6.6)

where jla(pr) and una
la

(r) = Rna
la

(r)/r [51] denote the Bessel polynomials and the radial
wave functions of the field-free Hamiltonian associated with the virtual orbitals, respec-
tively. The photoelectron momentum is defined by p with p = |p|. The term Y la

ma
(Ωp)

denotes the ordinary spherical harmonics where the orientational unit vector Ωp = (θ, φ)
is defined by the photoelectron emission direction. The angular coordinates θ and φ de-
note the polar and azimuthal angles defining the direction of photoelectron emission with
respect to the propagation direction of the driving field. In Eq. (6.6), the sum runs over
the virtual orbitals, cf. Section 3.4.1, and the Volkov phase ϑV (p), reads [51]

ϑV (p) = 1
2

∫ T

tj
dτ [p + A(τ)]2 . (6.7)

Finally, βai (tj) denotes the projection of the outer part onto the field-free virtual orbital
|φa〉, namely

βai (tj) = 〈φa|ϕi,out(tj)〉 with φa(r) = una
la

(r)
r

Y la
ma

(Ωr) . (6.8)

The contributions from all splitting times must be added up coherently to form the total
spectral coefficient for the channel i, namely

ϕ̃i,out(p, T ) =
∑

tj

ϕi,out(p, T ; tj). (6.9)

1 for planes waves the multipole expansion reads eip·r = 4π
∞∑

l=0
(i)ljl(pr)

l∑

m=−l
Y ∗lm (Ωp)Y lm(Ωr)
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Equation (6.9) is utilized to evaluate the photoelectron yield. In detail, incoherent sum-
mation over all possible ionization channels i, yields the full momentum distribution [51]

d2σ(p)
dp dΩ =

∣∣∣ϕ̃out(p, T )
∣∣∣
2

=
∑

i

∣∣∣ϕ̃i,out(p, T )
∣∣∣
2
, (6.10a)

where dΩ ≡ dΩp = sin θdθdφ is the differential solid angle.
The energy-integrated PAD is obtained by integrating Eq. (6.10a) over energy or,

equivalently, momentum, namely

dσ

dΩ =
∫ ∞

0

d2σ(p)
dpdΩ p2dp . (6.10b)

Analogously, the angle-integrated PES is obtained upon integration over all directions

dσ

dε
= p

∫ 2π

0

∫ π

0

d2σ(p)
dpdΩ sin θdθdφ (6.10c)

with p =
√

2ε and ε ≤ 0 the photoelectron energy. Last but not least, the total yield, σ,
defining the probability for photoelectron emission is obtained by integrating the angle-
integrated PES, i.e. Eq. (6.10c), over all positive valued energies of the continnum spec-
trum

σ =
∫

ε≤0

dσ

dε
dε . (6.10d)

In the context of this work, full momentum distribution, total yield, PES and PAD are
evaluated by means of the formalism detailed in the above lines. This formalism will
be further exploited to the development of an monotonically convergent optimal control
algorithm allowing to manipulate and control specific properties of continuum-related
observables in Chapter 8.
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7.1 Introduction and Motivations

Over the past decades, the field of quantum molecular dynamics has been driven by the
development of efficient numerical methods for solving the time-dependent Schrödinger
equation [94]. Current applications include studies of quantum optimal control [147] or
electron dynamics. The two basic tasks that need to be addressed in quantum molecular
dynamics are the representation of the state vector (and operators acting on it) and its
time evolution. Ideally, the accuracy with which both tasks are accomplished should
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be balanced [57]. High accuracy is required by many state-of-the-art applications, for
example in quantum optimal control [147]. At the same time, the exponential scaling
of quantum dynamics calculations is a challenge for even the most advanced computer
architectures. Efficiency of the methods is therefore also an issue, in addition to accuracy.

Highly accurate methods are obtained by employing pseudospectral approaches based
on the expansion in orthogonal polynomials [78]. The representation problem can be
solved using discrete variable representations or their unitary equivalent, finite basis rep-
resentations [148]. The operators acting on the wavefunction are then given as sparse
(often diagonal) matrices in one of the representations. The numerical effort is either
due to the unitary transformation connecting the two representations or due to sparse
matrix-vector multiplications. For a sufficiently large number of basis functions, the error
becomes smaller than machine precision [149].

It is also well-established that polynomial approximations yield the most accurate
and stable propagation schemes [99]. Again, convergence is exponential with increas-
ing polynomial order. For coherent time evolution, the best polynomial approximation
of the evolution operator is obtained by the Chebyshev propagator [98], while Newton
polynomials yield an accurate and efficient propagator for open quantum systems [99].
Modifications of polynomial propagators allow to also accurately account for time ordering
in case of a time-dependent Hamiltonian [150–152].

The valuable high accuracy of these methods may, however, be compromised in time-
dependent studies of dissociation or ionization where a sufficiently large grid, respectively
a sufficiently large number of basis functions, becomes computationally prohibitive, both
in terms of storage requirements and CPU time. Remedies to this problem include the use
of variable grid steps [153–156] or variable-grid boundary conditions [157], wavefunction
splitting methods [51, 158, 159], mask functions [160–162] or complex absorbing potentials
(CAPs) [139, 140]. While the latter approach allows for calculating physical observables
that require long propagation times [25, 28, 163], a CAP can only absorb wavepacket
components within a certain frequency range [140]. It is thus rather difficult to com-
pletely avoid reflection which compromises accuracy. The problem of reflection also oc-
curs for the mask function approach [157]. Furthermore, A CAP, renders the Hamiltonian
non-Hermitian, which results in substantial technical difficulties particularly for quantum
optimal control [50, 53, 164] and may even preclude the evaluation of observables of inter-
est [25, 28, 52]. Non-Hermitian Hamiltonians are avoided when using variable grid steps
or wavefunction splitting but also in these cases high accuracy and reasonable numerical
costs are not always guaranteed. For example, the mapped Fourier grid method [154–
156, 165] was developed for long-range potentials that vanish asymptotically as 1/RN . It
allows for an accurate description of most bound states and low-energy scattering states.
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However, the calculation of the bound spectrum does not scale favorable with the number
of grid points, rendering its application in coupled channel calculations difficult [166, 167].
Moreover, it cannot be used in photoionization studies where high-energy scattering states
may come into play. Wavefunction splitting is applicable in this case [51, 138]; it neglects,
however, the Coulomb interaction between photoion and photoelectron. Thus, it cannot
be used to study processes where recombination of the photoelectron is crucial, such as
high harmonic generation.

Needless to mention, the tedious task of choosing the proper parameters for each of
these methods such that convergence of the observables of interest is achieved. Further-
more, since such parameters are field dependent, from a optimization prospective nothing
warranties that the parameters chosen for the guess field are also valid for the optimized
field, without compromising the convergence of the observables, and consequently, the
validity of the calculations.

In order to circumvent these technical difficulties, we use a weak formulation [78,
168] of the Schrödinger equation to derive a sparse, yet accurate representation of the
Hamiltonian and combine it with the Chebyshev propagation method [98]. The basic idea
is to decompose the spatial domain into multiple sub-intervals of increasing size, chosen
according to the local de Broglie wavelength, similar to the choice of the variable grid step
in the mapped Fourier grid method [154–156, 165]. Within each interval, the wavefunction
is expanded into Lagrange polynomials. The resulting representation of the Hamiltonian
is sparse which is exploited in storage, diagonalization and matrix-vector operations [169].
Our approach thus combines the high accuracy of pseudospectral methods with the ability
to use a very large spatial domain. It is particularly advantageous for quantum dynamics
involving long-range potentials and long propagation times. As an example, we consider
a laser-driven electron in a soft Coulomb potential, a popular model for high-harmonic
generation.

7.2 Time-dependent Schrödinger equation

The time-dependent Schrödinger equation reads

i~
∂

∂t
Ψ(r, t) = H(r, t) Ψ(r, t) , (7.1)

with the Hamiltonian found in Eq. (7.11). The formal solution is given by

Ψ(r, t) = T exp
(
− i
~

∫ t

0
H(r, τ)dτ

)
Ψ(r, 0)

= U(t)Ψ(r, 0) , (7.2)
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where T denotes the time-ordering operator and U(t) the evolution operator from time
zero to time t. Polynomial propagators treat U(t) as a function of the Hamiltonian and
expand it into a truncated polynomial series [57, 98, 99, 104, 151, 152, 170]. To this end,
the domain of the eigenvalues, i.e., the spectral radius ∆E of the Hamiltonian must be
known, in order to renormalize the Hamiltonian to the domain of the polynomials [57,
98, 99]. Consider for simplicity first a time-independent Hamiltonian in which case the
Chebychev propagator is given by [98]

U(t) = e−iHt/~ ≈
N∑

n=0
anTn (−iHt/~) . (7.3)

For the exponential function, the expansion coefficients an are known analytically [98],
and Eq. (7.3) can be evaluated using the recursion relation of the Chebyshev polynomials.
The solution is thus obtained by subsequent applications of the (renormalized) Hamilto-
nian to a wavefunction [57, 98, 99]. If the Hamiltonian has a matrix representation, the
propagation thus involves a series of matrix-vector multiplications. The number N of
Chebyshev polynomials, i.e., applications of the Hamiltonian, is proportional to the prod-
uct of spectral radius and time step [57, 98, 99]. The error of the expansion (7.3) can be
made arbitrarily small by choosing a sufficiently large N . This reflects the global nature
of the approximation (7.3).

For an explicitly time-dependent Hamiltonian as in Eq. (7.11), time-ordering needs to
be accounted for, cf. Eq. (7.2). A global polynomial propagator in this case is given by
the (t, t′)-method [171]. Unfortunately, its practical use is hampered by an exponential in-
crease in computational effort, due to treating the time-dependence as an additional degree
of freedom (t′). An alternative is offered by semi-global propagators [151, 152, 170] that
also allow for full error control. They are based on rewriting the explicitly time-dependent
term on the right-hand side of Eq. (7.1), HI(r, t)ψ(r, t), as an (unknown) inhomogene-
ity which is determined iteratively in a self-consistent manner. The formal solution of
the inhomogeneous Schrödinger equation (with the remaining time-independent Hamilto-
nian) can be subjected to a polynomial expansion just like Eq. (7.3) [172]. This follows
from Duhamel’s principle which links the formal solution of an inhomogeneous ordinary
differential equation to the solution of the corresponding homogeneous equation. A semi-
global approximation of the properly time-ordered solution (7.2) with full error control is
important for strongly time-dependent Hamiltonians, as present in HHG.

The high accuracy afforded by global and semi-global polynomial propagators is crucial
in particular when coherent effects are examined. For example, second order differenci-
ating schemes are not stable already for intermediate propagation times [149], and the
popular split operator preserves the norm which means that the numerical error is entirely
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in the phase of the wavefunction where it accumulates [104].

7.3 Description of the pseudospectral formalism

For a well-balanced numerical approximation of Eq. (7.2), the representation of the wave
function and the Hamiltonian that is acting on it should be of the same accuracy as the
propagation scheme [149]. Global representation methods are obtained by collocation and
include the Fourier grid [149] as well as discrete variable representations (DVRs) and their
unitary equivalent, the finite basis representations [148]. For a sufficiently large number of
basis functions in the collocation, the error becomes smaller than machine precision [149].

The high accuracy of these methods is, however, compromised by the numerical ef-
fort they require if a very large grid or, respectively, a very large number of basis func-
tions is required. This is the case in time-dependent studies of dissociation and ioniza-
tion. Global approximations quickly become computationally prohibitive, both in terms
of storage requirements and CPU time. Remedies to this problem include the use of
variable grid steps [153–156] or variable-grid boundary conditions [157], wavefunction
splitting methods [51, 158, 159], mask functions [160–162] or complex absorbing poten-
tials (CAPs) [139, 140]. However, none of these methods is suitable to represent the
time-dependent wavefunction in HHG which both involves a long-range potential and re-
quires the accurate description of high-energy scattering states that are accessed during
ionization and recombination.

An alternative is provided by a semi-global representation of the Hamiltonian. Based
on a decomposition of the spatial domain into multiple sub-intervals and collocation, i.e.,
expansion into orthogonal polynomials, within each interval, it is commonly referred to as
finite element discrete variable representation (FE-DVR) [83, 89, 91, 92]. In Appendix A.1,
we use Green’s theorem, i.e., a weak formulation of the Schrödinger equation, to derive
this representation. This allows for constructing a symmetric Hamiltonian matrix. More-
over, we modify the original derivation of the FE-DVR by taking the sub-intervals to
be of increasing size, chosen according to the local de Broglie wavelength, similar to the
choice of the variable grid step in the mapped Fourier grid method [154–156, 165]. The re-
sulting representation of the Hamiltonian is blockwise sparse except for the inter-element
points [89], with k = 1, . . . ,M being the number of elements and (i, j) = 0, . . . N the
number of collocation points per element. Denoting the reduced mass and the potential
energy evaluated at the collocation point rki by µ and V (rki ), respectively, the matrix
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Ĥ0 =




· · · ak−2
N,N + ak−1

0,0 ak−1
0,1 · · · ak−1

0,N 0 0 0 0 · · · 0 0 · · ·
· · · ak−1

0,1 ak−1
1,1 · · · ak−1

1,N 0 0 0 0 · · · 0 0 · · ·
· · · ... ... . . . ... 0 0 0 0 · · · 0 0 · · ·
· · · ak−1

N,0 ak−1
N,1 · · · ak−1

N,N + ak
0,0 ak0,1 · · · ak0,N 0 · · · 0 0 · · ·

· · · 0 0 0 ak1,0 ak1,1 · · · ak1,N 0 · · · 0 0 · · ·
· · · 0 0 0 ... ... . . . ... 0 · · · 0 0 · · ·
· · · 0 0 0 akN,0 akN,1 · · · ak

N,N + ak+1
0,0 ak+1

0,1 · · · ak+1
0,N 0 · · ·

· · · 0 0 0 0 0 · · · ak+1
1,0 ak+1

1,1 · · · ak+1
1,N 0 · · ·

· · · 0 0 0 0 ... ... ... ... . . . ... 0 · · ·
· · · 0 0 0 0 0 0 ak+1

N,0 ak+1
N,1 · · · ak+1

N,N + ak+2
0,0 ak+2

0,1 · · ·
0 0 0 0 0 0 0 0 0 0 ak+2

1,0 ak+2
1,1 · · ·

0 0 0 0 0 0 0 0 0 0 ... ... . . .




(7.4)

Figure 7.1: FE-DVR: Sparse matrix representation of the Hamilton operator in the FE-
DVR basis. Note that the individual matrix elements aki,j ≡ ak(vi, vj) in Eq. (7.5), asso-
ciated with the last and first points of two contiguous elements, rkN and rk+1

0 , are added
up at diagonal coordinates coinciding with interelement points of the global grid, i.e.
rkN = rk+1

0 , ensuring continuity of the eigenvectors at these points.

elements aki,j ≡ ak(vi, vj) are given by

ak(vki , vkj ) = ~2

2µJ
−1
k

SΛ
i,j√
γki γ

k
j

+ V (rki )δi,j
wkj√
γki γ

k
j

(7.5)

with the Jacobian Jk, collocation weights wkj and “global weights” γkj found in
Eqs. (A.10b), (A.11), and (A.23b), and the matrix elements SΛ

i,j defined in Eq. (A.14).
Due to the DVR character of the representation, HI(r, t) corresponds to a diagonal matrix,
just as V (r) does.

The number of non-zero matrix elements is given by

N = (N ×M + 1)(N + 1)

−N (N + 1) /2− 2(N + 1) , (7.6)

where N + 1 is the number of collocation points and M denotes the number of intervals.
This compares to the Npts (Npts + 1) /2 different matrix elements of a full Hermitian ma-
trix that is obtained in global collocation schemes. The sparsity and band-like structure
of Eq. (7.4) can be exploited to reduce storage and CPU time in both diagonalization and
time propagation, using standard libraries for sparse matrix-vector operations [169].

The semi-global representation (7.4) based on Gauss-Lobatto-Legendre collocation
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Figure 7.2: Distribution of collocation points with N = 21. The inset shows a zoom onto
the interval labeled by Ωk+1. The high density of points close to the edges of the interval
is typical for collocation based on Gauss-Lobatto-Legendre points.

in sub-intervals of increasing size is closely related to FE-DVR [83, 89, 90]. The main
difference between our derivation of Eq. (7.4) in Appendix A.1 and that of Refs. [83, 89, 90]
is our systematic choice of the sub-intervals [rk0 , rkN ]. As explained in Section A.1.1, there is
no restriction on the choice of rk0 and rkN . We utilize the intuition underlying the Mapped
Fourier Grid method [153–156, 165] and adapt the size of each sub-interval to the local
de Broglie wavelength. This implies that the sub-intervals get larger in the asymptotic
part of the potential which can be achieved as follows. The overall spatial domain starts
at rmin and thus rk=1

0 = rmin. The end of the first interval, rk=1
N , is obtained by solving

the implicit equation [156]

β =
√

2µ
π

∫ rk
N

rk
0

√
Easy − V (r) dr (7.7)

for k = 1, where β and Easy are two parameters. For all further intervals, rk+1
0 is set equal

to rkN , and rk+1
N is obtained by solving Eq. (7.7). This procedure is repeated until rmax

is reached. The two parameters in Eq. (7.7) have a physical meaning that makes their
choice straightforward. The parameter β with 0 < β ≤ 1 estimates the local coverage
of the phase space volume [154–156]: Smaller values of β result in a higher density of
points, and β = 1 corresponds to the minimal classical estimation for the phase space
discretization. The parameter Easy specifies the smallest energy up to which the size of
the interval is increased, i.e., if |V (r)| becomes smaller than Easy, the size of the intervals
is not increased any further but kept constant.

Within each interval, the points rkj , j = 0, . . . , N , are chosen according to the Leg-
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endre quadrature rule, as described in Section A.1.2. Since each interval is discretized
by N + 1 collocation points, the density of points per element is constant. The resulting
discretization is illustrated in Fig. 7.2 for the B1Σ+

u electronically excited state of the Ca2

molecule [173] which vanishes asymptotically as 1/R3. Such long-range states support
extremely weakly bound vibrationally levels and therefore require large rmax to faithfully
represent all (relevant) bound levels [154]. Such levels are important for example in the
photoassociation of ultracold atoms, and it was the need to calculate such levels that
had prompted the development of the mapped Fourier grid method [154]. We provide a
detailed analysis of the dependence of accuracy and computational resources on domain
discretization and collocation order in Appendix A.2.

7.4 Numerical Results

We focus our attention to the single-atom response leading to high order harmonic genera-
tion for linearly polarized light. Besides the physics of the problem, a particular attention
will be devoted to the numerical performances with respect to the standard Fourier prop-
agation method. The basic physics of the process can be captured by considering an
electron subject to a soft Coulomb potential [174],

V (r) = − 1√
a+ r2

. (7.8)

Choosing a = 2 in Eq. (7.8) ensures that the ground state energy coincides with that
of the true Coulomb potential, namely 0.5 Hartree. The electron is subject to a linearly
polarized electric field of the form

E(t) = E0G(t) sin(ω0 t) , (7.9)

where G(t) is a Gaussian envelope. The interaction of the electron with the electric field
is treated in the dipole approximation,

HI(r, t) = −r E(t) , (7.10)

such that the total Hamiltonian becomes

H(r, t) = H0 +HI(r, t) = − ~2

2m∇
2
r + V (r)− r E(t) . (7.11)

The entire information about the harmonic generation process is encoded in the time-
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dependent dipole acceleration [175]. It is given by [176]

d̈(t) = 〈ψ(t)|∇rV (r)|ψ(t)〉 , (7.12)

where the dependence on the external field is omitted since it does not contain higher
harmonics. The harmonic spectrum S(ω) is obtained as [177]

S(ω) = |d̈(ω)|2/ω2 , (7.13)

where d̈(ω) is the Fourier transform of the dipole acceleration (7.12).
We choose the parameters of the electric field such that Ip > Up > ω0, where Ip is the

ionization potential and Up the ponderomotive energy. Then the high harmonic generation
process procedes in the regime of above threshold ionization (ATI) [178]. Within the
quasi-classical three-step model, the harmonic cutoff position is given by [23, 179]

ωc = (Ip + 3.17Up)/ω0 . (7.14)

For an electron in the ground state, it becomes ωc = 10.072. We minimize the charac-
teristic overestimation of the recollision probability of 1D models with respect to their
counterpart 3D models by choosing a few-cycle pulse [176].

7.4.1 Numerical performance

For completeness, we compare the numerical performance of the semi-global represen-
tation (7.4) to that obtained with the mapped Fourier grid. In both cases, we utilize
the Chebychev propagator, Eq. (7.3). In the semi-global representation, the Hamilto-
nian is applied via sparse matrix-vector multiplications, whereas the mapped Fourier grid
method uses fast Fourier transforms together with vector-vector multiplications in real
and momentum space.

We assume that initially the electron is in the ground state, |ϕ0〉, of the field-free
Hamiltonian. For the propagation based on the mapped Fourier grid, we use Rmax =
8000 Bohr, which ensures that there are no spurious reflections at the edges of the grid
during propagation. The remaining parameters are chosen to yield fully converged results.
Specifically, we find the grid to be converged when using 2047 coordinate points, which
leads to a correct representation of continuum states with energies well above Emax =
0.25 Hartree, the highest continuum state that gets populated during the dynamics.

The eigenvalues and eigenfunctions are obtained by diagonalization of the field-free
Hamiltonian in the mapped Fourier grid representation. The set of eigenvalues from E0 to
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Figure 7.3: Time-dependent dipole acceleration d̈(t) obtained with the mapped Fourier
grid method and the semi-global representation (7.4) (N = 3, M = 900). For comparison,
the electric field of the driving pulse is also shown.

Emax is used as a reference to define the accuracy of the semi-global representation (7.4),
when testing several combinations of the number of domains, M , and collocation order,
N . We find that for a low collocation order, which minimizes the spectral radius, a
larger total number of points is needed than with the mapped Fourier grid. For example,
N = 2701 for M = 900 and N = 3.

The dipole acceleration d̈(t) obtained with both propagation approaches is depicted
in Fig. 7.3. The few-cycle laser pulse induces a fast dynamics of the electron, and the
corresponding harmonic spectrum, cf. Fig. 7.4, shows the characteristic cutoff. Clearly,
both methods yield the same dynamics, as expected. The numerical performance is,
however, quite different. It is analyzed in Table 7.1. Although the sparse structure of
the Hamiltonian matrix (7.4) leads to a larger spectral radius, the CPU time required for
propagation may be significantly smaller, depending on the collocation order N . Thus the
semi-global representation using sparse matrix-vector multiplications is numerically more
efficient than transforming the propagated wavepacked from coordinate to momentum
representation by fast Fourier transforms, provided the parameters N and M are chosen
judiciously.

The choice of collocation order and number of domains is further analyzed in Table 7.1.
The role of the spectral radius becomes particularly apparent for N = 10 and M = 270
which leads to a propagation time 50 per cent longer than that needed with the mapped
Fourier grid approach. In this case, the spectral radius is almost ten times larger than the
one obtained with the mapped Fourier grid. Correspondingly, the number of applications
of the Hamiltonian is ten-fold increased. However, choosing N = 6 and M = 450 reduces
the spectral radius considerably, such that the CPU time for propagation is now only
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N M spectral radius† CPU time†

10 270 973% 152%
6 450 411% 66%
5 540 310% 52%
4 675 227% 40%
3 900 165% 31%

† relative to mapped Fourier grid method

Table 7.1: Numerical effort for wavepacket propagation with the adaptive-size multi-
domain pseudospectral approach where N denotes collocation order and M the number
of domains. The total number of collocation points is N = N ×M + 1 = 2701. The
reference calculation, using the mapped Fourier grid method and fast Fourier transforms,
with 2047 grid points and a spectral radius of 1277.8 Hartree., took 959 s of CPU time.

two thirds of that using the mapped Fourier grid method. Already for this choice of
parameters, the semi-global adaptive-size multi-domain pseudospectral approach starts to
be more efficient. The efficiency may be further improved by reducing N and increasing
M , up to a third of the CPU time required with the mapped Fourier grid for N = 3 and
M = 900.

Note that the accuracy in all cases is roughly the same, since the overall number of
collocation points is sufficiently large. A low collocation order N minimizes the spectral
radius, and thus the number of times the Hamiltonian is applied. Larger N does not only
lead to a larger spectral radius but also to a less sparse structure of the Hamiltonian, cf.
Appendix A.2, i.e., it results in a two-fold increase in the numerical cost. Since small
N allows for highly accurate results, it is the preferrable choice. In summary, the best
performance of the semi-global multi-domain pseudospectral representation is achieved
by choosing a relatively large total number of points, with small N and large M , such
that the desired accuracy is obtained while minimizing the CPU time.

The advantage of our approach is its stability and accuracy, besides efficiency. These
features derive from the pseudospectral treatment of both spatial degree of freedom and
time dependence [57, 99]. Our approach is thus particularly suitable for problems where
a large grid and long propagation times are needed, for example to calculate spectra
in photoionization. It can also be employed in multi-dimensional problems where the
sparsity of the Hamiltonian representation will be even more important.

7.4.2 Enhancement of the high harmonic yield via coherent superposition

We now employ the time-dependent semi-global multi-domain pseudospectral representa-
tion to analyzing the role of the initial state for the generation of the harmonic spectrum,
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Figure 7.4: Harmonic spectrum for different initial states: (a) Eigenstates of the field-free
Hamiltonian and (b) superpositions of two field-free eigenstates.

while keeping the driving pulse fixed. All calculations presented below use a full width at
half maximum of τFWMH = 206.5 a.u., a maximal field amplitude of E0 = 0.06 a.u., and a
carrier frequency of ω0 = 0.1 a.u. These electric field parameters lead to a ponderomotive
energy [180] of Up = 0.16 Hartree such that the Keldysh adiabaticity parameter [181] be-
comes γ = 1.25. We compare low-lying eigenstates of the field-free Hamiltonian as initial
state and superpositions thereof. These different initial states could be prepared by a
’pre-pulse’, preceding the pulse that drives the harmonic generation. Figure 7.4(a) shows
the harmonic spectra obtained for the first three eigenstates |ϕ0〉, |ϕ1〉 and |ϕ2〉 of the
field-free Hamiltonian as initial state, with eigenenergies −0.500 Hartree, −0.233 Hartree
and −0.134 Hartree. The exponential decay instead of a plateau in Fig. 7.4(a) is charac-
teristic of soft core potentials, the plateau being attributed to the singularity present in
the Coulomb potential [182]. Since the ionization potential is the largest for the ground
state, |ϕ0〉 results in the largest harmonic cutoff, ωc/ω0 = 10.1 (indicated by the dashed
vertical line in Fig. 7.4), compared to 7.4 and 6.4 for the first first and second excited
state, respectively. Figure 7.4(a) also shows that the spectral yield is largest for the ground
state for almost all orders in the emission spectrum. Next we consider superpositions of
field-free eigenstates as initial state. Some precaution is necessary when evaluating the
expectation value (7.12) since a superposition of eigenstates leads to a dipole accelera-
tion even without any driving pulse. For instance, for a superposition of two states, this
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“field-free” dipole acceleration is given by

d̈ff (t) = 2|ci| |cj| cos(ωi,j t− ϑ) 〈ϕi|∇xV (x)|ϕj〉 , (7.15)

where ~ωi,j is the energy difference between the superimposed states, ϑ their relative
phase and |ci/j| the norm of the expansion coefficients. Equation (7.15) reveals, however,
that the harmonics emitted due to the time-dependence of the superposition state are of
low order. To make sure that we analyze truly HHG, we focus on the spectral yield for
frequencies well above ωi,j, for example the yield close to the cutoff frequency.

We start by considering an equal superposition of two field-free eigenstates, allowing
for a complex phase. Figure 7.4(b) reveals that, depending on the expansion coefficients
in the initial state, the harmonic yields is considerably enhanced compared to the best
single eigenstate, |ϕ0〉. The superposition (|ϕ0〉 + |ϕ1〉)/

√
2 does not only result in a

higher harmonic yield at the cutoff, but also in a larger integrated spectrum, i.e., a larger
integrated power density, for frequencies higher than ωc. This is true not only for the
comparison with the initial states shown in Fig. 7.4(b), but also for other superpositions.

The finding of Fig. 7.4(b) motivates a more thorough control study. Specifically, we
use optimization to determine the best combination of eigenstates, such that the power
density of the harmonic yield starting from the cutoff ωc is maximized. This choice ensures
maximization of the total integrated spectrum for high harmonic orders beyond the cutoff.
In detail, we employ the Sequential PArametrization update (SPA) technique [50] to
determine the expansion coefficients in the initial state, cj ∈ C, such that propagation of
this state maximizes the integrated spectrum [183, 184],

J [cj] =
∫ ωf

ωc

|d̈(ω)|2dω . (7.16)

The harmonic cutoff position ωc is taken to be the one obtained for the ground state
as initial state. The upper limit is defined to be ωf = 3ωc. Note that the functional as
defined in Eq. (7.16) does not only enhance the spectral yield in [ωc, ωf ], but it can also
extend the harmonic cutoff as a function of ωf .

We use (|ϕ0〉+ |ϕ1〉)/
√

2 to start the optimization, since this superposition was found
to considerably enhance the power spectrum. The SPA technique updates the expansion
coefficients, which can take complex values, sequentially: Starting with two guess coef-
ficients, c0 = c1 = 1/

√
2, additional coefficients are sequentially added, once a plateau

is encountered in the optimization [50]. Upon optimization with only two states, we
find the optimal initial superposition to be composed of |ϕ0〉 and |ϕ1〉 with coefficients
c0 = 0.7215 and c1 = 0.6924. The resulting harmonic yield is very slightly better, by less
than 1 per cent, than that obtained with equal weights, c0 = c1 ≈ 0.7071, in the initial
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superposition. A similarly small improvement is obtained for a superposition involving
|ϕ0〉 and |ϕ2〉. Including up to eight eigenstates in the initial superposition improves the
value of the optimization functional (7.16) by 19 per cent compared to the superposition
of |ϕ0〉 and |ϕ1〉 with equal weights. This improvement is, however, solely due to the
smooth, exponentially decaying region (data not shown), where the harmonic yield is
already small.

The role of the phase in the initial superposition is analyzed in Fig. 7.5. It displays
the integrated spectrum within the interval [ωc, 3ωc] as a function of the relative phase ϑ
in the superposition

|ϕ〉 = 1√
2

(|ϕ0〉+ eiϑ|ϕj〉) (7.17)

for j = 1, 2, 3. For j = 1, maxima are found in Fig. 7.5(a) for ϑ ≈ π/32 and ϑ ≈ 65π/64
which result in the same maximal yield, differing from the yield for θ = 0, 2π by only
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≈ 0.15 per cent. In contrast, the minimal yield observed in Fig. 7.5(a) differs by four
orders of magnitude.

In order to elucidate the physical origin of the oscillations of the harmonic yield as a
function of the relative phase in the initial superposition state, we compare the integrated
spectrum (solid red lines in Fig. 7.5(a)) to the initial dipole acceleration (dashed grey line)
which is a direct result of the superposition, cf. Eq. (7.15), as explained above. Indeed,
the oscillations of the spectral yield as a function of the superposition phase are clearly
correlated to the absolute value of the initial dipole acceleration (grey dotted curve).
Consider in particular the two initial states |ϕ〉 = (|ϕ0〉± |ϕ1〉)/

√
2, i.e., ϑ = 0 and ϑ = π.

These states are orthogonal and lead to equal initial dipole accelerations with opposite
sign but slightly different spectral yields. This raises the question whether the sign of
d̈(t = 0) determines the maximal value of the harmonic yield. In order to answer this
question, we compare the integrated spectrum obtained with driving field −E(t) to that
for E(t) (blue dashed and red solid lines in Fig. 7.5(a)). The idea is that there is an
effective “initial” time which corresponds to the moment tp when the driving field starts
to become non-zero. The superposition at t = 0 prepares an “initial” wave packet at
that time or, classically spoken, the dipole acceleration at t = 0 determines the effective
“initial” dipole acceleration at t = tp. If HHG depends on both norm and sign of the
dipole acceleration at t = tp, a symmetric relationship should be found when changing
the sign of E(t) at t = tp. This symmetry is indeed observed in Fig. 7.5(a): The harmonic
yield obtained with ϑ = π (giving a positive d̈(0)) and −E(t), which matches exactly the
yield for ϑ = 0 (giving a negative d̈(0)) and +E(t). Shifting the electric field according
to E(t− Ts) with Ts = 2π/ω0,1 so that d̈ff (t) = d̈ff (t− Ts) does not change the spectral
yield (data not shown). This is of course expected for an initial condition at tp − Ts that
is identical to that at tp.

To further investigate the dependence on the initial state, we consider a superposition
of eigenstates of the same parity, i.e., |ϕ0〉 and |ϕ2〉, cf. Fig. 7.5(b). In fact, because∇V (r)
has odd parity, this superposition should lead to a vanishing initial dipole acceleration,
cf. Eq. (7.15). Therefore, the harmonic yield obtained with such an initial superposition
should not be sensitive to a change of E(t) to −E(t), if the classical picture is still valid.
This is indeed observed in Fig. 7.5(b). Similarly, the superpositions with vanishing initial
dipole acceleration in Fig. 7.5(a) are also not sensitive to a change of E(t) to −E(t).
While for a superposition of |ϕ0〉 and |ϕ1〉, peaks in the high harmonic yield are found
for ϑ = 0 and ϑ = π, i.e., for a maximal initial dipole acceleration (in absolute value),
such a correlation is not observed for the superposition of |ϕ0〉 and |ϕ2〉. In this case,
the dependence of the high harmonic yield, for example the peak at ϑ = 7π/4, cannot be
explained based on a simple classical argument.
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Figure 7.6: Same as Fig. 7.5 but as a function of the relative amplitude of |ϕ0〉 and |ϕ1〉
in the initial superposition state, cf. Eq. (7.18).

Finally, Fig. 7.5(c) displays another example of an initial superposition of even and
odd parity states, |ϕ0〉 and |ϕ3〉. While a similar dependence on the sign of the initial
dipole acceleration is observed as in Fig. 7.5(a), in particular when changing the sign of
the driving field, there is no one-to-one correlation between the high harmonic yield and
the initial dipole acceleration. This shows that not only the initial dipole acceleration
contributes to an enhancement of the high harmonic yield, but it also depends on the
states involved in such a superposition.

We also consider amplitude control of an initial superposition state. For ease of anal-
ysis, we consider a superposition of two field-free eigenstates, which can be expressed as
a function of a rotation angle φ,

|ϕ〉 = cos(φ)|ϕ0〉+ sin(φ)|ϕ1〉 . (7.18)

The high harmonic yield as a function of φ, i.e., the relative amplitude of ground and
first excited state, is shown in Fig. 7.6. A correlation between the oscillations of the high
harmonic yield and the initial dipole acceleration is observed, similar to that found in
the dependence on the relative phase. Also, an analogous symmetry when changing the
sign of E(t) is obtained. This shows that the control over the high harmonic yield can
equally be achieved by controlling the relative phase or the relative amplitudes in the
initial superposition state.

While a coherent superposition of ground and first excited state has earlier been shown
to enhance the harmonic yield [185], no phase dependence was found in that study. Our
calculations reported above differ from those in Ref. [185] in the spectrum of the Hamil-
tonian, modeling a hydrogen atom as opposed to a helium ion in which the electron is
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agreement with the three-step model. The grey line displays the dipole acceleration.

more strongly bound, as well as in the choice of the laser pulse. We have checked the
influence of both changes to better understand the origin of the phase dependence. It
turns out that, with a different choice of pulse, a dependence of the harmonic yield on the
relative phase of the superposition is also observed for the helium ion (data not shown).
In contrast, for the pulse considered in Ref. [185], the ionization from the ground state
is almost negligible and correspondingly HHG originates from the excited state alone,
such that the relative phase becomes irrelevant. The enhancement of the harmonic yield
is thus not due to the coherent superposition but rather due to populating the excited
state from which it is easier to ionize. Changing the driving field such that both states
in the superposition contribute to the ionization turns out to be sufficient to generate a
dependence of the harmonic yield on the relative phase. This observation also explains
why this phase dependence is more naturally observed in a hydrogen atom where it is
more likely that both states participate in ionization (and recollision).

Enhancement of the high harmonic yield due to a purely quantum effect is in contrast
to the fact that HHG is usually explained with the three-step model [179], i.e., using a
semi-classical picture. We therefore verify whether the three-step model is still valid when
starting from a superposition state. To this end, we plot in Fig. 7.7 the temporal Gabor
profile of the harmonic yield corresponding to the frequency range above the cutoff and
compare it to the ionization probability. The superposition of ground and first excited
state, which results in the largest enhancement of the high harmonic yield, cf. Fig. 7.4, is
used as initial state. As can be seen from Fig. 7.7, high harmonics are generated during
the time interval in which the ionization probability is strongly time-dependent. The
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oscillations of the ionization probability (solid red line in Fig. 7.7) indicate that the prop-
agated wavefunction, or part of it, populates the continuum and then returns to the ionic
core. This process of ionization and recombination is repeated several times. It is exactly
in coincidence with the oscillations in the ionization probability that high harmonics are
emitted, as revealed by the peak in the Gabor profile (blue dashed line in Fig. 7.7). We
thus find the process of HHG still to be well described by the three-step model, in which
semi-classical electron motion leads to the emission of high harmonics [179]. This is in
line with earlier findings that coherent control of high harmonic generation reduces to the
problem of laser control over classical electron trajectories [23, 184].

7.5 Discussion and Conclusions

To conclude, we have developed a highly efficient pseudo-spectral propagation approach
for the solution of the time-dependent Schrödinger equation. It relies on the sparse rep-
resentation of the Hamiltonian matrix in the FE-DVR basis. The coordinate grid is split
into M non-overlapping elements, each of them containing N collocation points. The
FE-DVR basis are defined by means of the cardinal functions based on the Legendre
polynomials which are compactly supported on each element. Combined with the Cheby-
chev propagation formalism, it exploits the efficiency of sparse matrix-vector operations.
For an optimal choice of the pseudospectral grid parameters N and M , it outperforms the
numerical performance of the Dynamical Fourier Grid Method. Optimal pseudospectral
grid parameters are obtained by choosing a relatively large total number of grid points,
with small number of points per elements (N) and large number of elements (M), such
that the desired accuracy is obtained while minimizing the spectral radius, and thus the
CPU time for propagation. Our approach is particularly suitable for problems requir-
ing large grid extension and long propagation times, e.g. calculations involving spectra
in photoionization. It can also be employed in multi-dimensional problems where the
sparsity of the Hamiltonian representation will be even more important.

We have exploited the numerical efficiency of the pseudospectral propagation approach
to investigate the influence of the states involving in a initial coherent superposition of
field-free eigenstates for the generation of high order harmonics. We have shown that an
initial superposition state may significantly enhance the integrated high harmonic power
density, with the relative phase in the superposition controlling the overall yield. In our
control scheme, superimposing the lowest two eigenstates with equal weights improves the
harmonic yield at the so-called cutoff frequency by one order of magnitude compared to
starting from the ground state. Building a superposition between the ground state and a
higher excited state does not lead to a further increase of the yield. Equal weights in the
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superposition are essentially optimal, and adding more states to the superposition does
only increase the yield in the exponentially decaying region of the harmonic spectrum, at
the very high frequencies. For a superposition of the two lowest eigenstates, the harmonic
yield displays an oscillatory dependence on the relative phase that is clearly connected
to the absolute value of the effective initial dipole acceleration. In this case, it is thus
straightforward to reconcile the dependence on the relative phase, i.e., a quantum feature,
with the semi-classical three-step model. For superpositions involving higher excited
states, the effective initial dipole acceleration alone is not sufficient to explain the observed
enhancement but the nature of the quantum states making up the superposition matters,
too.

Our investigation is complementary to recent demonstrations of coherent control of
high harmonic generation that have exploited high lying electronically excited states [186]
and nuclear motion [187]. Moreover, our results are in contrast to earlier studies where
coherent superposition states were found to extend the high harmonic plateau but no
phase dependence was observed [185]. The shift of the harmonic cutoff can be readily
attributed to the energy gap between the states making up the superposition [185]. In a
semi-classical picture, that type of control can also be rationalized in terms of selecting
certain electron paths [188, 189]. Modifications, such as addition of a second color [190,
191] or chirping the fundamental [192, 193], do not change this picture. In fact, these
simulations were all carried out for a He+ ion, in contrast to our model which mimicks
a hydrogen atom. For the helium ion, the difference in the ionization potential of the
eigenstates making up the superposition is the key, i.e., the increase in ionization efficiency
for the excited compared to the ground state [194]. This is independent of the relative
phase in the superposition [185].

The dependence of the high harmonic yield on the relative phase in the initial su-
perposition that we have found points to constructive and destructive interference in the
maximization of the dipole acceleration, a hallmark of coherent control. Controlling the
harmonic yield by a suitable preparation of the initial state could be realized in an ex-
periment with two pulses, a first pulse that prepares the desired superposition state and
a second pulse that drives the harmonic generation. The time delay between the two
pulses as well as the Rabi angle produced by the first pulse [195] can be used to adjust
the relative phase. To the best of our knowledge, such a strategy has not yet been utilized
for maximizing the yield at the cutoff in high harmonic generation.
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8.1 Introduction and motivations

Photoelectron spectroscopy is a powerful tool for studying photoionization in atoms,
molecules and solids [196–201]. With the advent of new light sources, photoelectron
spectroscopy using intense, short pulses has become available, revealing important in-
formation about electron dynamics and time-dependent phenomena [202–205]. In par-
ticular, it allows for characterizing the light-matter interaction of increasingly complex
systems [196, 198, 200]. Photoelectron spectra (PES) and photoelectron angular dis-
tributions (PAD) contain not only fingerprints of the interaction of the electrons with
the electromagnetic fields, but also of their interaction and their correlations with each
other [137]. PAD in particular can be used to uncover electron interactions and correla-
tions [206, 207].

Tailoring the pulsed electric field in its amplitude, phase or polarization allows to
control the coupled electron-nuclear dynamics, with corresponding signatures in the pho-
toelectron spectrum [208–212]. While it is natural to ask how the electron dynamics
is reflected in the experimental observables—PES and PAD [208–212], it may also be
interesting to see whether one can control or manipulate directly these observables by
tailoring the excitation pulse. Moreover, one may be interested in certain features such as
directed electron emission without analyzing all the details of the time evolution. This is
particularly true for complex systems where it may not be easy to trace the full dynamics
all the way to the spectrum. The question that we ask here is how to find an external
field that steers the dynamics such that the resulting photoelectron distribution fulfills
certain prescribed properties. Importantly, the final state of the dynamics does not need
to be known. The desired features may be reflected in the angle-integrated PES, the
energy-integrated PAD, or both.

To answer this question, we employ optimal control theory (OCT), using Krotov’s
monotonically convergent method [106] and adapting it to the specific task of realiz-
ing photoelectron distributions with prescribed features. The photoelectron distributions
are calculated within the time-dependent configuration interaction singles scheme (TD-
CIS) [25], employing the splitting method for extracting the spectral components from
the outgoing wavepacket [51, 142]. While OCT has been utilized to study the quan-
tum control of electron dynamics before, in the framework of TDCIS [213] as well as the
multi-configurational time-dependent Hartree-Fock (MCTDHF) method [214] or time-
dependent density functional theory (TDDFT) [215, 216], the PES and PAD have not
been tackled as control targets before. In fact, most previous studies did not even account
for the presence of the ionization continuum. A proper representation of the ionization
continuum becomes unavoidable [217–221], however, when investigating the interaction
with XUV light where a single photon is sufficient to ionize [53], and it is indispensable
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for the full description of photoionization experiments.

To demonstrate the versatility of our approach, we apply it to two different con-
trol problems: (i) We prescribe the full three-dimensional photoelectron distribution and
search for a field that produces, at least approximately, a given angle-integrated PES and
energy-integrated PAD. Such a detailed control objective is rather demanding and cor-
responds to a difficult control problem. (ii) We seek to maximize the relative number of
photoelectrons emitted into the upper as opposed to the lower hemisphere, assuming that
the polarization axis of the light pulse runs through the poles of the two hemispheres. This
implies a condition on the PAD alone, leaving complete freedom to the energy dependence.
The corresponding control objective leaves considerable freedom to the optimization algo-
rithm and the control problem becomes much simpler. Maximizing the relative number of
photoelectrons emitted into the upper as opposed to the lower hemisphere corresponds to
a maximization of the PAD’s asymmetry. Asymmetric photoelectron distributions arising
in strong-field ionization were studied previously for near-infrared few-cycle pulses where
the effect was attributed to the carrier envelope phase [222, 223]. Here, we pose the ques-
tion whether it is possible to achieve asymmetry in the PAD for multiphoton ionization in
the XUV regime and we seek to determine the shaped pulse that steers the electrons into
one hemisphere. To ensure experimental feasibility of the optimized pulses, we introduce
spectral as well as amplitude constraints. We test our control toolbox for hydrogen and
argon atoms, corresponding to a single channel and three active channels, respectively.
These comparatively simple examples allow for a complete discussion of our optimization
approach, while keeping the numerical effort at an acceptable level.

8.2 Theoretical background

This section introduces the many-body formalism and optimization problem that consti-
tute the building blocks of the optimization formalism here developed for the quantum
control of specific photoelecton momentum-based observables. Since the fingerprints of
the electronic correlations are imprinted in the photoelectron momentum distributions,
a many-body approach of the electron dynamics with proper description of the electron-
electron correlations becomes unavoidable. In order to fullfil these requirements, we place
ourselves in the context of the channel-resolved many-body wave function formalism de-
fined in Section 3.4.2. The multi-channel N -electron wave function is expanded in the
one-particle–one-hole basis

|Ψ(t)〉 = α0(t)|Φ0〉+
∑

i

αi|ϕi〉, (8.1)
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with |ϕi(t)〉 = ∑
a α

a
i (t)|φa〉, as introduced in Section 3.4.2 and where the index i denotes

an initially occupied orbital, a stands for a virtual orbital to which the particle can be
excited and |Φ0〉 symbolizes the Hartree-Fock ground state. The N -electron dynamics is
driven by full time dependent Hamiltonian,

Ĥ(t) = Ĥ0 + Ĥ1 + p̂ ·A(t), (8.2)

where Ĥ0 = T̂+V̂nuc+V̂MF−EHF contains the kinetic energy T̂ , the nuclear potential V̂nuc,
the potential at the mean-field level V̂MF and the Hartree-Fock energy EHF. Ĥ1 = 1

|r12| −
V̂MF describes the Coulomb interactions beyond the mean-field level, and p̂ ·A(t) is the
light-matter interaction within the velocity form in the dipole approximation, assuming
linear polarization.

The optimization problem is to find a control vector potential, Aopt(t), that steers the
system from a given ground state |Ψ(t = 0)〉 = |Φ0〉, defined in Eq. (8.1), to an unknown
final state |Ψopt(T )〉 whose PES and/or PAD display certain desired features. It is worth
mentioning that the most well studied problem in OCT concerns state-to-state transi-
tions [105], whereby the task to be accomplished is to find the control field that allows to
reach a prescribed final state |Ψopt(T )〉, at the end of the propagation. However, in our
context, the state |Ψopt(T )〉, which displays the desired PES/PAD is not known. To the
best of our knowledge, such a implicit-in-state optimization problem has not been tacked
by the quantum optimal control theory community before. Furthermore, the backward
propagation of the Lagrange-multiplier needs to be reviewed since the splitting proto-
col, cf. Section 6.1, needs to be taken into account while solving the time-dependent
Schrödinger equation in forward and backward directions in time.

Finally, we construct the optimization functionals that will allow us to manipulate
specific properties of the photoelectron momentum distributions. These are fully charac-
terized by the asymptotic part of the propagated wave function evaluated long time after
the pulse is over. A priori, these optimization functionals may be expressed mathemati-
cally as final-time cost functionals JT [ϕ(T ), ϕ†(T )] [106], where ϕ(T ) refers to the wave
packet evaluated at the end of the propagation, i.e. at t = T . However, in the context
of the channel-resolved wave function splitting method, cf. Section 6.1, the inner part of
the propagated wave packet evaluated at t = T does not contribute to the photoelectron
spectrum. Only the asymptotic part contained in the ”outer parts” of the wave packet,
originating at every splitting time tj and evaluated at t−T do contribute to the photoelec-
tron momentum distribution. Therefore, the final-time cost functional to be minimized
uniquely depends on the “asymptotic states” ϕ̃i,out(T − tj), where the index i refers to the
channel from which it originates, and where the difference T − tj determines the Volkov
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phase that the each outer part of the wave packet accumulates, from the splitting time tj
to the final time T . In this context, the optimization problem reads,

arg min
A∈U

JT [ϕ̃i,out, ϕ̃
†
i,out] , (8.3)

with ϕ̃i,out is defied in Eq. (6.9) in Section 6.2, and where U refers to the space of admissible
solutions, i.e, specific constraints that the vector potential A(t), or its counterpart electric
field E(t) must fulfill, such as maximal amplitude, frequency components and smoothness.

It is worth mentioning that since the dynamics is not constrained, this is, the functional
to be minimized depends only on the final time T and not on intermediate times, solution
of Eq. (8.3) serves as a powerful tool to interpret the electron dynamics and thus to infer
the physical mechanisms to achieve the desired photoelectron feature. It allows not only
to understand the physical mechanisms of enhancement of a given observable, but also to
find news, sometimes unexpected mechanisms.

8.3 Construction of minimization functionals

8.3.1 Momentum-resolved photoelectron spectrum

In terms of photoelectron momentum-based observables, we seek first to prescribe the
full photoelectron distribution in momentum space. Such an choice is strongly moti-
vated by experimental works in the field of 3D photoelectron momentum distributions
reconstruction techniques, based on inverse Abel transforms[224–226], slice imaging [227],
time-resolved event counting [228–230] and by tomographic reconstruction [231, 232].

In mathematical therms, final time cost functional to be minimized is defined as

J
(1)
T [ϕ̃out(T ), ϕ̃†out(T )] = λ1

∫
(σ̃(p, T ))− σ̃0(p))2 d3p , (8.4)

where σ̃(p, T ) = d2σ(p)/dp dΩ denotes the actual photoelectron distribution, cf.
Eq. (6.10a), σ̃0(p) stands for the target distribution, and λ1 is a weight that stresses
the importance of J (1)

T [ϕ̃out, ϕ̃
†
out] compared to additional terms in the total optimization

functional. The goal is thus to minimize the squared Euclidean distance between the
actual and the desired photoelectron distributions.

8.3.2 Angle-resolved photoelectron angular distributions

Alternatively, we would like to control the difference in the number of electrons emitted
into the lower and upper hemispheres. This can be expressed via the following final-time
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functional

J
(2)
T [ϕ̃out(T ), ϕ̃†out(T )] = λ

(−)
2

∫ π

π/2
sin θ dθ

∫ +∞

0

∣∣∣ϕ̃out(p, T )
∣∣∣
2
p2 dp

+λ(+)
2

∫ π/2

0
sin θ dθ

∫ +∞

0

∣∣∣ϕ̃out(p, T )
∣∣∣
2
p2 dp (8.5)

+λtot2

∫ π

0
sin θ dθ

∫ +∞

0

∣∣∣ϕ̃out(p, T )
∣∣∣
2
p2 dp ,

where the first and second term correspond to the probability of the photoelectron being
emitted into the lower and upper hemisphere, whereas the third term is the total ionization
probability. λ(−)

2 , λ(+)
2 and λtot2 are weights. The factor of 2π resulting from integration

over the azimuthal angle has been absorbed into the weights. Directed emission can be
achieved in several ways—one can suppress the emission of the photoelectron into the lower
hemisphere, without imposing any specific constraint on the number of electrons emitted
into the upper hemisphere. This is achieved by choosing λ

(+)
2 = λtot2 = 0 and λ

(−)
2 > 0.

Alternatively, one can maximize the difference in the number of electrons emitted into the
upper and lower hemispheres. To this end, the relative weights need to be chosen such
that λ(−)

2 > 0 and λ
(+)
2 < 0. If λtot2 = 0, the optimization seeks to increase the absolute

difference in the number of electrons emitted into the upper and lower hemisphere. Close
to an optimum, this may result in a strong increase in the overall ionization probability,
accompanied by a very small increase in the difference, since only the complete functional
is required to converge monotonically, and not each of its parts. This undesired behavior
can be avoided by maximizing the relative instead of the absolute difference of electrons
emitted into the upper and lower hemispheres. It requires λtot2 > 0, i.e., minimization of
the total ionization probability in addition to maximizing the difference. Note that λtot2

could also be absorbed into the weights for the hemispheres,

J
(2)
T [ϕ̃out(T ), ϕ̃†out(T )] = λ

(−)
eff

∫ π

π/2
sin θ dθ

∫ +∞

0

∣∣∣ϕ̃out(p, T )
∣∣∣
2
p2 dp (8.6)

+λ(+)
eff

∫ π/2

0
sin θ dθ

∫ +∞

0

∣∣∣ϕ̃out(p, T )
∣∣∣
2
p2 dp ,

where λ(+)
eff = −|λ(+)

2 |+ |λtot2 | and λ(−)
eff = |λ(−)

2 |+ |λtot2 | are effective weights. Since λ(+)
eff < 0

and λ(−)
eff > 0 in order to maximize (minimize) emission into the upper (lower) hemisphere,

the weights need to fulfill the condition |λ(+)
2 | > |λtot2 |.

8.4 Optimal field constraints

In Eq. (8.3), U designates the space of feasible solutions. The latter refers to the space
of all possible forms for the optimal field, characterized by specific constraints that all
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possible candidates in U fulfills. If constraints on the driving control are required, the
functional as defined in Eq. (8.3) needs to be extended to account for these eventual
constraints. This is performed by adding the so-called penalty functionals [106]. The
complete functional, that also takes into account eventual constraints imposed on the
eventual optimized field, to be minimized reads,

J = JT [ϕ̃out(T ), ϕ̃†out(T )] + C[A] , (8.7)

where the functional C[A] are written in terms of the constraints to ensure that the
control fulfills the desired restrictions. The constraints may be written for the electric field
E(t) associated with the vector potential A(t), even though the minimization problem is
expressed in terms of A(t) and the dynamics is generated by Ĥ[A], cf. Eq. (8.2).

Among these constraints, the present work focused on three main properties that the
vector potential A(t), or its corresponding electric field E(t) must fulfill, such that the
resulting optimized field may be experimentally reproduced. These concerns the maximal
peak amplitude, frequency components and smoothness of the driven electric field.

Because constraints are usually applied to the electric field, an additional step is
required to write such constraints in terms of the vector potential instead. To this end,
we merely make use of the relation between the vector potential A(t) and the electric
field E(t), given by

A(t) = −
∫ t

t0
E(τ) dτ . (8.8)

with A(to) = 0. Without loss of generality, we can write

C[A] = Ca[A] + Cω[A] + Ce[A], (8.9)

where the independent terms in the rhs. of Eq. (8.9) are described in detail in Sec-
tions 8.4.3, 8.4.2 and 8.4.3, respectively.

8.4.1 Propagating electric field

The first property that the optimized electric field must fulfill is that its integral over time
vanishes, i.e.,

∫ T

t0
E(t) dt = 0 , (8.10)
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which implies, according to Eq. (8.8), A(T ) = A(t0) = 0. Therefore, we choose initial
guess fields with A(T ) = A(t0) = 0 and utilize

Ca[A] = λa

∫
s−1(t) (A(t)−Aref(t))2 dt (8.11)

with s(T ) = 0 to ensure that Eq. (8.10) is fulfilled. In Eq. (8.11), Aref(t) and s(t) refer to
a reference vector potential and a shape function, respectively, and λa ≥ 0 is a weight that
stresses the importance of Ca[A] compared to all other terms in the complete functional,
Eq. (8.7). The shape function, s(t), can be used to guarantee that the control is smoothly
switched on and off at the initial and final times.

8.4.2 Electric frequency constraints

Alternatively, another important property of the optimized field concerns a limited spec-
tral bandwidth. As a rule of thumb, optimization without spectral constraints leads to
pulses with unnecessarily broad spectra, making their experimental realization very hard
or literally impossible. In order to restrict the bandwidth of the electric field, E(t), a
penalty functional Cω[A] in frequency domain is constructed, namely

Cω[A] = λω

∫
γ̃(ω)

∣∣∣Ẽ(ω)
∣∣∣
2
dω ≡ λω

∫
γ̃(ω)ω2

∣∣∣Ã(ω)
∣∣∣
2
dω , (8.12)

with Ẽ(ω) being the Fourier transform of the field,

Ẽ(ω) =
∫

E(t) e−iωt dt . (8.13)

It worth mentioning that constraints-based functional of the form of Eq. (8.12) were
previously discussed in Refs. [233, 234]: The kernel γ̃(w) plays a role similarly to the
inverse shape function s−1(t) in Eq. (8.11), that is, it takes large values at all undesired
frequencies. Additionally, we assume that the symmetry requirement γ̃(ω) = γ̃(−ω) is
fulfilled, see Appendix B for details.

8.4.3 Electric field maximal peak amplitude

Constraining the maximal peak amplitude of the optimized field to reasonable values is,
for evident reasons of experimentally feasibility, a key criteria. Due to the relation defined
in Eq. (8.8), we construct a constraint that penalizes changes in the first time derivative
of A(t). In fact, since E(t) = −Ȧ(t), large values in the derivative of the vector potential
translate into large amplitudes of the corresponding electric field E(t). To avoid this, we
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adopt here a modified regularization condition [235] for A(t), defining

Ce[A] = λe

∫
s−1(t)|E(t)|2 dt ≡ λe

∫
s−1(t)|Ȧ(t)|2 dt .

Ce[A] plays the role of a penalty functional [235], ensuring the regularity of A(t), and, as
a consequence, penalizing large values on the electric field amplitude E(t). The choice of
the same s−1(t) in both Eq. (8.11) and Eq. (8.14) will simplify the optimization algorithm
as shown below.

8.5 Krotov’s formalism in the framework of wave function splitting
method

Krotov’s optimization method for quantum optimal control provides a recipe to construct
monotonically convergent optimization algorithms, depending on the type of equation of
motion, the target functionals and additional constraints, as well as on the power of the
control in the light-matter interaction [106]. The state-of-the-art optimization algorithm
consists of a set of coupled equations for the update of the control. Such equations
concerns the forward propagation of the state and the backward propagation of the so-
called co-state or Lagrange multiplier. This set of equations needs to be solved iteratively.
The final-time target functional (or, more precisely, its functional derivative with respect
to the propagated state, evaluated at the final time, which reflects the extremum condition
on the optimization functional [236]) determines the “initial” condition, at final time, for
the backward propagation of the Lagrange multiplier [106]. Additional constraints which
depend on the control such as those in Eq. (8.9) appears in the update equation for the
control [106, 234] to take into account such a constraints.

The challenge when combining Krotov’s method with the wave function splitting ap-
proach is due to the fact that splitting in the forward propagation of the state implies
“glueing” in the backward propagation of the co-state. We recall, given the Hamilto-
nian into consideration, the time-dependent Lagrange multiplier is obtained by solving
the Schrödinger equation backwards in time, plus, a “glueing” procedure, in the wave
function splitting formalism. Here, we present an extension of the optimization algorithm
obtained with Krotov’s method that takes the splitting procedure into account.

The prescription for monotonically updating the field is given in Refs. [106, 234]. In
our context, such an update reads, with k labeling the iteration step,

A(k+1)(t) = A(k)(t) + I(k+1)(t)− λ̃ω
λa
s(t)A(k+1) ? h(t) + λe

λa
Ä(k+1)(t) , (8.14a)
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with λ̃ω =
√

2πλω. A(k+1) ? h(t) denotes the convolution of A(k+1) and h(t),

A(k+1) ? h(t) =
∫

A(k+1)(τ)h(t− τ) dτ (8.14b)

with h(t) the inverse Fourier transform of h̃(ω) = ω2γ̃(ω). The second term in Eq. (8.14a)
is given by

I(k+1)(t) = s(t)
λa

Im

{〈
χ(k)(t)

∣∣∣∣∣
∂Ĥ

∂A

∣∣∣∣∣Ψ
(k+1)(t)

〉}
(8.14c)

= s(t)
λa

Im
{
〈χ(k)(t)|p̂|Ψ(k+1)(t)〉

}
,

where |Ψ(k+1)(t)〉 and |χ(k)(t)〉 denote the forward propagated state and backward prop-
agated co-state at iterations k + 1 and k, respectively and Im{z} the imaginary part of
the argument z. The explicit derivation of Eqs. (8.14) is fully detailed in Appendix B.

If λω = λe = 0, the implicitness of Eq. (8.14) in A(k+1)(t) can easily be circumvented
by a numerically cheap and stable zeroth-order solution, following the prescription given
in [236]. However, for λω 6= 0, Eq. (8.14) corresponds to a second order Fredholm equation
with inhomogeneity I(k+1)(t) [234]. Numerical solution, although relatively expensive in
terms of CPU times, is possible using, for example, the method of degenerate kernels [234].
This is achieved, by first approximating to zeroth order the inhomogeneity I(k+1)(t), which
depends on |ϕ(k+1)(t)〉 and thus on A(k+1)(t). Such approximation is assumed to solve
Eq. (8.14) with λω = 0 in the first place that is, without frequency constraints; and the
resulting approximation I

(k+1)
0 (t) is then used to solve the Fredholm equation. While

an iterative procedure to improve the approximation of I(k+1)(t) may be conceivable, the
zeroth order approximation is in practice, sufficient for conserving stability and monotonic
convergence of the functional [233, 234].

However, such approach, based on the solution of the Fredholm equation in time do-
main, may result in a relatively time-consuming approach, in particular when the prop-
agation involves large number of propagation steps. In order to improve the numerical
efficiency, we adopt a slightly different procedure, in the sense that the Fredholm equation
is not solved in time domain but in frequency domain. This allows us to treat the cases
λω 6= 0 and λe 6= 0 on the same footing. Such procedure can be made possible by assuming
that s(t) in Eqs. (8.11) and (8.14) rises and falls off very quickly at the beginning and end
of the optimization time interval. This judicious choice of s(t) together with the fact that
the Fourier transform of a convolution of two functions in time domain, as encountered
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in Eq. (8.14), is the product of the functions in frequency domain, allows to approximate
∣∣∣∣
∫
s(t)Γ(k+1)(t) e−iωtdt− S0

∫
Γ(k+1)(t) e−iωtdt

∣∣∣∣ ≤ ε ,

(8.15)

where ε is a small, positive number and Γ(k+1)(t) is defined as

Γ(k+1)(t) = A(k+1) ? h(t) . (8.16)

A possible choice for s(t) to fulfill the condition (8.15) is

s(t) = e−β((t−tc)/2σ)2n

, (8.17)

where σ refers to the duration of the pulse centered at t = tc. If Eq. (8.15) is satisfied, we
can easily take the Fourier transform of both sides of Eq. (8.14a) to get

Ã(k+1)(ω) = Ã(k)(ω) + Ĩ(k+1)(ω)

1 + λ̃ω
λa
ω2γ̃(ω) + λe

λa
ω2

(8.18a)

with A(k+1)(t) =
∫

Ã(k+1)(ω) e+iωt dω/
√

2π. Note that Eq. (8.18a) becomes exact if s(t) is
constant. Approximating Ĩ(k+1)(ω) by its zeroth order solution analogously to Ref. [234],
Eq. (8.18a) can be expressed as

Ã(k+1)(ω) = G̃(ω) Ã(k+1)
0 (ω) , (8.18b)

where Ã(k+1)
0 (ω) is the zeroth order solution of the updated control, found by solving

Eq. (8.14) with λω = λe = 0,

Ã(k+1)
0 (ω) = Ã(k)(ω) + Ĩ

(k+1)
0 (ω) , (8.18c)

and G̃(ω) is a transfer function given by

G̃(ω) =
(

1 + λω
λa
ω2γ̃(ω) + λe

λa
ω2
)−1

. (8.18d)

Thence, the first order approximation is obtained by (i) updating the control with λω =
λe = 0, (ii) Fourier transforming it to frequency domain, then (iii) filtering it by means of
the transfer function G̃(ω) defined in Eq. (8.18b) and finally Fourier transforming it back
to time-domain to propagate the ground state and thus complete the iteration step.
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8.5.1 Construction of the multi-channel Lagrange multipliers

Finally, in order to evaluate the update defined in Eqs. (8.14), it is required to construct
the time-dependent Lagrange multiplier, at the previous iteration, |χ(k)(t)〉, which is ob-
tained by backward propagation using the old control, A(k)(t). The equation of motion
for the Lagrange multiplier is [106]

i
∂

∂t
|χ(t)〉 = Ĥ(t)|χ(t)〉 . (8.19a)

In the context of the multi-channel many-body wavefunction formalism |Ψ(t)〉 is decom-
posed into channels wavefunctions, cf. Eqs. (8.1) and (3.28). The same channel-revolved
structure applies to the Lagrange multiplier. The “initial” condition at the final time T
is written separately for each channel,

|χ̃i,out(T )〉 = −∂JT [ϕ̃i,out(T ), ϕ̃†i,out(T )]
∂〈ϕ̃i,out(T )| . (8.19b)

Evaluation of Eq. (8.19b) requires knowledge of the outer part of each channel wavefunc-
tion, |ϕ̃i,out(T )〉, which is obtained by forward propagation of the initial state, including
the splitting procedure.

Defining Û(t′, τ ; A(t)) as the evolution operator that propagates a given state from
time t = τ to t = t′ under the control A(t), we make the distinction between the time
evolution operators for the inner part, ÛF (t′, τ ; A(t)), generated by the full Hamiltonian,
Eq. (8.2), and affecting only the outer parts, ÛV (t′, τ ; A(t)), which is generated by the
Volkov Hamiltonian, Eq. (6.3). Thus, for every channel wave function, the total wave
function for forward propagated wave packet reads,

|ϕ(k+1)
i (t)〉 = |ϕ(k+1)

i,in (t)〉+ |ϕ̃(k+1)
i,out (t)〉 , (8.20)

which is valid for arbitrary times t ≥ t1 with t1 the first splitting time.

Within the context of the wave function splitting method, it is natural to define second
term in Eq. (8.20) as

|ϕ̃(k+1)
i,out (t)〉 =

bt/t1c∑

j=1
|ϕ(k+1)
i,out (t; tj)〉

≡
bt/t1c∑

j=1
ÛV (t, tj; A(k+1)) |ϕ(k+1)

i,out (tj)〉 (8.21)

with bxc = max{m ∈ Z,m ≤ x}. Equation (8.21) accounts for the fact that for t ≥ t2,
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all outer parts |ϕ(k+1)
i,out (t; tj)〉 that originate at splitting times tj ≤ t must be added up

coherently.
Subsequent propagation of the liberated photoelectron, represented by all |ϕ(k+1)

i,out (t; tj)〉
and iterative propagation and splitting of the inner components |ϕ(k+1)

i,in (t)〉 eventually
yields the state at final time, |ϕ(k+1)

i (T )〉. Its outer part is determined by the contribution
to the continuum, upon application of the splitting operator, namely

|ϕ̃(k+1)
i,out (T )〉 =

N∑

j=1
|ϕ(k+1)
i,out (T ; tj)〉 , (8.22)

with N denoting the total number of splitting times utilized during propagation, and
where the last splitting time tN is chosen such that tN ≤ T . It is to mention that the
parameters defining the splitting operator must be judiciously chosen to reach convergence
when evaluating the observable. The best compromise between size of the spatial grid,
time step and duration between two consecutive splitting times is discussed in Ref. [51].

Equation (8.19b) can now be evaluated: Since our final time functionals all involve the
product ϕ̃out(p, T ) · ϕ̃∗out(p, T ) = σ(p, T ), Eq. (8.19b) can be written, at the kth iteration
of the optimization, as

χ̃
(k)
i,out(p, T ) = µ(p) ϕ̃(k)

i,out(p, T ) , (8.23a)

where µ(p) is a function that depends on the target functional under consideration. It
becomes

µ
(k)
1 (p) = −2λ1

(
σ̃(k)(p, T )− σ̃0(p)

)
(8.23b)

for J (1)
T given in Eq. (8.4) and

µ2(p) = λ−2 11ϑ−(θ) + λ+
2 11ϑ+(θ) (8.23c)

for J (2)
T given in Eq. (8.5). The intervals ϑ− = [π/2, π] and ϑ+ = [0, π/2] denote the lower

and upper hemispheres, respectively, and 11ϑ±(θ) is the characteristic function on a given
interval,

11ϑ±(θ) =





1 if θ ∈ ϑ±
0 if θ /∈ ϑ±

with θ ∈ [0, π] the polar angle with respect to the polarization axis. Since the functionals
defined in Eq. (8.4) and Eq. (8.6) depend only on the final time T but not on intermediate-
times, the backward propagated co-state |χ(t)〉 follows the same equation of motion as
the forward propagated |Ψ(t)〉 state [106]. For that reason, and analogous to |Ψ(t)〉, it is
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convenient to define inner and outer parts of |χ(t)〉, namely

|χ(k)
i (t)〉 = |χ(k)

i,in(t)〉+ |χ̃(k)
i,out(t)〉 . (8.24a)

with

|χ̃(k)
i,out(T )〉 =

N∑

j=1
|χ(k)
i,out(T ; tj)〉 . (8.24b)

Eq. (8.24b) implies that also |χ̃(k)
i,out(T )〉 is obtained by coherently summing up the

contributions from all splitting times.

Conversely, the outer part of the co-state originating at the splitting time tj and
evaluated at the same time is given by

χ
(k)
i,out(p, tj; tj) = µ(p)ϕ(k)

i,out(p, tj; tj) . (8.25)

The next step is to construct the total co-state at an arbitrary time t, |χ(k)
i (t)〉, required

in Eq. (8.14), from all |χ(k)
i,out(tj; tj)〉 using Eq. (8.25). This is achieved by backward prop-

agation and “glueing” inner and outer parts, as opposite to “splitting” during the forward
propagation. However, when reconstructing the co-state by backward propagation, care
should be taken to not to perform the “glue” procedure twice or more, at a given splitting
time. The backward propagation of the co-state is explicitly explained in what fol-
lows: Since at the final time T , the total co-state is given by a coherent superposition of
all outer parts originating at the splitting times tj, cf. Eq. (8.24b), it suffices to store all
|ϕ(k)
i,out(tj; tj)〉 and apply Eq. (8.25) to evaluate |χ(k)

i,out(tj; tj)〉. We recall that |χ(k)
i,out(tj; tj)〉,

respectively |φ(k)
i,out(tj; tj)〉, denote the outer part born exclusively at t = tj and evalu-

ated at the same splitting time. Once all outer parts of the co-state are evaluated at
every splitting time using Eq. (8.25), |χ(k)

i (t)〉 is obtained for all times t by backward
propagation and “’glueing”, with the additional care of not “glueing” twice or more. In
detail, |χ(k)

i,out(tN ; tN)〉 is propagated backwards from tN to tN−1 using the full CIS Hamil-
tonian, Ĥ, cf. Eq. (8.2). The resulting wave function at t = tN−1 is |χ(k)

i,in(tN−1)〉. The
outer part born exclusively at the splitting time t = tN−1 is obtained using Eq. (8.25),
and the “composite” wave function |χ(k)

i (tN−1)〉 is obtained by “glueing” |χ(k)
i,in(tN−1)〉 and

|χ(k)
i,out(tN−1; tN−1)〉,

|χ(k)
i (tN−1)〉 = |χ(k)

i,in(tN−1)〉+ |χ(k)
i,out(tN−1; tN−1)〉 .

The procedure is now repeated: the composite co-state |χ(k)
i (tN−1)〉 is propagated back-

wards from t = tN−1 to t = tN−2 using the full CIS Hamiltonian, resulting in |χ(k)
i,in(tN−2)〉,
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and “glueing” yields the composite wave function at t = tN−2,

|χ(k)
i (tN−2)〉 = |χ(k)

i,in(tN−2)〉+ |χ(k)
i,out(tN−2; tN−2)〉 ,

with |χ(k)
i,out(tN−2, tN−2)〉 given by Eq. (8.25); and so on and so forth for all splitting times

tj, until t = t0, where t0 refers to the initial time. During the backward propagation, as
described above, the resulting co-state is stored in CIS basis. It gives by construction, at
an arbitrary time t, the first term in Eq. (8.24a). The second term in Eq. (8.24a) involving
the outer parts “born” at the splitting times t = tj and evaluated at t > tj is merely given
by forward propagating analytically all |χi,out(tj; tj)〉 using the Volkov Hamiltonian, and
summing them up coherently according to Eq. (8.21). This allows to calculate the “total”
co-state wavefunction at an arbitrary time t, analogously to |ϕi(t)〉. Finally, Eqs. (8.24a)
and (8.20) allow for evaluating Krotov’s update equation for the control, Eq. (8.14), where
the iteration label just indicates whether the guess, A(0)(t), the old, A(k)(t), or the new
control, A(k+1)(t), enter the propagation of |χi(t)〉 and |ϕi(t)〉, respectively. A difficulty in
solving the update equation for the control, is given by the fact that Eq. (8.14) is implicit
in A(k+1)(t). Strategies to overcome this obstacle depend on the additional constraints.

8.5.2 Summary of the algorithm

The complete implementation of the optimization within the time-splitting framework of
the TDCIS method is summarized as follows:

1. Choose an initial guess for the vector potential, A(k=0)(t).

2. Forward propagation of the state:

(a) Propagate |Ψ(k=0)(t = 0)〉, cf. Eq. (8.1), from t = 0 until the first splitting
time, t = t1, in the CIS basis. We label the projection of the propagated
state onto the channel wave functions defined in Eq. (3.28) in Section 3.4.2, by
i = 1, 2, . . . , while i = 0 is reserved for the projection onto the Hartree-Fock
ground state.

(b) At t = t1, apply the splitting function defined in Eq. (6.1) to obtain |ϕ(k)
i,in(t1)〉

and |ϕ(k)
i,out(t1; t1)〉. Store the outer part in the CIS representation, before trans-

forming |ϕ(k)
i,out(t1; t1)〉 to the Volkov representation.

(c) Propagate |ϕ(k)
i,in(t1)〉 using Ĥ and |ϕ(k)

i,out(t1; t1)〉 using ĤV from t = t1 to the
next splitting time, t = t2.

(d) At t = t2, apply the splitting function to |ϕ(k)
i,in(t2)〉, again store the resulting

outer part in CIS representation, and transform |ϕ(k)
i,out(t2; t2)〉 to the Volkov

representation.
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(e) Propagate |ϕ(k)
i,in(t2)〉 using Ĥ and |ϕ̃(k)

i,out(t2)〉 = |ϕ(k)
i,out(t2; t1)〉 + |ϕ(k)

i,out(t2; t2)〉
using ĤV from t = t2 to the next splitting time t = t3.

(f) Repeat steps (2d) and (2e) for all remaining splitting times tj up to tN .

(g) Propagate for each channel wave function, |ϕ̃(k)
i,out(tN)〉 = ∑tN

tj=t1 |ϕ
(k)
i,out(tN ; tj)〉

from the last splitting time, t = tN , to the final time, t = T , to obtain |ϕ̃(k)
i,out(T )〉

and evaluate the target functional JT .

(h) Calculate χ(k)
i,out(p, T ) according to Eq. (8.23a).

3. Backward propagation of the co-state:

(a) Calculate µ(p, T ) according to Eq. (8.23b) or (8.23c).

(b) Calculate |χ(k)
i,out(tN ; tN)〉 from Eq. (8.25) and propagate it backwards using

Ĥ from t = tN to the previous splitting time tN−1. The resulting state is
|χ(k)
i,in(tN−1)〉.

(c) At t = tN−1, calculate |χ(k)
i,out(tN−1; tN−1)〉 from Eq. (8.25) and ’glue’ to obtain

|χ(k)
i (tN−1)〉 = |χ(k)

k,in(tN−1)〉+ |χ(k)
i,out(tN−1; tN−1)〉. This procedure is performed

in the CIS basis for each channel wave function.

(d) Propagate |χ(k)
i (tN−1)〉 from t = tN−1 to tN−2 using Ĥ to obtain |χ(k)

i,in(tN−2)〉.

(e) Repeat steps (3c) and (3d) for all remaining splitting times and propagate
backward up to t = 0. During the backward propagation, the resulting wave-
function is stored in the CIS basis. As previously detailed, this procedure allows
for performing the “glueing” procedure only once at every splitting time. It
gives gives rises to the first term in Eq. (8.24a). The second term involving
the evaluation of the outer part (coherent summation) at any arbitrary time t
is obtained upon application Eq. (8.21) to each of the individual contribution
|χi,out(tj; tj)〉 for all splitting times.

4. Forward propagation and update of control:

(a) Determine the zeroth order approximation of the new control at times (n +
1/2)∆t, A(k+1)

0 (n+1/2∆t), from Eq. (8.14), using the states at times n∆t, i.e.,
the co-state obtained in step 3, |χ(k)

i (n∆t)〉 and |ϕ(k+1)
i (n∆t)〉 obtained with

the control A(k+1)((n− 1/2)∆t).

(b) If λω 6= 0 or λe 6= 0, solve Eq. (8.18b) to obtain Ã(k+1)(ω), using the approxi-
mated A(k+1)

0 (t), and Fourier transform Ã(k+1)(ω) to time domain.

5. Iteration: Increase k by one and repeat steps 3 and 4 until convergence of JT is
reached.
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At this point, we would like to stress that the parameters chosen for the momentum grid
require particular attention for the optimization algorithm to work. This is due to the
transformation from the CIS representation to the Volkov basis (CIS–to–p transformation)
at each splitting time, as discussed Section 6.2 of Part I. During the backward propagation,
correspondingly, the inverse transformation is required, i.e., the p–to–CIS transformation.
The CIS–to–p transformation of the outer part is evaluated using Eq. (6.4); the inverse of
this transformation is straightforwardly derived. Since the dynamics is reversible, forward
propagation (involving wavefunction splitting and the CIS–to–p transformation) needs to
give identical results to backward propagation (involving wavefunction “glueing” and the
p–to–CIS transformation). This can and needs to be used to check the numerical accuracy
of the CIS–to–p transformation and its inverse: Since the inverse transformation involves
integration over p, a significant error is introduced if the sampling of the momentum grid
is insufficient. Consequently, transforming the outer part from the CIS representation to
the Volkov basis and then back may not yield exactly the same wave function. While
for each p–to–CIS transformation the error may be relatively small, it accumulates as the
optimization proceeds iteratively according to Eq. (8.14). It results in optimized pulses
with non-physical and undesirable “jumps” at those splitting times where the accuracy
of the p–to–CIS transformation is insufficient and destroys the monotonic convergence of
the optimization algorithm. The jumps disappear when the number of the momentum
grid points is increased and pmax is adjusted.

Therefore, a naive solution to this problem would be to considerably enlarge the num-
ber of momentum grid points. However, this will significantly increase the numerical effort
of the optimization, i.e., evaluation of the inner product in the rhs. of Eq. (8.14c). The
inner product involves not only calculation of the overlap of the inner part in the CIS
representation and the outer part in the Volkov basis but it also requires evaluation of
the mixed terms, 〈χ(k)

i,in(t)|p̂z|ϕ(k+1)
i,out (t)〉 and 〈χ(k)

i,out(t)|p̂z|ϕ(k+1)
i,in (t)〉 and thus one CIS–to–p

transformation and integration over two—perhaps even three—degrees of freedom at ev-
ery time t, for each channel i and in every iteration step k + 1. Thence, finding the best
balance between efficiency and accuracy in the p–to–CIS transformation is essential for
the proper functioning and feasibility of the optimization calculations. Also, reducing the
total size of the radial coordinate while simultaneously increasing the number of splitting
times translates into a more important number of evaluations of the inner product defined
in Eq. (8.14c) in momentum representation. Below, we state explicitly the momentum
grid parameters utilized in our simulations which allowed for a good compromise between
efficiency and accuracy.
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Figure 8.1: Hydrogen, optimal control of the complete photoelectron distribution: (a)
angle-integrated PES, and (b) energy-integrated PAD. As the optimization proceeds iter-
atively, the actual photoelectron distribution approaches the desired one (black solid line)
in both its energy dependence and angular distribution. The photoelectron distribution
obtained with the guess field (green dashed lines) is far from the desired distribution.

8.6 Application I: Prescribing the complete photoelectron distribution

We consider, as a first example, the optimization of the complete photoelectron distri-
bution, cf. Eq. (8.4), for a hydrogen atom. The wavepacket is represented, according
to Eq. (8.1), in terms of the ground state |Φ0〉 and excitations |Φa〉. The calculations
employed a pseudo-spectral grid with density parameter ζ = 0.50 [25], a spatial exten-
sion of 200 a.u. and 800 grid points. All optimization calculations employed a linearly
polarized electric field along the z axis. This translates into a rotational symmetry of the
photoelectron distribution along the z axis. Therefore, only wave functions of the form
Ψout = Ψout(p, θ) need to be considered. For the calculation of the spectral components,
the outer parts of the wave functions were projected onto the Volkov basis, defined on a
spherical grid in momentum representation p. For our calculations, we adopted an evenly
spaced grid in p as well as in the polar coordinate θ. The size of the radial component
of the spherical momentum grid was set to Emax = 6 a.u., sampled at 301 points. The
same number of points was utilized for the polar coordinate. The splitting radius was set
to rc = 50 a.u., the total number of splitting times is N = 3 with a smoothing parameter
∆ = 5.0 a.u. [51]. The splitting procedure was applied every 30 a.u. of time. Finally, a
total integration time of 120 a.u. with a time step of 0.05 a.u. was utilized for the time
propagation.

We consider first the minimization of the functional J (1)[ϕ, ϕ†] defined in Eq. (8.4).
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Figure 8.2: Hydrogen, optimization of the full photoelectron distribution: (a) Guess field
E(0)
z (t) chosen to start the optimization shown in Fig. 8.1 and (b) optimized electric field

obtained after about 700 iterations. (c) The final time cost functional J (1)
T decreases

monotonically, as expected for Krotov’s method.

The goal is to find a vector potential Az,opt(t) such that the photoelectron distribution
resulting from the electron dynamics generated by Az,opt(t) coincides with σ0(p) at every
point p, cf. Eq. (8.4). For visualization convenience, we plot the angle-integrated PES
and energy-integrated PAD, cf. Eq. (6.10), associated to “target” photoelectron distribu-
tion σ0(p), as shown by the solid-black lines in Figs. 8.1(a) and 8.1(b), respectively. To
simplify the optimization, neither frequency restriction nor amplitude constraint on Ez(t)
is imposed, i.e., λω = λe = 0. The initial guess for the vector potential is chosen in such a
way that the fidelity with respect to the target σ0(p) is poor, see the green dashed lines
in Fig. 8.1. Despite the bad initial guess, the optimization quickly approaches the desired
photoelectron distribution, converging monotonically, as expected for Krotov’s method
and demonstrated in Fig. 8.2(c): After about 700 iterations, the target distribution is
realized with an error of 2%. The reason for such a large number of iterations can be
understood by considering that the optimized photoelectron distribution must coincide
(point-by-point) with a two-dimensional target object. This represents a non-trivial opti-
mization problem. The optimized electric field is shown in Fig. 8.2(b): Compared to the
initial guess, cf. Fig. 8.2(a), the amplitude of the optimized field is somewhat increased,
and a high-frequency oscillation has been added. The monotonic convergence towards the
target distribution in terms of angle-integrated PES and energy-integrated PAD is illus-
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Figure 8.3: Hydrogen, minimization of the photoelectron emission into the upper hemi-
sphere: As the optimization proceeds iteratively, the probability of emission into the upper
hemisphere decreases monotonically up to almost complete extinction.

.

trated in Fig. 8.1. We can appreciate that the algorithm first tends to match all points
with higher values, starting with the peak near 15 eV, while adjusting the remainder of the
spectrum, with lower values, later in the optimization. The slow-down of convergence,
observed in Fig. 8.2(c) after about 200 iterations, is typical for optimization methods
that rely on gradient information alone: As the optimum is approached, the gradient
vanishes [237]. Such a slow-down of convergence can only be avoided by incorporating
information from higher order derivatives in the optimization. This is rather non-trivial in
the framework of Krotov’s method [237, 238] and beyond the scope of our current study.

8.7 Application II: Minimizing the probability of emission into the up-
per hemisphere

As a second application of our control toolbox, we are interested in minimizing the prob-
ability of emission into the upper hemisphere without imposing any specific constraint on
the number of electrons emitted into the lower hemisphere. The final time cost functional
is given by Eq. (8.5) with λ+

2 > 0 and λ−2 = 0. We consider again a hydrogen atom and a
linearly polarized electric field along the z-axis, using the same numerical parameters as
in Section 8.6.

In contrast to the example discussed in Section 8.6, no particular expression for the tar-
get PES and PAD needs to be imposed—we only require the probability of emission into
the upper hemisphere to be minimized regardless of the actual shape of angle-integrated
PES and energy-integrated PAD. We employ the optimization prescription described in
Section 8.5.2 using Eq. (8.23c) in the final time condition for the adjoint state. As the
optimization proceeds iteratively, the energy-integrated PAD becomes more and more
asymmetric, see Fig. 8.3, minimizing emission into the upper hemisphere, as desired. The
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Figure 8.4: Hydrogen, minimization of the probability of emission into the upper hemi-
sphere: Guess (a) and optimized (b) electric field for the optimization shown in Fig. 8.3.
Also for this target functional, Eq. (8.5), monotonic convergence of the optimization al-
gorithm is achieved (c).

guess and optimized pulses are shown in Fig. 8.4(a) and (b). As illustrated by the solid
green line in Fig. 8.3, the guess field was chosen such that it leads to a symmetric prob-
ability of emission for the two hemispheres. Again, monotonic convergence of the final
time cost functional is achieved, cf. Fig. 8.4(c). At the end of the iteration procedure, the
probability of emission into the upper hemisphere vanishes completely. As for the lower
hemisphere, the emission probability initially remains almost invariant as the algorithm
proceeds iteratively, see Fig. 8.3, while the probability of emission into the upper hemi-
sphere decreases very fast, and monotonically, as expected. However, for a large number
of iterations, the probability of emission into the lower hemisphere starts to decrease as
well. After about 150 iterations it reaches an emission probability of 2.3 × 10−4, that is
two orders of magnitude smaller than for the guess pulse. Although our goal is only for
the probability of emission into the upper hemisphere to be minimized, without specific
constraints on the probability of emission into the lower hemisphere, the current results
are completely consistent in terms of the optimization problem. More precisely, the op-
timization does exactly what the functional J (2)

T , Eq. (8.5) with λ+
2 > 0 and λ−2 = 0,

targets. In fact, since the target functional depends on the upper hemisphere alone,
then, by construction, the algorithm calculates the corrections to the field according to
Eq. (8.14), regardless of how these changes affect the probability of emission into the lower
hemisphere. To keep the probability of emission into the lower hemisphere constant or
to maximize it, an additional optimization functional is required. This is investigated in
the following section and defines the motivation for the maximization of the anisotropy
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of emission discussed in the following lines.

8.8 Application III: Maximizing the difference in the number of elec-
trons emitted into upper and lower hemisphere

Finally we maximize the difference in probability for emission into the upper and the
lower hemispheres. To this end, we construct the final-time cost functional such that it
maximizes emission into the upper hemisphere while simultaneously minimizing emission
into the lower hemisphere. This is expressed by the functional (8.5) where both weights
are non-zero and have different signs, λ(+)

2 < 0 and λ
(−)
2 > 0. The signs correspond

to maximization and minimization, respectively. We consider this control problem for
two different atoms—hydrogen as a one-channel case and argon as an example with three
active channels [51]. The latter serves to underline the appropriateness of our methodology
for quantum control of multi-channel problems.

Furthermore, in order to demonstrate the versatility of our optimal control toolbox in
constraining specific properties of the optimized electric field, we consider the following
options: (i) a spectral constraint, i.e., λω 6= 0 in Eq. (8.12), and (ii) the constraint to
minimize fast changes in the vector potential, with λe 6= 0 in Eq. (8.14). The latter is
equivalent to avoiding large electric field amplitudes.

8.8.1 Hydrogen

We consider a hydrogen atom, interacting with an electric field linearly polarized along the
z-axis, using the same numerical parameters as in Sec. 8.6. The optimization was carried
out with and without restricting the spectral bandwidth of Ez(t). Figure 8.5(b) displays
the symmetric energy-integrated PAD obtained with the Gaussian guess field, shown in
Fig. 8.6(b), for which a central frequency ω0 = 27.2 eV was used. For the optimization
with spectral constraint, the admissible frequency components for Ez(t) are chosen such
that

∣∣∣Ez(ω)
∣∣∣
2 ≤ ε for all |ω| ≥ ωmax with ωmax = 5 a.u.≈ 136.1 eV. This requirement

translates into the penalty function γ̃(ω) shown in Fig. 8.7(c), for which we have used the
form

γ̃(ω) = γ̃0
(
1− e−(ω/α)2n

)
, (8.26)

where the parameters α, n and γ̃0 must be chosen such that the term λω γ̂(ω) in the
functional Cω[A] in Eq. (8.12) takes very large values in the region of undesired frequen-
cies. For our first example, α = 25, n = 6 and γ̃0 = 1 allows for strongly penalizing,
and therefore filtering all undesirable frequency components above |ω| ≥ ωmax, as it is
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Figure 8.5: Hydrogen, maximizing the difference in photoelectron emission into the upper
and lower hemisphere: (a) The probability for emission into the upper hemisphere (0 ≤
θ ≤ π/2) increases significantly as the optimization proceeds. Although the probability for
emission with angles (π/2 ≤ θ ≤ π) also grows somewhat, the overall difference increases.
The energy-integrated PAD obtained with the guess pulse is shown in (b). Note the
different y-axis scales in (a) and (b).

shown by the corresponding transfer function G̃(ω), cf. Fig. 8.7(d). Note that it is not
the weight λω alone that determines how strictly the spectral constraint is enforced; it is
the ratio λω/λa that enters in the transfer function G̃(ω). This reflects the competition
of the different terms in the complete optimization functional, Eq. (8.7).

As in the previous two examples, the optimization approach developed leads to mono-
tonic convergence of the target functional, Eq. (8.5), with and without spectral constraint.
This is illustrated in Fig. 8.6(a). Even though the spectra of the fields optimized with
and without spectral constraint, are completely different, cf. Fig. 8.7(a) and (b), the
speed of convergence is roughly the same, and the maximum values for J (2)

T reached using
both fields are also very similar, cf. Fig. 8.6(a). This means that the algorithm finds
two distinct solutions. Such a finding is very encouraging as it implies that the spectral
constraint does not put a large restriction onto the control problem. In other words, more
than one, and probably many, control solutions exist, and it is just a matter of picking
the suitable one with the help of the additional constraint. It also implies that most of
the frequency components in the spectrum of the field optimized without spectral con-
straint are probably not essential. This is verified by removing the undesired spectral
components in Fig. 8.7(a), using the same transfer function utilized for the frequency-
constrained optimization shown in Fig. 8.7(d). The energy-integrated PAD obtained with
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Figure 8.6: Hydrogen, maximization of the anisotropy in the PAD: The target functional
J

(2)
T , for the optimization shown in Fig. 8.5, measuring the difference in probability for

emission into upper and lower hemisphere increases monotonically with (λω 6= 0) and
without (λω = 0) spectral constraint (a). The guess field (green line) is shown in (b)
together with the shape function s(t) used in both optimizations. The optimized field
obtained with the spectral constraint is displayed in (c).

such a filtered optimized pulse remains asymmetric, and the value of the target functional
J

(2)
T is decreased by only about 10 per cent.

The peak amplitude of the optimized field is about one order of magnitude larger than
that of the guess field, cf. Fig. 8.6(b) and (c). The increase in peak amplitude is connected
to the gain in emission probability for the northern hemisphere by almost three orders
of magnitude. The optimized pulse thus ionizes much more efficiently than the guess
pulse. Figure 8.8(a) compares the electric fields optimized with and without spectral
constraints—a huge difference is observed for the two fields. While the electric field
optimized without spectral constraint presents very sharp and high peaks in amplitude,
beyond experimental feasibility, the frequency-constrained optimized field is characterized
by reasonable amplitudes and a much smoother shape. The frequency components of the
unconstrained field shown in Fig. 8.7(a) now become clear. Note that the difference in
amplitude only appears during the first half of the overall pulse duration, see Fig. 8.8(a).
It is a known feature of Krotov’s method to favor changes in the field in an asymmetric
fashion; the feature results from the sequential update of the control, as opposed to a
concurrent one [239].

Figure 8.8(b) shows the energy-integrated PAD obtained upon propagation with the
two fields. One notes that, although the probability of emission into the lower hemi-
sphere is larger for the unconstrained than for the constrained field, the same applies to
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Figure 8.7: Hydrogen, maximization of the anisotropy of emission: Spectrum of the
optimized electric field for the optimization shown in Figs. 8.5 and 8.6 with (b) and
without (a) spectral constraint. The corresponding penalty function γ̃(ω) and transfer
function G̃(ω), cf. Eqs. (8.12) and (8.18d), are shown in (c) and (d), respectively.

the probability of emission into the upper hemisphere. Therefore the difference in the
number of electrons emitted into upper and lower hemisphere is in the end relatively
close, which explains the behavior of the final-time functional observed in Fig. 8.6(a).
The electron dynamics generated by the frequency-unconstrained field leads to a larger
total probability of emission into both hemispheres, with respect to that obtained with
the frequency-constrained field, as shown in Fig. 8.8(c). More precisely, propagation with
the unconstrained optimized field results in a total probability of emission of 0.27, i.e.,
probabilities of 0.23 and 4.3 × 10−2 for emission into the upper and lower hemisphere,
respectively. In comparison, a total probability of emission of 0.26 is obtained for the
frequency-constrained field, with probabilities of emission into the upper and lower hemi-
spheres of 0.22 and 3.9 × 10−2, respectively. The fact that the spikes observed in the
unconstrained optimized field do not have any significant impact on the asymmetry of
the PAD can be rationalized by the short timescale on which the intensity is very high.
This time is too short for the electronic system to respond to the rapid variations of the
field amplitude.

In order to rationalize how anisotropy of electron emission is achieved by the optimized
field, we analyze in Fig. 8.9 the partial wave decomposition of the angle-integrated PES,
comparing the results obtained with the guess field to those obtained with the frequency-
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Figure 8.8: (Hydrogen, maximization of the difference of photoelectrons emitted into the
lower and upper hemispheres: Optimized electric fields with (λω 6= 0) and without (λω =
0) frequency restriction (a) where the red curve shows the same data as in Fig. 8.6(c). Also
compared are the energy-integrated PAD (b) and total emission probability (c) obtained
with the frequency-constrained and unconstrained optimized fields.

constrained optimized field. Inspection of Fig. 8.9 reveals that upon optimization, there
is a clear transition from distinct ATI peaks, Fig. 8.9(a), to a quasicontinuum energy
spectrum, Fig. 8.9(b). Also, the optimized field enhances the contribution of states of
higher angular momentum that have the same kinetic energy. In particular, the peaks
for l = 5 are dramatically higher than in the PES obtained with the guess field. In
fact, the symmetric case, cf. Fig. 8.9(a), shows an energy distribution of partial waves
characterized by waves of the same parity at the same energy, whereas the asymmetric case
reveals a partial wave distribution of opposite parity at the same energy, cf. Fig. 8.9(b).
Figure 8.9 thus demonstrates that the desired asymmetry in the energy-integrated PAD
is achieved through the mixing of various partial waves of opposite parity at the same
energy. Interestingly, especially lower frequencies are mixed with a considerable intensity
into the pulse spectrum which leads to higher order multiphoton ionization leading to
comparable final energies in the PES. Thus, more angular momentum states are mixed.

Next, we would like to constrain not only the frequency components but also the
maximal field amplitude, as the maximal field amplitude of the electric field, shown in
Fig. 8.6(c) is still important. To this end, we employ Eq. (8.18) for λe > 0, which penalizes
large changes on the derivative of the vector potential, cf. Eq. (8.14), and thus large values
of the electric field amplitude. As can be seen in Fig. 8.10(a), the resulting optimized
field is one order of magnitude smaller than that for which no amplitude restriction was
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Figure 8.9: Hydrogen, maximizing the anisotropy of photoelectron emission: Partial wave
contribution to the angle-integrated PES, shown in Fig. 8.5, obtained with the guess (a)
and the frequency-constrained optimized field (b).

imposed, cf. Fig. 8.6(c), and of the same order of magnitude as the guess field. Despite
the constraint and as shown in Fig. 8.10(c), a perfect top-bottom asymmetry is obtained.

A common feature observed between the amplitude-unconstrained and constrained
cases concerns the low frequencies appearing upon optimization, cf. Fig. 8.7(b) and
Fig. 8.10(b), respectively. To quantify the role of the frequency components for achieving
anisotropy, we start by suppressing all frequency components above 10 eV: the anisotropy
of emission is preserved. On the other hand, removing frequencies below the XUV re-
establish the initial symmetry of emission into both hemispheres. Therefore, in both cases
the top-bottom asymmetry arises from low frequency components of the optimized field
and is achieved through the mixing of various partial waves of opposite parity at the same
energy.



8.8 Optimal control of photoelectron properties 112

-1.5 -1 -0.5 0 0.5 1 1.5
time (fs)

-60

-45

-30

-15

0

15

30

45

E
le

ct
ri

c 
fi

el
d
 (

G
V

/m
) Guess field

Optimized field

-50 -25 0 25 50
energy (eV)

0

0.005

0.01

sp
ec

tr
u
m

 (
a.

u
.)

0 π/8 π/4 3π/8 π/2 5π/8 3π/4 7π/8 π

angle

0

0.001

0.002

0.003

0.004

0.005

P
A

D

(a)

(c) (b)

Figure 8.10: Hydrogen, maximizing the anisotropy of photoelectron emission: Opti-
mization results obtained when simultaneously constraining the maximal amplitude and
frequency components of the electric field for the weights |λ(−)

eff | = 2|λ(+)
eff | with |λ(+)

eff | = 1.
Guess and optimized electric fields are shown in panel (a), their spectra in panel (b). A
perfectly anisotropy of photoelectron emission is obtained with the optimized field, as
demonstrated in the photoelectron angular distribution shown in panel (c).

8.8.2 Argon

We extend now our quantum control multi-channel approach to the study of electron dy-
namics in argon, interacting with an electric field linearly polarized along the z-direction.
We consider the 3s and 3p orbitals to contribute to the ionization dynamics and define
three ionization channels 3s, 3p with m = 0 and 3p with m = +1 (the case 3p with
m = −1 is symmetric to m = +1 due to the polarization direction of the electric field,
linearly polarized along to the z axis). In order to describe the multi-channel dynamics,
a spatial grid of 100 a.u. with 450 grid points and a density parameter of ζ = 0.55 was
utilized. The size of the radial component of the spherical momentum grid was set to
Emax = 12 a.u., sampled by 601 evenly spaced points, while the polar component θ ∈ [0, π]
was discretized using 301 points. A splitting radius of rc = 50 a.u., and a smoothing pa-
rameter ∆ = 10.0 a.u. were employed, together with a splitting step of 2.0 a.u. and a total
number of Ns = 2036 splitting times. For time propagation, the time step was chosen to
be 0.01 a.u., for an overall integration time ∆T ≈ 200 a.u.

Analogously to the results shown for hydrogen in Sec. 8.8.1, the goal is to maximize the
difference in the probability for electron emission into the upper and lower hemispheres.
To start the optimization, a Gaussian-shaped guess electric field with central frequency



113 8.8 Optimal control of photoelectron properties

-4

-2

0

2

4
guess field

-34

-17

0

17

34

51

el
ec

tr
ic

 f
ie

ld
 (

G
V

/m
)

λ
e
/λ

a
 = 0.01

-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5

time (fs)

-13

-6.5

0

6.5

13
λ

e
/λ

a
 = 0.02

(a)

(b)

(c)

Figure 8.11: Argon, maximizing the difference in photoelectron emission into the upper
and lower hemisphere: Guess field (a) utilized for the optimization. Optimized fields
obtained with an amplitude constraint are depicted in (b) and (c) respectively.

ω = 27.2 eV and maximal amplitude Emax = 5.14 GV/m was chosen. It is depicted in
Fig. 8.11(a) and yields a symmetric distribution for the upper and lower hemispheres, see
Fig. 8.12(a). The total emission probability amounts to only 1.4×10−2. In order to obtain
reasonable pulses which result in a maximally anisotropic PAD, we utilize Eq. (8.14) with
λe 6= 0 to minimize fast changes in the vector potential and avoid large peaks of the
electric field amplitude.

The optimized pulses for two values of the ratio λe/λa, charaterizing the relative weight
of minimizing peak values in the electric field compared to minimizing the integrated
vector potential, are shown in Figs. 8.11(b) and (c), respectively. As expected, a larger
amplitude constraint yields an electric field with a smaller maximal amplitude. In fact,
the maximal amplitude for λe/λa = 0.01 is one order of magnitude larger than that of the
guess field, whereas for λe/λa = 0.02 it is only three times larger. Figures 8.12(b) and (c)
display the energy-integrated PADs obtained with these fields. A significant top-bottom
asymmetry of emission is achieved in both cases, the main difference being the total
emission probability of 2.7×10−2 for Fig. 8.12(b) compared to 9.4×10−3 for Fig. 8.12(c).
The spectra of the two optimized fields are examined in Fig. 8.13. Despite the difference
in amplitude, both optimized fields are characterized by low frequency components. Note
that no frequency restriction was imposed. This finding suggests that the low frequency
components are responsible for achieving the top-bottom asymmetry. Indeed, removing
all optical and infra-red (IR) components results in a complete loss of the asymmetry.
On the other hand, removing frequency components above 10 eV does not affect the top-
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Figure 8.12: Argon, maximization of the top-bottom asymmetry: Energy-integrated PAD
obtained with the guess pulse (a) and amplitude-constrained cases with |λ(−)

eff | = 2|λ(+)
eff |

and |λ(+)
eff | = 1 in (b) and (c), respectively. Note the different scales for the probability of

emission.

bottom asymmetry achieved by both optimized fields considerably.
These optimization results raise the question whether frequency components in the op-

tical and IR range are essential for achieving the top-bottom asymmetry or whether a pure
XUV field can also realize the desired control. To answer this question, we now penalize
all frequency components in the optical and IR region. The resulting optimized electric
field and its spectrum are depicted in Fig. 8.14(a) and (b), respectively. This field indeed
possesses frequency components only in the XUV region, cf. Fig. 8.14(b). Nevertheless,
a strongly asymmetric top-bottom emission is again achieved, cf. Fig. 8.14(c). Therefore,
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Figure 8.13: Argon, maximizing the anisotropy of photoemission in argon: Spectra of the
optimized pulses and the guess field for comparison.
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Figure 8.14: Argon, top-bottom asymmetry of photoelectron emission: Frequency and
amplitude-constrained optimized field and its spectrum in (a) and (b) with the guess
field shown for comparison. For obtaining the XUV field, the ratios λe/λa = 0.02 and
λω/λa = 0.02 with a penalty function γ̃XUV = γ̃(ω − ω0) + γ̃(ω + ω0) − 1 + εω with
γ̃o = 100, ω0 = 27.2 eV, n = 4 and α = 15 were utilized, cf. Eq. (8.26). The quantity
εω = 0.001 has been introduced in order to avoid numerical instabilities when evaluating
the transfer function G̃(ω), cf. Eq. (8.18d). The resulting asymmetric photoelectron
angular distribution obtained with the optimized field is shown in panel (c).

while optical or IR excitation may significantly contribute to achieving anisotropy of the
photoelectron emission, fields with frequency components in the XUV alone may also lead
to such an asymmetry.

Finally, we would like to understand the physical mechanism from which the anisotropy
in the emission into both hemispheres arises. To this end, we consider the partial wave
decomposition of the angle-integrated PES. Analogously to our analysis for hydrogen, cf.
Section 8.8.1, a symmetric PAD, as obtained with the guess field, is characterized by an en-
ergy distribution of partial waves of the same parity at the same energy, cf. Fig. 8.15(a).
In contrast, the partial wave decomposition corresponding to the asymmetric PAD re-
veals an energy distribution of partial waves of different parity at the same energy, cf.
Figs. 8.15(b), 8.16(a). For the optimized fields with significant optical and IR compo-
nents, many partial waves, including those with high angular momentum, contribute to
the angle-integrated PES. This suggests that the top-bottom anisotropy of photoelectron
emission is achieved by absorbing low-energy photons at relatively high intensity which is
accompanied by strong mixing of a number of partial waves of opposite parity at the same
energy. The same mechanism had previously been found for hydrogen, cf. Section 8.8.1.

As for the optimized XUV electric field yielding an asymmetric probability for emis-
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Figure 8.15: Argon, maximizing the anisotropy of photoelectron emission: Partial wave
contribution to the angle-integrated PES, shown in Fig. 8.12 obtained with the guess (a)
and the amplitude-constrained optimized field corresponding to the ratio λe/λa = 0.01 in
(b).
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Figure 8.16: Argon, maximizing the anisotropy of photoelectron emission: Partial wave
contributions to the angle-integrated PES corresponding to the energy-integrated PAD
shown in Fig. 8.12(c) obtained amplitude-constrained optimized field for the ratio λe/λa =
0.02 and that corresponding to the PAD shown in Fig. 8.14(c) obtained with the optimized
XUV pulse in panels (a) and (b), respectively.

sion, shown in Fig. 8.14(c), the same mechanism involving mixing of partial waves of
different parity at the same energy is found, cf. Fig. 8.16(b). Nevertheless, a much
smaller number of partial waves is involved, cf. Fig. 8.16(a) and (b). For the XUV pulse
(Fig. 8.14(b)), it is mainly the components of the continuum wavefunction with angular
momentum l = 2 and l = 3 that contribute to the anisotropy of emission.

The reason why partial waves with different parity are always present for anisotropic
photoelectron emission can be straightforwardly understood. It lies in the fact that the
angular distribution arises from products of spherical harmonics, cf. Eqs. (6.10b), (6.10a)
and (6.4), and the product of two spherical harmonics with the same (opposite) parity is
a symmetric (antisymmetric) function of θ. The optimized pulses take advantage of this
property and realize the desired asymmetry by driving the dynamics in such a way that
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it results in partial wave components which interfere constructively (destructively) in the
upper (lower) hemisphere.

We have also investigated whether channel coupling plays a role in the generation of
the anisotropy. While switching off the interchannel coupling in the dynamics under the
optimized pulse shown in Fig. 8.14(a) decreases the resulting anisotropy slightly, overall
it still yields an anisotropic PAD. This shows that interchannel coupling in argon is not
a key factor in achieving top-bottom asymmetry in photoelectron angular distributions.

8.9 Summary of achievements and conclusions

To summarize, we have developed a quantum optimal control toolbox to target specific
features in photoelectron spectra and photoelectron angular distributions that result from
the interaction of a closed-shell atom with strong XUV radiation. To this end, we have
combined Krotov’s method for quantum control [106] with the time-dependent configura-
tion interaction singles approach to treat the electron dynamics [25] and the wave-function
splitting method to calculate photoelectron spectra [51, 142]. We have presented here the
algorithm and its implementation in detail. While currently based on the time-dependent
configuration interaction singles approach, it is straightforward to adapt the algorithm
to different time-dependent electronic structure methods, provided they are compatible
with wavefunction splitting to calculate the photoelectron spectrum. To the best of our
knowledge, our work is the first to directly target photoelectron observables in quantum
optimal control.

We have utilized this toolbox to identify, for the benchmark systems of hydrogen
and argon atoms, photoionization pathways which result in asymmetric photoelectron
emission. Our optimization results show that efficient mechanisms for achieving top-
bottom asymmetry exist in both single-channel and multi-channel systems. We have
found the channel coupling to be beneficial, albeit not essential for achieving asymmetric
photoelectron emission. Since typically the solution to a quantum control problem is
not unique, additional constraints are useful to ensure certain desired properties of the
control fields, such as limits to peak amplitude and spectral width. We have demonstrated
how such constraints allow to determine solutions characterized by low or high photon
frequency. In the low frequency regime, our control solutions require relatively high
intensities. Correspondingly, the anisotropy of the photoelectron emission is realized
by strong mixing of many partial waves. In contrast, for pure XUV pulses, we have
found low to moderate peak amplitudes to be sufficient for asymmetric photoelectron
emission. In both cases, we have identified the top-bottom asymmetry to originate from
mixing, in the photoelectron wavefunction, various partial waves of opposite parity at
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the same energy. The corresponding constructive (destructive) interference pattern in
the upper (lower) hemisphere yields the desired asymmetry of photoelectron emission.
Whereas many partial waves contribute for control fields characterized by low photon
energy and high intensity, interference of two partial waves is found to be sufficient in
the pure XUV regime. In all our examples, we have found surprisingly simple shapes of
the optimized electric fields. In the case of hydrogen, tailored electric fields to achieve
asymmetric photoelectron emission have been discussed before and we can compare our
results to those of Refs. [223, 240]. Our work differs from these studies in that we avoid a
parametrization of the field and allow for complete freedom in the change the electric field,
whereas Refs. [223, 240] considered only the carrier-envelope phase, intensity and duration
of the pulse as control knobs. The additional freedom of quantum optimal control theory
is important, in particular when more complex systems are considered.

The set of applications that we have presented here is far from being exhaustive, and
our current work opens many perspectives for both photoionization studies and quantum
optimal control theory. On the one hand, we have shown how to develop optimization
functionals that target directly an experimentally measurable quantity obtained from con-
tinuum wavefunctions. On the other hand, since our approach is general, it can straight-
forwardly be applied to more complex examples. In this respect it is desirable to lift the
restriction to closed-shell systems. This would pave the way to studying the role of elec-
tron correlation in maximizing certain features in the photoelectron spectrum. Similarly,
allowing for circular or elliptic polarization of the electric field, one could envision, for
example, to maximize signatures of chirality in the photoelectron angular distributions.
This requires, however, substantial further development on the level of the time-dependent
electronic structure theory.
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9.1 Introduction and motivations

In Chapter 8 we have formally demonstrated the possibility of controlling the momentum
distribution of the liberated photoelectron. Manipulating photoelectron-related observ-
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ables allowed us to unraveal the underlying the physical mechanism involved to achieve,
for instance, the desired angular anisotropy of photoelectron emission, regardless of the
coherence properties in the photoion created during the photoionzation process [138].

This time, we shift the direction of our research from manipulating the photoelectron
momentum distribution, to controlling the hole correlation dynamics. Such a choice is
manifestally motivated by the increasing progress in the observation of hole dynamics in
the photoion [241–244] which is initiated by the photoionization itself.

Such a coherent superposition has been in the focus of research in chemistry and
physics for many decades [245–248] since it plays an important role in the quest of control
over matter: it is the starting point for time-dependent spectroscopy of electron dynamics,
for example via pump-probe studies to investigate hole alignment [241] or interchannel
coupling [244]. As with any coherent spectroscopy, the degree of coherence of the state
that will be transiently probed is a crucial resource [249].

It is well established that the physical mechanisms inducing coherent superposition of
states, might be mediated via two possible pathways: by one-photon ionization– using a
pulse with sufficiently large bandwidth, for instance [52] or alternatively, through multi-
photon processes [242, 243].

In practice, a necessary requirement for hole coherence is ionization into photoelectron
states with the same angular momentum and energy. Because of the dipole selection rules,
however, creating coherence between a pair of hole states through one-photon ionization
may not be possible even if the spectral bandwidth of the ionizing pulse exceeds the energy
separation of the two hole states.

Although for multiphoton processes it may be possible to generate hole coherence by
ionization from occupied orbitals of opposite parity, the transient interaction between the
photoion and the liberated photoelectron introduces decoherence, or loss of coherence,
of the hole states detrimental to the control process. This applies even in one-photon
ionization with attosecond pulses [52]. In optical tunnel ionization, the observed degree
of coherence is also limited, so far to about 85 per cent [243]. In that regime, even
the shortest ionizing pulses do not allow to realize perfect coherence among the hole
states [250]. Moreover, only outer-valence hole states are accessible and it is very hard to
vary the population ratio of the hole states.

Despite the importance of the phase characterization for coherent control, it is often
assumed, however, that a coherent wave packet has been prepared in a sudden and un-
specified manner, such that it constitutes a well-defined coherent superposition of states.
However, the question remains how to generate such a coherent superposition in the first
place. In view of utilizing the coherent superposition in time-dependent spectroscopy,
the challenge is thus to identify suitable experimentally feasible pulses that create a pre-
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scribed superposition of hole states with predefined population ratio, satisfying practical
constraints. This is the control problem that we consider here.

The use of quantum optimal control theory allows for exploring both regimes and,
moreover, finding novel mechanisms for achieving high hole coherence.

9.2 Hole dynamics of photoionization

The electron dynamics of photoionization is simulated by solving the time-dependent
Schroödinger equation,

i
∂|Ψ(t)〉
∂t

= Ĥ(t)|Ψ(t)〉 (9.1)

where the time dependent Hamiltonian Ĥ(t) governing the dynamics, reads

Ĥ(t) = Ĥ0 + Ĥ1 + E(t)ẑ− iηŴ(̂r) , (9.2)

with Ĥ0 and Ĥ1 being the mean-field Fock operator and the residual Coulomb interaction,
respectively. The latter takes the form,

Ĥ1 = V̂C − V̂MF , (9.3)

with V̂C and V̂MF being the electron-electron interaction and the mean-field potential,
respectively. The third term on the right-hand side of Eq. (9.2) describes the electric dipole
interaction of the atom with an external electric field, assumed to be linearly polarized.

The fourth term on the rhs of Eq. (9.2), denotes a complex absorbing potential
(CAP) [139, 140] of the form [25, 28, 251, 252],

−iηŴ(̂r) = −iηh(̂r − rc)× (̂r − rc)2 (9.4)

that has been incorporated in order to avoid numerical artifacts due to reflection on the
edges of the numerical grid as the TDCIS wavefunction propagates over time. In Eq. (9.4),
h(·), r and rc refer to the Heavyside distribution, the distance from the origin and the
critical distance at which the CAP starts absorbing, respectively.

The time-dependent wavepacked is expressed in terms of the multi-channel time-
dependent configuration interaction singles (TDCIS) formalism [25, 51, 52, 253]. Specifi-
cally, the TDCIS N -electron wavefunction reads

|Ψ(t)〉 = α0(t)|Φ0〉+
∑

i,a

αai (t)|Φa
i 〉 , (9.5)
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where |Φ0〉 and |Φa
i 〉 denote the Hartree-Fock ground state and the single particle-hole

excitation from an initially occupied orbital, labeled i, to an initially unoccupied orbital a.
The binding energies utilized in the present work are those obtained from the Hartree-Fock
formalism using Koopmans’ theorem [254, 255].

The photoion corresponds to a reduced system that is obtained by integrating out the
photoelectron and thus needs to be described by a density matrix [250]. To study the
hole dynamics, we use the ion density matrix approach of Refs. [25, 52],

ρIDMi,j (t) = Tra [|Ψ(t)〉〈Ψ(t)|]i,j =
∑

a

〈Φa
i |Ψ(t)〉〈Ψ(t)|Φa

j 〉 , (9.6)

where the trace is carried out over the virtual channels which are occupied by the photo-
electron. The CAP, cf. Eq. (9.4), affects all virtual orbitals and thus also the ion density
matrix, which therefore must be corrected according to [25, 28]

ρIDMi,j (t) = ρ̃IDMi,j (t) + 2η e(εi−εj)t +
∑

a,b

wa,b

∫ t

−∞
dt′ αai (t′)α∗bj (t′)e(εi−εj)t′ , (9.7a)

where the “uncorrected” matrix elements of ion density matrix ρ̃IDM(t) read [25, 28]

ρ̃IDMi,j (t) =
∑

a

(Φa
i |Ψ(t)〉〈Ψ(t)|Φa

j ) , (9.7b)

with |Φa
j ) = |Φa

j 〉 and |Φa
j 〉 and (Φa

j | referring to the right and left eigenvectors of F̂ −
iηŴ , where F̂ is the Fock operator. Note that, due to the CAP, (Φa

j | and |Φa
j 〉 are not

orthogonal [25].
Equation (9.7a) provides the starting point for defining a measure of hole coherence:

The positive semidefinite quantity

gi,j(t) =
|ρIDMi,j (t)|

√
ρIDMi,i (t)ρIDMj,j (t)

(9.8)

defines the degree of coherence between the hole states in the atomic orbitals i and j [52].
For a totally incoherent statistical mixture gi,j = 0 , whereas gi,j = 1 for perfect coherence
between the states i and j.

9.3 Optimization problem

Our optimization targets maximization of hole coherence. In a first stage, we maximize
the degree of coherence between the 3s and 3p0 hole states in argon at the final time T ,
regardless of the final hole population ratio in the 3s and 3p0 orbitals. It is customary to
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minimize rather than maximize, such that the final-time cost functional reads

J
(1)
T = (g3s,3p0(T )− 1)2 . (9.9)

It takes values between 0 and 1 with J (1)
T = 0 corresponding to perfectly coherent 3s and

3p0 hole states. Additionally, when the target is not only to maximize hole coherence but
also to prescribe a certain ratio R between the hole populations, which is suitable in view
of utilizing such a coherent superposition for time-dependent spectroscopy, the final time
cost functional takes the form,

J
(2)
T = wpop

(
ρ3p0,3p0(T )
ρ3s,3s(T ) −R

)2

+ wcoh (g3s,3p0(T )− 1)2 , (9.10)

where wpop and wcoh are optimization weights that can be used to stress the relative
importance of each term in Eq. (9.10).

9.3.1 Alternative optimization algorithms

It is worth mentioning that because of the correction performed to the ion density matrix,
due to the CAP, the equation of motion for the Lagrange multiplier, or co-state, results
in a linear non-homogeneous Schrödinger equation that needs to be solved backwards
in time. The inhomogeneous term is attributed to the correction, cf. second term in
Eq. (9.7a), the latter being performed sequentially in time. This, combined to the presence
of a denominator in Eq. (9.8) results in an extremely unstable backward propagation.
Consequently, it translates into a systematic loss of monotonic convergence after a few
number of iterations. Consequently, an alternative gradient-free and robust optimization
method must be utilized.

As a alternative approach to the Krotov’s optimization method, we opt, because of the
form of the functional in Eq. (9.10), for gradient-free optimization which only requires
evaluation of the functional but not its gradient. This avoids backward propagation
of an adjoint state that is typical for gradient-based optimization approaches [106]. In
our case, backward propagation involves an inhomogeneous Schrödinger equation with
the inhomogeneity originating from the correction of the ion density matrix due to the
presence of the CAP, cf. Eq. (9.7a). While a numerically exact solution of inhomogeneous
Schrödinger equations is possible [172], it becomes challenging if the source term gets large.
This is the case here.

A plethora of available methods for gradient-free optimization exists. A popular ap-
proach, and notably the only one employed in quantum optimal control so far [256, 257],
is due to Nelder and Mead [123]. It minimizes a function of n optimization parameters
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(therefore gradient-free approaches are sometimes referred to as parameter optimization)
by comparing function evaluations at the n + 1 vertices of a general simplex, and up-
dating the worst vertex by moving it around a new vertex that is an average of the
remaining (best) vertices [123, 125]. While the approach often works well, it may be-
come ill-conditioned, particularly when non-convex forms of the function are involved.
As an alternative to the Nelder-Mead simplex approach, we consider the principal axis
optimization method [130] which is based on an inverse parabolic interpolation.

In the context of gradient-free methods, additional constraints in functional form,
that are customary in gradient-based optimization and often cumbersome to imple-
ment [233, 234], to fulfill the desired constraints, such as field duration, frequency com-
ponents, maximal electric field peak intensity, are not needed: The bandwidth of the
field, field duration range and the maximal amplitudes of the Fourier components can
be directly confined by mapping the optimization variables, updated by the algorithm,
to a specific sampling range of choice. This, combined with the advantage of avoiding
backward propagation of the adjoint state with gradient-free optimization is nonetheless
balanced by two critical drawbacks—the requirement for prior parametrization of the
field, and the convergence not being monotonic. Gradient-free optimization may lead
to poor fidelities if (i) the parametrization of the field is not properly chosen, (ii) the
number of parameters is too small, or, paradoxically, (iii) the number of parameters ex-
ceeds a certain threshold. In the latter case, a saturation effect causes the functional to
reach an asymptote very quickly and the optimization gets stuck. As a rule of thumb,
although gradient-free optimization does not require any particular adaptation when in-
cluding special techniques avoiding grid reflexions, such as CAP or Splitting methods,
these gradient-free approaches should be used only in the ideal context of dealing with
very an inexpensive propagation, assuming of course that the solution only requires a
moderate number of control parameters. Unfortunately, such a particular context is cer-
tainty not the case here. In order to circumvent this problem, we introduce and propose a
sequential parametrization update-based methodology which is explained in the following.

9.3.2 Sequential optimization update

The poor performance of gradient-free optimization due to a too large number of opti-
mization parameters can be avoided by a sequential update of the number of optimiza-
tion parameters [258]. Here, we adopt this approach to optimization methods beyond
a Nelder-Mead simplex search and allow for treating the circular frequencies themselves
as optimization parameters while still maintaining a prespecified bandwidth. The opti-
mization is started with a minimal number of parameters, and additional parameters are
included on-the-fly as the algorithm proceeds iteratively, i.e., every time the value of the
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optimization functional reaches a plateau.

As an example of the SPA technique, let the parametrization of the field be defined
by Fourier components,

ENI(t) =
N∑

n=1

I∑

i=1
sn(t, σn)

{
fn(an,i) cos(ωn,i t) + fn(bn,i) sin(ωn,i t)

}
,

with the Fourier amplitudes an,i and bn,i as optimization parameters. The double sum
notation was chosen to ease implementation of a field that consists of N subpulses. In
Eq. (9.11), sn(t, σn) is a fixed envelope, for example Gaussian or sin2-shaped. The dura-
tions σn of the subpulses as well as the circular frequencies ωn,i can be fixed or considered
as additional optimization parameters. The functions fn(·) are introduced in order to
constrain the Fourier amplitudes an,i and bn,i to within a prespecified range. For instance,
a function of the form

fn(ζi) = ζo

∫ ζi

0
e−t

2
dt (9.11a)

ensures that the Fourier coefficient does not exceed a given maximum absolute value ζo,
avoiding large amplitudes for the resulting optimized field. Equivalently, a hyperbolic
tangent form,

fn(ζi) = ζn,o
eζi − e−ζi

eζi + e−ζi
, (9.11b)

may be utilized to control the maximal amplitude of the optimized field. Alternatively,
one could also apply the transformations (9.11) to the overall electric field instead of each
Fourier component separately. This may, however, result in additional low frequency
components arising form the transformation in question. Such artifact frequencies might
be undesirable, in particular when the solution shall be constrained to a specific spectral
range.

For simplicity purposes, we choose a single pulse, N = 1, with two Fourier amplitudes,
I = 2, and fixed or variable circular frequencies to start the optimization properly speak-
ing. When using fixed circular frequencies, a set of circular frequency values is specified
in the very beginning, which are successively added during the parametrization updates.
If the circular frequencies are treated as optimization parameters, the spectral range can
be simply controlled by restricting the circular frequencies to an interval via the mapping

ωnew = 1
2(ωmax − ωmin) tanh(ω) + 1

2 (ωmax + ωmin) ,

(9.12)
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where ω ∈ IR is the circular frequency returned by the optimization algorithm, whereas
ωnew, which is guaranteed be in the interval ]ωmin, ωmax[ by Eq. (9.12), is the one used for
the propagation.

Consider for simplicity the example of fixed circular frequencies, treating the pulse du-
ration (full width at half maximum (FWHM) of the intensity profile), Fourier amplitudes
and relative phases as optimization parameters. The procedure consists of two loops, an
outer loop over generations (with each generation corresponding to a parametrization with
m parameters), and an inner loop, iterating for a given parametrization. The inner loop
proceeds until Nc evaluations of the functional, i.e. propagations of the wavefunction, are
reached. It then checks whether the overall minimization threshold is reached. If so, the
complete procedure is stopped; if not, it checks whether the value of the functional has
changed significantly during the Nc iterations. If so, another Nc iterations are carried out,
if not, then the algorithm increases the number of optimization parameters, and restarts
the optimization for the new generation, using the best previous field as guess field for the
new parametrization with all new optimization parameters set to zero. This procedure
of updating the parametrization of the field is repeated every time that the functional
gets stuck, allowing it to escape from the plateau. The user needs to specify the maximal
number of generations Gmax, or new parametrizations, together with Nc, the maximum
number of evaluations of the functional, i.e. propagations, and the tolerance thresholds.

In the following, we show that such a sequential parametrization update is more ef-
ficient than choosing a large number of parameters from the beginning. In a sense, the
optimization is “driven” efficiently and does not get stuck in a final plateau since every
time the functional reaches a saturation plateau, the additional parameters introduced
allow for escaping from such an asymptotic region. This is in line with the findings of
Ref. [258] where the frequencies are randomized within a prespecified interval. Further-
more, we show that updating the parametrization is particularly efficient when combined
with the principal axis method, due to Brent [130], as compared to the Nelder-Mead
optimization algorithm [123], employed in Ref. [258].

9.4 Minimizing hole decoherence in Argon

The goal is to maximize the degree of coherence gi,j(T ) between the 3s and 3p0 hole-
population in argon. Note that the 3s hole state in argon would be inaccessible in tunnel
ionization.

The ionizing external electric field is assumed to be linearly polarized along the z

direction, in the XUV regime and with maximal field amplitude not exceeding 0.02 a.u.
Correspondingly, the target functional is the one defined in Eq. (9.9). The wavepacket is
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Figure 9.1: Efficiency of optimization using the principal axis method of Brent with
fixed parametrization (black line, np = 13) and with sequential parametrization update
(SPA-optimization, colored lines).

represented, according to Eq. (9.5), in terms of the ground state |Φ0〉 and excitations |Φa
i 〉,

from which the corrected form of the IDM, due to the CAP, cf. Eq. (9.7a), is calculated.

9.4.1 Numerical performance of SPA-optimization

We first compare our sequential parametrization update (SPA) technique to optimization
with a standard fixed parametrization, using the principal axis method in both cases to
determine the change in parameters. Figure 9.1 shows the optimization efficiency for the
two methods, started with the same guess field. The optimization parameters are the
pulse duration and the Fourier components. The circular frequencies, taken to be fixed
on an evenly spaced frequency grid, are chosen in the XUV regime. For the standard ver-
sion, the entire frequency grid is used from the beginning of the optimization, while for
SPA-optimization circular frequencies from the grid are successively added. The standard
non-updated version (full black line), for which the field is defined by 13 optimization
parameters, decreases quasi-monotonically but very slowly during the first 210 iterations.
Then the functional considerably decreases between the iterations 210 to 250 before reach-
ing a plateau with final value J (1)

T = 0.21. SPA-optimization is started by defining at first
a pulse characterized by 7 circular frequencies, which coincide with the first seven circular
frequencies from the overall set of circular frequencies.

After 50 iterations with these parameters, SPA-optimization reaches already a func-
tional value slightly below that reached by the non-sequential version after the same num-
ber of iterations. Once the plateau for the field containing 7 optimization parameters is
reached, the new generation is started by adding 6 additional optimization parameters. As
can be seen from Fig. 9.1, such an update allows the functional to considerably decrease,
reaching after just 100 iterations the same value that is obtained with the non-sequential
version in 255 iterations. Furthermore, it also shows that there are some frequency com-
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ponents resulting from the non-update version, that are not necessarily required for the
optimization. The different colors in Fig. 9.1 illustrate the increase in the number of
optimization parameters as a function of the number of propagations. From Fig. 9.1, it is
clear that the sequential parametrization update version is more efficient than standard
optimization: It allows not only to reach higher fidelities at the end of the optimization,
but also converges faster. The comparison shown in Fig. 9.1 does not depend on the
specific choice of the initial guess. That is, we have carried out the comparison for several
guess fields and observed always a better performance of SPA-optimization compared to
optimization with fixed parametrization.

It is clear that the SPA-approach can be extended to other gradient-free optimization
methods. A particularly popular method is the widely used Nelder-Mead downhill sim-
plex approach, which we now compare to the principal axis method. The convergence
behavior of the two methods, when using the SPA-technique, is shown in Fig. 9.2. Both
Nelder-Mead simplex and principal axis method are again started with 7 parameters, as
described above, using the same guess for both methods. The principal axis method is
found to clearly outperform the Nelder-Mead simplex: Indeed, with only 7 optimization
parameters, the principal axis method reaches a value of J (1)

T = 0.50 already after 100 iter-
ations, whereas the simplex method requires almost 400 iterations to reach the same value.
Moreover, the simplex algorithm tends to reach a plateau more easily than the principal
axis method, and after 600 iterations, the functional does not decrease even upon increas-
ing the number of parameters. This behavior is typical, and we only show representative
results in Fig. 9.2. For example, changing the number of critical iterations does not change
this observation—the Nelder-Mead simplex method tends to get stuck more rapidly and
the optimization cannot escape from the plateau, cf. the blue triangles in Fig. 9.2(a). In
contrast, as seen from Fig. 9.2(b), with the principal axis method the functional contin-
ues to decrease, albeit slowly, when the number of optimization parameters is increased.
According to our numerical experiments, this behavior is again independent of the guess
field. We thus find that SPA-optimization based on the principal axis method represents a
promising alternative not only to the widely used Nelder-Mead simplex approach, but also
to the principal axis method itself, when used in the standard version with a fixed number
of optimization parameters. The resulting degree of coherence amounts asymptotically
to g3s0,3p0 = 0.989 after 1500 iterations, which is induced by an driving field fulfilling,
by construction, both, maximal peak amplitude and frequency components requirements.
All numerical experiments that we have carried out reproduced the relative advantage
of SPA-optimization over optimization with a fixed number of optimization parameters
(Fig. 9.1) and of the principal axis method over Nelder-Mead simplex (Fig. 9.2). However,
they also revealed a rather high sensitivity of the optimization success, both in terms of
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Figure 9.2: SPA-optimization based on the principal axis method (b) converges signif-
icantly faster and yields a better hole coherence than with the Nelder-Mead (a) simplex
search.

convergence speed and final hole coherence achieved, on the initial guess. This suggests
to pre-scan the parameters of the initial guess, as studied next.

9.4.2 Optimization using a “pre-optimized” guess field

The idea is to identify a small number of key parameters whose values are scanned in a
prespecified range. While this does not constitute optimization in itself, it is related in
spirit to the hybrid optimization approach of Ref. [259] which combines a cheap, low-level
parameter “pre-optimization” with a numerically more expensive, high-level gradient-
based optimization. Once the parameter scan has been carried out, the best parameters
resulting from the scanning procedure, i.e the ones that minimize, at least locally, the
functional of interest, are chosen to define the guess for the actual SPA-optimization.
As a result, the actual optimization is started with a minimal number of optimization
parameters at an already relatively good fidelity.

This approach is particularly useful when no a priori physical insight into the best
choice of the field parameters is available. The required calculations are independent of
each other and can thus be carried out in parallel. Nevertheless, the number of parameters
to be scanned should be kept at a minimum. Furthermore, it is not necessary to perform
the scan with very high resolution since small changes in the parameters that significantly
improve the target will be readily identified by the subsequent optimization. We thus start
by evaluating the degree of coherence by scanning three parameters of a transform-limited
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Figure 9.3: Parameter scanning prior to optimization: Frequency / peak amplitude scans
for fixed pulse durations τ = 6 a.u. (b) and τ = 23 a.u. (c). Favorable parameters for the
initial guess field can clearly be identified.

Gaussian pulse—its peak amplitude, central frequency, and duration or, equivalently,
spectral width. The numerical results are shown in Fig. 9.3. Keeping the peak amplitude
fixed at E0 = 0.02 a.u., which corresponds to the maximal peak amplitude allowed, and
varying the pulse frequency, one broad minimum of the functional is observed in Fig. 9.3
(top) for short (spectrally broad) pulses near ωph = 0.50 a.u. This minimum is shifted to
ωph = 0.64 a.u. for the longest pulse, whereas both minima occur for intermediate pulse
durations. Note that τ refers to the FWHM of the intensity profile.

A relatively complete picture is obtained when scanning both frequency and peak
amplitude of the field, keeping only the duration fixed. The results are shown in
Figs. 9.3(b) and (c) for pulse durations of τ = 6 a.u. and τ = 23 a.u., respectively:
Apparently, spectrally too broad pulses are not suitable for the maximization of hole co-
herence, cf. Fig. 9.3(b). The best pulses are obtained for τ = 23 a.u. (light-blue area
in Fig. 9.3(c)) where a distinct window of favorable central circular frequencies occurs
between ωph = 0.50 a.u. and ωph = 0.65 a.u. Interestingly, good hole coherences are ob-
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Figure 9.4: SPA-optimization with the principal axis method, using favorable initial
parameters in the guess pulse: The convergence is significantly accelerated (a). Guess
and optimized fields are shown in (b) and (c).

tained even for weak fields. One has to keep in mind, however, that these come with low
overall ionization probabilities.

Once we have scanned the basic parameters of the field, we use the best values to start
the actual SPA-optimization, increasing the number of parameters once the change in the
functional, J (1)

T , becomes too small, as before. Figure 9.4 shows the corresponding results.
The parameter scan allows to find an already good guess field, depicted in Fig. 9.4(b),
such that SPA-optimization starts with a value of J (1)

T = 0.17, cf. Fig. 9.4(a), to be
compared with the poor starting fidelity in Figs. 9.1 and 9.2. After only 180 iterations,
J

(1)
T has dropped to 0.04. At this stage, 7 optimization parameters are used, resulting

in a comparatively simple shape of the optimized field, cf. Fig. 9.4(c). For comparison,
the lowest value of J (1)

T obtained in Sec. 9.4.1 without a prior parameter scan amounts
to 0.07. Thus, the sequential update technique based on the principal axis method, with
prior scanning of the optimal parameters for the guess field reveals itself to be a very
efficient optimization method. It allows for reaching high fidelities while minimizing the
number of optimization parameters as well as the numerical effort. The dynamics ob-
tained with various guess and optimized fields are analyzed in Fig. 9.5, which displays
the degree of coherence as a function of time. Figures 9.5(a) and (b) compare g3s,3p0(t)
for a randomly chosen guess field with a large number of parameters (black line) and
for the optimized field obtained from this guess (red line). The fields are shown in grey
(not scaled). Whereas the guess field yields a very poor fidelity, cf. the y-axis scale,
the maximized degree of coherence between the hole states 3s and 3p0, reaches a value
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Figure 9.5: Degree of coherence as a function of time obtained with guess (left) and opti-
mized (right) fields: (a) randomly chosen initial parameters (np = 26); (b) corresponding
optimized field with g3s,3p0(T ) = 0.989 (np = 26); (c) initial guess field consisting of
two time-delayed Gaussians (np = 8) (d) corresponding optimized field for which the
degree of coherence oscillates between g3s,3p0(t) = 0.97 and 0.75 with a final value of
g3s,3p0(T ) = 0.80 (np = 16); (e) initial monochromatic guess field with favorable parame-
ters identified by parameter scan, (f) corresponding optimized field (np = 7, the same as
shown in Fig. 9.4(c)) for which the degree of coherence oscillates between g3s,3p0(t) = 0.98
and g3s,3p0(T ) = 0.90.

of g3s,3p0 = 0.989. Figures 9.5(c) and (d) answer the question whether a time-delayed
sequence of two Gaussian pulses is suitable for maximizing hole coherence. We treat the
amplitudes, circular frequencies and delay as a optimization parameters. Since the sub-
pulse structure essentially disappears upon optimization, we conclude that time-delayed
pulses are not suitable for maximizing hole coherence. Finally, Figs. 9.5(e) and 9.5(f)
display the degree of coherence obtained with the guess constructed after parameter scan
and the corresponding optimized field, also shown in Fig. 9.4(b) and (c).

9.4.3 Enhancement mechanisms of hole coherence of hole states in ultrafast pho-
toionization

The benefits of scanning the field parameters are two-fold. Not only it allows to find
an educated guess field to start the optimization while reducing considerably the nu-
merical effort, but also, by evaluating the functional defined by the degree of coherence
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as a function of the field parameters, together with the inspection of the photoelectrum
spectrum allows already to unraveal the physical mechanisms that allows to minimize
the decoherence. In fact, the results displayed in Fig. 9.3 (top) already provide an in-
sight into possible mechanisms for enhancing the degree of coherence between the 3s
and 3p0 hole states. For perfect hole coherence, it is required that photoelectrons from
the 3s and 3p0 orbitals to be energetically indistinguishable. The binding energy is
1.272 a.u. for 3s and 0.591 a.u. for 3p0 at the Hartree-Fock level. Therefore, a photon
with ωph = 0.50 a.u. might create, via three-photon ionization of the 3s orbital, a pho-
toelectron at an energy of ωe−(3s) = 0.228 a.u. while two-photon ionization of the 3p0

orbital would create a photoelectron at ωe−(3p0) = 0.409 a.u. This is the first scenario,
where the minimum bandwidth required for energetic indistinguishability corresponds to
a maximum τ = 30.7 a.u. This scenario corresponds to the minimum in Fig. 9.3 (top)
near ωph = 0.50 a.u. for τ up to 35 a.u. For shorter pulses, the minimum becomes broader
but remains centered at ωph = 0.50 a.u. The second minimum, near ωph = 0.64 a.u., ob-
served for long and spectrally narrow pulses, cannot be explained by this first scenario.
For example, τ = 47 a.u. corresponds to a spectral bandwidth of 0.06 a.u. However, a
central frequency of ωph = 0.64 a.u. is not too far from the transition frequency between
the parent orbitals, δω3s,3p0 = 0.681 a.u. This first scenario describing the three-photon
ionization of the 3s and two-photon ionization of the 3p0 is schematized in Fig. 9.6 (left
panel).

A second conceivable scenario thus consists in the one-photon ionization of the 3p0

orbital together with the resonant excitation of a 3s electron into the 3p0 hole, as depicted
in Fig. 9.6 (right panel). In this scenario, one-photon ionization of the 3p0 orbital with a
photon of ωph = 0.64 a.u. would lead to a photoelectron at Ee−(3p) = 0.049 a.u., whereas a
photoelectron originating from the 3s orbital that absorbed two such photons would have
an energy of Ee−(3s) = 0.008 a.u. In order to check whether these scenarios are indeed
responsible for the structure observed in Fig. 9.3 (top), channel-resolved photoelectron
spectra (PES) are shown in Fig. 9.7. Indeed, for ωph = 0.64 a.u. and τ = 47 a.u. (yellow
lines), the channel-resolved PES reveal for 3s a peak in the vicinity of ωe−(3s) = 0.01 and for
3p0 one at ωe−(3p0) = 0.05 a.u. Given our resolution, these peaks essentially coincide with
the expected ones at 0.008 a.u. and 0.049 a.u., confirming the creation of hole coherence
by resonant transition from the 3s into the 3p0 orbital. The same mechanism is seen to
be at work for the pulse with τ = 35 a.u. and ωph = 0.64 a.u. (dark blue line in Fig. 9.7).
The larger width of the blue peaks compared to the yellow ones (τ = 47 a.u.) simply
reflects the larger bandwidth of the field. Completely different PES are obtained for a
central frequency of ωph = 0.50 a.u. (red and cyan lines in Fig. 9.7). Assuming here
the first scenario to be relevant, i.e., a simultaneous three-photon ionization of 3s and
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Figure 9.6: Schematic control mechanism for hole decoherence suppression: Three-
photon ionization of the 3s and two-photon ionization of the 3po orbital (left) defines
the first scenario. A second conceivable scenario is the one-photon ionization of the 3p0

orbital together with the resonant excitation (refilling) of a 3s electron into the 3p0 hole
(right panel).

two-photon ionization of 3p0, we expect peaks at ωeâĄż(3s) = 0.228 a.u. in the 3s-PES
and at ωe−(3p) = 0.409 a.u. in the 3p0-PES. These peaks are indeed observed for the red
and cyan curves in Fig. 9.7. Even if for τ = 47 a.u. (cyan line in Fig. 9.7) the spectral
bandwidth is too small to really render the 3s and 3p0 photoelectrons indistinguishable,
the mechanism of simultaneous three-photon ionization of 3s and two-photon ionization
of 3p0 explains the small dip at ωph = 0.50 a.u. in the brown line in Fig. 9.3. This holds
of course also for the deeper minima observed for shorter, i.e., spectrally broader pulses.
We thus conclude that the first scenario, of simultaneous three-photon ionization of 3s
and two-photon ionization of 3p0, is at work for ωph = 0.50 a.u.

9.4.4 Electronic correlations and asymptotic oscillating behavior of the degree of
coherence

The impact of the Coulomb interaction on the hole coherence is analyzed by comparing
hole coherence dynamics within the “full” (or interchannel) model and intrachannel
approximations. Within the “full” model, the photoelectron may couple to all hole states
in the parent ion which mediates a coupling between different channels. In contrast,
within the intrachannel approximation, the photoelectron can only interact with the hole
in the orbital from which it originates [52].

Remarkably, the degree of coherence oscillates as a function of time in Fig. 9.5, even
after the field is over. These oscillations may be the direct manifestation of two possible
mechanisms: On one hand, the oscillations might be related to how fast the photoelectron
leaves the parent ion since the interaction between any outgoing photoelectron and the
remaining ion creates entanglement and thus decreases the hole coherence. Alternatively,
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Figure 9.7: upper panel: Frequency scan with fixed peak amplitude for several pulse
durations (FWHM of the intensity) and resulting channel-resolved PES in middle and
lower panels.

they may be caused by excitation of Rydberg states, which would allow the electron-ion
interaction to persist even long after the pulse is over. In both cases, the excited electron
reaches a sufficiently large spatial extension such that it is affected by the CAP.

Therefore, in order to quantify how fast a photoelectron leaves the parent ion, we can
exploit the loss of norm, due to the CAP. In fact, since the CAP acts only to the virtual
orbitals, it might serve as a sensor for the excited electron, or eventually, the photoelectron
that reaches the asymptotic region, where the CAP is active. Such an indicator is given
by the loss of norm, due to the CAP namely,

∆ρ(t) = 1−
(

Tri
[
ρ̃IDM(t)

]
+ |α0(t)|2

)
, (9.13)

since Tri[ρ̃IDM(t)]+|α0(t)|2 is not equal to one, due to the CAP (only Tri[ρIDM(t)]+|α0(t)|2
is) and the CAP does not affect the coefficients α0(t).

To inspect how fast the excited electron reaches the region of the CAP, Fig. 9.8 shows
the loss of norm for the three different optimized fields shown on the right-hand side of
Fig. 9.5. The optimized field, for which the degree of coherence shows the fastest oscilla-
tions with the smallest amplitude (red line in Fig. 9.5), produces the more energetically
excited electrons (the ones reaching large spatial domain first), whereas the slowest os-
cillations of the degree of coherence with the largest amplitude (green line in Fig. 9.5)
are associated with the less energetically excited electrons reaching the CAP region, cf.
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Figure 9.8: Argon: Photoionization probability, obtained in terms of the absorbed part
of the ion density matrix, cf. Eq. (9.13), as a function of time for the three optimized
fields depicted in Fig. 9.5(b), (d) and (f). The color code is the same as in Fig. 9.5.

Fig. 9.8. From these observations we may conclude that the oscillations arise from the
interaction between the remaining ion and the excited electron, which perturbs the coher-
ence of the ion density matrix. Thus, the fastest excited electrons interact the least with
the remaining ion whereas the slowest (or bound) ones, which interact with the remain-
ing ion during longer times, lead to a larger perturbation of the degree of coherence. A
similar conclusion regarding the interaction between the photoelectron and the photoion
was previously drawn for hole decoherence in the photoionization of xenon [52].

This interpretation is relevant for the “full” model including interchannel coupling
where a fast departure of the photoelectron minimizes the interaction with the remaining
ion. In contrast, within the intrachannel model, the excited electron can interact only
with the electrons remaining in the channel from which it originates. One should therefore
expect that the oscillations in this case become less important. In Fig. 9.9, we compare
the degree of coherence as well as the hole populations as a function of time for the “full”
model and the intrachannel approximation. We have used the optimized field, depicted
in Fig. 9.5(b), that produces the fastest photoelectrons (within the “full” model), so that
the oscillations in g3s,3p0 are minimal. As can be seen in Fig. 9.9(a), the oscillations at
times larger than 50 a.u., due to the interaction between the excited electron and the
parent ion, dissapear completely if we allow the excited electron to interact only with
the orbital from which it originates. Furthermore, the interchannel coupling is also found
to be responsible for the oscillations in the hole populations after the pulse is over, cf.
Fig. 9.9(b) and Fig. 9.9(c).

In Fig. 9.10, we carry out the same analysis of the interchannel coupling, this time
using the optimized field depicted in Fig. 9.5(f), which produces slower photoelectrons,
cf. Fig. 9.8. Again, the oscillations in g3s,3p0(t) and the hole populations, observed for
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Figure 9.9: Argon: Degree of coherence (a) and hole populations (b,c) as a function of
time, obtained with the optimized field shown in Fig. 9.5(b), for the interchannel (’full’)
and intrachannel models.

the “full” model, disappear in the intrachannel approximation. Despite the modified
dynamics, the final value for the degree of coherence remains almost the same for both
optimized fields when switching off the interchannel coupling. In contrast, the final hole
populations are considerably changed, cf. the lower panels in Figs. 9.9 and 9.10. This
strongly suggests that the oscillations present in the degree of coherence as well as in the
hole populations are induced by the interchannel interaction.

9.4.5 Minimization of hole decoherence with prescribed hole population ratio

One of the most striking features of the optimization results presented in the previous
section concerns the population difference between the hole states. Specifically, the pop-
ulation of the 3p0 hole exceeds that of the 3s hole by at least two orders of magnitude in
all examples studied. Such a large population difference is undesirable in view of utilizing
the coherent superposition in time-dependent spectroscopy. We therefore address now the
question whether it is possible to maximize the degree of coherence between the 3s and
3p0 hole states while simultaneously controlling the final hole population.

We consider all possible scenarios, i.e., equal populations, ρ3p0,3p0 > ρ3s,3s, and
ρ3p0,3p0 < ρ3s,3s. To be specific, we ask for the corresponding population ratio R to be
equal to 0.7 in the last two cases and utilize the optimization functional J (2)

T , cf. Eq. (9.10).
Starting with equal populations, Fig. 9.11 shows the degree of coherence, hole populations
and optimized field as a function of time, demonstrating success of SPA-optimization also
for this more challenging control target. Figure 9.11 also analyzes the role of the interchan-
nel coupling, cf. red and blue lines, as well as the role of direct transitions between the 3s
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Figure 9.10: Argon: Degree of coherence (a) and hole populations (b,c) as a function of
time, obtained with the optimized field shown in Fig. 9.5(f), for the interchannel (’full’)
and intrachannel models.

and 3p0 states, cf. red and green lines. The interchannel coupling is seen to affect the hole
coherence only during the first half of the pulse, whereas the final coherence is identical
with and without interchannel coupling, cf. Fig. 9.11(a). In contrast, suppressing the
excitation of a 3s electron into the 3p0 orbital strongly modifies the degree of coherence.
It reduces the final value from 0.98 to 0.39, indicating that sequential ionization of 3s
electrons is important here.

As for the population dynamics, Fig. 9.11(b) reveals the 3p0 hole population to always
be larger than the 3s population until the two populations reach the same value. This is
true both with and without interchannel coupling. The interchannel coupling is seen to
only affect the final populations, by an amount that is not very large. While the 3s hole
population increases monotonically, the 3p0 hole population reaches a maximum value at
the same time that the degree of coherence becomes stationary. After that time, the 3p0

hole population decreases to the target value. In contrast to the degree of coherence that
becomes stationary already while the pulse is still on, the hole populations do so only at
the end of the pulse. The population dynamics confirms the importance of excitations
from 3s electrons to 3p0: When this transition is switched off, the 3s hole population
drops to essentially zero, cf. the green line in Fig. 9.11(b). We can thus conclude that the
decrease of the 3p0 hole population and simultaneous increase of the 3s hole population,
seen for the “full” model, is due to a dipole transition between these two states. In other
words, Rabi oscillations occur between these orbitals, as indicated by the oscillatory
pattern of the red and blue lines in Fig. 9.11(b) for −10 ≤ t ≤ 15 a.u. This interpretation
is confirmed by the fact that these oscillations occur with the same frequency, but a phase
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Figure 9.11: Argon: Maximization of the degree of coherence between the 3p0 and 3s
hole states while simultaneously optimizing for a hole population ratio of one: degree of
coherence (a), hole populations (b) and optimized electric field (c) as a function of time.

shift of π (data not shown).

Next, we target the case ρ3p0,3p0 > ρ3s,3s with a population ratio of R = 0.7. Given
the fact that the 3p0 hole population always turned out to be larger than the 3s hole
one for the cases previously described, this is the simplest of the three cases. The results
are shown in Fig. 9.12. Similarly to the case of equal hole populations, the interchannel
coupling does not affect the final degree of coherence and the final populations. However,
in contrast to the case of equal populations, both the hole population and the degree of
coherence become stationary at the same time, once the pulse is over, cf. Fig. 9.12(a)
and (b). Direct transitions between the 3s and 3p0 orbitals are found to play again an
important role, cf. the green lines in Fig. 9.12(a) and (b).

Finally, we maximize the degree of coherence constraining the hole populations such
that ρ3p0,3p0 < ρ3s,3s. This is the most difficult target, but it is successfully addressed
by SPA-optimization and the results are shown in Fig. 9.13. Again, the interchannel
coupling is found to affect the degree of coherence only during the pulse, but neither
the final coherence nor the population dynamics, cf. red and blue lines in Fig. 9.13(a)
and (b). Compared to the cases of equal population and larger 3p0 hole population, the
population dynamics is more intricate, showing a crossing in order to reach the desired
population ratio and a number of distinct oscillations. We again check whether these
oscillations correspond to Rabi cycling between the 3s and 3p0 orbitals by switching
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Figure 9.12: Argon: Maximization of the degree of coherence between the 3p0 and 3s
orbitals while simultaneously optimizing for a hole population ratio of ρ3s,3s/ρ3p0,3p0 = 0.7:
degree of coherence (a), hole populations (b) and optimized electric field (c) as a function
of time.

off the transition dipole matrix elements. We find that, when 3s to 3p0 transition are
not allowed, no oscillations are present in the population dynamics, and the 3s hole
population drops to essentially zero. Moreover, analysis of the population oscillations
reveals again their identical frequency and a phase shift of π (data not shown). For all three
variants of the 3s to 3p0 hole population ratio, the corresponding optimized fields were
successfully identified by SPA-optimization. Their spectra are shown in Fig. 9.14. The
circular frequencies were treated as optimization parameters, using Eq. (9.12) to constrain
them to ωmin = −4 a.u. and ωmax = 4.0 a.u. The most difficult optimization target results
in the broadest spectrum, cf. blue line in Fig. 9.14. It is a common observation that
more difficult optimization problems result in more complex control fields. Overall, the
optimized spectra are too broad to identify one of the two control mechanisms, based
on photon energies of 0.50 a.u. versus 0.68 a.u., as discussed in the previous section, by
inspection of the spectra alone. The numerical effort, in terms of optimization parameters
is comparable for all three cases—the final number of optimization parameters amounts
to 28. The most difficult optimization target required the largest number of iterations. In
this case, the value of the functional J (2)

T decreased with a slower rate, compared to the
other two cases. For all three population ratios, SPA-optimization was started with the
same guess field, using four optimization parameters: the FWHM, a frequency, a Fourier
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Figure 9.14: Argon: Maximization of the degree of coherence between the 3p0 and 3s
hole states while simultaneously optimizing for a given hole population ratio. Spectra of
the optimized fields for the three different hole population ratios, R = ρ3s,3s/ρ3p0,3p0 .

amplitude and a phase shift. At the end of the procedure, the FWHM, nine frequency
components, nine Fourier amplitudes and nine phases were optimized.



9.5 Coherent control of hole dynamics in attosecond ionization 142

9.5 Suppression of hole decoherence in Xenon: A novel mechanism

As previously discussed in Section 9.4.4, an enhancement pathway to achieve decoherence
suppression consist in (i) increasing the photon energy in order to reduce the interaction
time between the ionized photoelectron and the photoion. The same enhancement mech-
anism was previously discussed in Ref. [52] in the context of one-photon ionization in
xenon. In the context of our photoionization studies in argon, cf. Section 9.4.3, we have
found that ionization of the 3p0 followed by (ii) refilling of the created 3p0 hole from the
3s orbital leads a to a notorious enhancement of the degree of coherence between the both
holes states.

These two observations define the motivation of this section. We apply our SPa
optimization approach to a more challenging atomic many-body situation, namely the
maximization of the degree of coherence between the 4d0 and 5s hole states in Xenon.
In fact, the simple enhancement mechanism found for argon– of ionizing the 3p0 orbital
and refilling it by excitation from the 3s orbital, fails in this case since the 4d0 and 5s
orbitals cannot be coupled by one-photon excitation, in the context of the strict dipole
approximation.

Furthermore, in order to avoid the “trivial” solution of avoiding entanglement by reduc-
ing the interaction between the freed photoelectron and ionic hole, which is accomplished
merely by increasing the photon energy as prescribed in Ref. [52], we limit the photon
energies to below ωmax = 130 eV, which corresponds to the photon energy for which a
maximal degree of coherence was found in Ref. [52]. The idea behind is to exploit the
versatility of the SPA technique to find new enhancement mechanisms that violates the
observations in Ref. [52].

Additionally, given the Auger lifetime of 2.6 fs for the 4d0 hole, we restrict our anal-
ysis to the attosecond photoionization timescale and constrain the pulse duration to a
few hundred attoseconds. Note that the lifetime of the 4d0 nor final f− stated were
not considered in Ref. [52]. Furthermore, by restricting ourselves to maximal field peak
amplitudes up to 52 GV m−1, for which the probability for multiple ionization remains
small, the validity of the calculations in the context of the TDCIS, is ensured. From a
practical prospective, such upper bound for the peak amplitude avoid the final ground
state depletion to be outside the 0.2 and 0.3 range . The former bound ensures reasonably
high ionization probabilities for the purpose of experimental detection of photoelectron
yield, while the latter warranties ionization of predominantly one single electron.

Finally, in a view of practical applications in the context of time-dependent spec-
troscopy, we also optionally allow for a constraint in the optimization procedure prescrib-
ing a specific hole population ratio, R = ρIDM

5s,5s/ρ
IDM
4d0,4d0 , such that a superposition with

significant contributions from both states is obtained.
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Figure 9.15: Suppression of hole decoherence in Xenon: (a) Electric field of the guess
pulse (green dashed) and two optimized pulses, obtained with (blue dotted) and without
(red solid) a hole-population ratio constraint of R = 1. (b) Corresponding spectra, and
(c) spectral phases with the same color coding. The gray-dotted lines in panel (b) denote
the binding energies of the three outermost shells.

To scrutinize the enhancement mechanism, we choose a arbitrary guess field such that
it leads to a very low degree of coherence and compare to that resulting from the optimized
field. Guess and optimized fields are shown in Fig. 9.15(a). Besides the guess field (solid
green), two optimized fields are shown, corresponding to the optimization with (dotted
blue) and without (solid red) hole population ratio. As observed in Fig. 9.15(b), all three
spectra spans the binding energies of the xenon 4d, 5s and 5p orbitals. Because of the
red shifting, the optimized guess produce slower photoelectrons from ionization of the
valence shells than the guess pulse, which is in striking contradiction, to the enhancement
mechanisms found for xenon in Ref. [52], namely of reducing the interaction time between
the liberated photoelectron and the photoion by increasing the photoelectron’s kinetic
energy found in Ref [52], that would result in a blue shift of the optimized pulses, with
respect to the guess pulse, instead.

Figure 9.15(c) depicts the spectral phases for all three pulses. While the guess pulse
exhibits a linear chirps in the relevant spectral region, non-linear cubic and quadratic
chirps characterize the optimized unconstrained and constrained fields, respectively, in-
dicating that besides the power spectrum, interference play a critical role for achieving
the control. The presence of non-linear chirp can be straightforwardly understood since it
allow to manipulate the shape, by broadening or focusing wave packets [210], controlling
the wave packet’s energy distribution, leading to a controlled evolution of the different
energy components.
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The optimized hole population as well as the degree of coherence as a function of
time are shown in Fig. 9.16(b), panels (a) and (b), respectively. As opposite to the
hole dynamics driven by the guess pulse, ionization of the 5s and 5d orbital is increased
and decreased, respectively, for the optimized pulses. While the guess pulse result in
almost no coherence for the 5s and 4d0 holes, the unconstrained field prepares the hole in
such a superposition that long after the pulse is over, the degree of coherence reaches a
asymptotic value of 0.85. This, however, comes at the expense of a relatively small hole
population in the 4d orbital, which allows to suppress the unavoidable loss of population
induced by the Auger decay. To support this, the same optimization are performed
without accounting for the Auger decay, resulting, an almost perfect DOC, g4d0,5s ≈ 1,
instead of 0.85. The Auger decay also explains the DOC ≈ 0.5 obtained in the constrained
case, cf. Fig.9.16(b), blue lines. In fact, the increasing 4d0 hole population implies a larger
impact of the Auger refilling, such that it only reaches a DOC of 0.5, in comparison to
≈ 0.82 when the lifetime of the 5d0 is manually switched off. To understand the impact of
the electronic correlation on the coherence, we compare the results within the inter- and
intra-channel approximations. While ignoring electronic correlation leads to unchanged
holes once created, accounting for correlation arising from all orbitals (inter-channel)
result in holes that can be changed through channel interaction, and in particular via
atomic resonances that can potentially be driven by the ionizing field. This implies that
the entanglement between the ejected photoelectron and the hole in the ion is created only
by the electronic correlation in the full correlated scenario. Surprisingly, the optimization
succeed in reproducing a significantly enhanced DOC in both scenarios. This can be
explained upon analysis of the mechanism by which the optimized pulse achieve such
enhancement. In fact, avoiding photon energies between 75− 140 eV.,the influence of the
many-body interaction is diminished, since the latter range correspond to the region of the
giant dipole resonance, which is known to be caused by electronic correlations. Therefore,
for both correlated and uncorrelated scenarios, the optimization is able to find the proper
pathway that lead to a very high DOC, when no hole-population ratio is constrained.

To rationalize the physical mechanism induced by the optimized to strongly sup-
press decoherence, which is the main purpose if the work, Fig. 9.17 compares the angle-
integrated partial photoelectron spectra (PES) for the 4d0 and 5s. The guess field drives
the dynamics in such a way such that the contribution of the 4d0 orbital dominates the
yield, with respect to the contribution arising from the 5s. While the 5s contributes to
continuum wavefunction with angular momentum l = 0, the 4d0 contribution to l = 1 for
low energies, and l = 3 for high energies. Furthermore, the contribution to l = 3 of the 4d0

exceeds that to l = 1. In opposition, for the unconstrained pulse reaching g5d,4d0 ≈ 0.85,
photoelectron energies in the range 5 − 40 eV originating mainly from the 4d0 are sup-
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Figure 9.16: Suppression of hole decoherence in Xenon: (a) Hole populations of the
4d0 (solid curves) and 5s (dashed curves) orbitals resulting from the guess pulse (green
curves) and the optimized pulses with (blue curves) and without (red curves) constraining
the hole populations to be equal. The hole populations obtained with the constraintR = 1
are scaled down by a factor of five. Note that all pulses are over at 100 as, cf. Fig. 9.15.
(b) DOC as a function of time. While the guess pulse results in an almost vanishing DOC,
a maximum DOC of 0.85 is achieved without hole-population ratio constraint. Including
the constraint R = 1 leads to a DOC of ∼ 0.5 which is limited by the Auger decay of the
4d0 orbital (g4d0,5s ≈ 0.82 is obtained in this case when neglecting the Auger decay).

pressed. As alluded to the above lines, the optimized pulse tends to avoid the impact of
the many-body correlations in the rage of the giant dipole resonance. As a consequence,
photoelectrons with lower kinetic energy are liberated and the main photoelectron peaks
of both 4d0 and 5s are red shifted to the 0.1− 0.5 eV range instead.

Additionally, while the low kinetic energy are dominated by contributions from 4d0

and 5s hole states to l = 1, the contribution from 4d0 to l = 3 dominates the higher
portion of the photoelectron spectrum, albeit l = 1 contribute the most to the total
yield. Inspection of the field’s spectrum in Fig. 9.15(b) (full red lines), indicates that, as
a consequence of the red-shifting spectrum, the probability of one-photon ionization from
the 4d0 is not very probable. Such a shift leads to a peak position around Ω = 20 − 40
eV, below the 4d0 binding energy. Alternatively, three-photon ionization induced by high
intensity field at the photon energy ω ≈ 23 ∈ Ω eV with from the 4d0 to continuum states
with angular momentum l = 1 would result in a photoelectron with angular momentum
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Figure 9.17: Suppression of hole decoherence in Xenon: Partial angle-integrated
PES for the guess pulse and the optimized pulses (cf. Fig. 9.15). For the guess pulse
ionization of 4d0 electrons dominates, the contribution of a final l = 3 continuum state is
significant. 5s ionization is less probable. The optimized pulse without hole-population
ratio constraint enhances the 5s ionization and leads to very similar shapes of the partial
spectra of both 4d0 and 5s photoelectrons over the whole energy range. The pulse increases
the ionization of 4d0 electrons into a final state with l = 1 compared to l = 3 exploiting
three-photon ionization, such that a more coherent superposition of the ionic hole in 4d0

and 5s hole states is generated. The constraint R = 1 leads to higher total ionization and
enhanced 4d0 spectra by generating more one-photon ionized electrons, but the shapes of
the 4d0 and 5s spectra coincide less.

l = 1 at ωe−(5s) = 0.5 eV, which is corroborated upon inspection of the partial yield
spectrum, cf. Fig. 9.17,(doted blue lines). Furthermore, consulting the unconstrained
field’s spectrum suggests that, single photon-ionization of the 5s is highly probable. Such
a mechanism would originate a photoelectron with the same angular momentum l = 1
at the same photoelectron energy, namele ω = 0.5 eV, which is again corroborated by
Fig. 9.17, (dotted red lines).

A common feature observed in the calculations is that for the unconstrained case, the
5s hole population is larger than that of the 540, e.g. Fig. 9.16. In order to fulfill the
constraint R = 1, while simultaneously fulfilling the constraints on the total ionization
of the ground state as mentioned before, a conceivable scenario consists in increasing the
ionization of the 4d0 orbital, which would require higher electric field strength as well
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Figure 9.18: Suppression of hole
decoherence in xenon: Schematic
representation (not drawn to scale)
of the physical mechanism for hole-
decoherence suppression in Xenon –
single photon ionization of the 5s or-
bital together with three-photon ion-
ization of the 4d0 promoting the 5s
and 4d0 electrons into the same fi-
nal electronic continuum state with
same angular momentum ` = 2 at
the same relatively low photoelec-
tron energy.

as a blue shift of the photon energy distribution, which would significantly increase the
photoelectron population with angular momentum l = 1 and l = 3. This is indeed what
is observed in Figs. 9.15 and 9.16– the electric field strength is significantly increased and
blue-shifted, and the p and f photoelectron population have increased by two orders of
magnitude, cf. 9.17(c) as compared to the results obtained with the unconstrained case.
However, due to the blue shifting towards the 4d0 binding energy, two mechanisms partic-
ularly detrimental to the coherence occur: (i) the optimized field also drives one-photon
excitation from the bound 4d0 to the continuum l = 3, therefore promoting photoelectrons
to the wrong l = 3 final state, and (ii), the photoelectron’s kinetic energy distribution
is also blue-shifted toward the giant dipole resonance range Fig. 9.15(b), which leads to
entanglement caused by many-body correlations, and thus lowering the DOC as compared
to the unconstrained scenario. Therefore, by virtue of the observations given in the above
lines, we are in a position to conclude that the physical mechanism for strong hole de-
coherence suppression is accomplished by appropriate combination on predominant single
photon ionization of the 5s orbital together with three-photon ionization of the 4d0 at rel-
atively low photoelectron energies thus promoting the 5s and 4d0 electrons into the same
final electronic continuum state with same angular momentum at the same relatively low
photoelectron energy, which is required to avoid the impact of many-body correlation in
the range of the giant dipole resonance. Simultaneously, one-photon ionization to contin-
uum states with l = 3 is strongly suppressed therefore promoting the photoelectron to the
same final continuum state. The physical mechanism for suppression of hole decoherence
in xenon is depicted in Fig. 9.18– both 5s and 4d0 electrons are promoted to the same
final electronic continuum state via single- and multi-photon ionization, respectively. De-
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spite the fact that the freed photoelectron still interacts with the ionic parent during the
irradiation process, which unavoidable leads to decoherence, the appropriate non-linear
chirps introduced by the optimization algorithm allows for preparing a significant part of
the final state in a superposition of the 5s and 4d0 hole states which enhance coherence
between both hole states. Making use of the SPa technique and intentionally restricting
the spectrum of the eventual optimized pules, we have thus discovered a novel control
mechanism that exploits simultaneous single- and multi-photon ionization to noticeably
enhance the degree of coherence between the 5s and 4d0 hole states in xenon at low pho-
toelectron kinetic energy, is contrast to the result of Ref. [52] where the mean photon
energy had to be increased.

9.6 Summary of achievements and conclusions

To summarize, we have introduced a sequential update of the pulse parametrization to
ease implementation of gradient-free parameter optimization in quantum control. The
versatility of this technique, and its efficiency compared to the standard optimization
techniques without sequential update allowed us to maximize the coherence of hole state
superpositions in the photoionization of argon while significantly decreasing the numerical
effort. A sequential update of the pulse parametrization, which adds more terms to the
parametrization once the optimization gets stuck, allows for faster convergence and better
final results. Such a sequential update can be combined with any method for parameter
optimization, and we have tested it here for the principal axis method and the Nelder Mead
downhill simplex approach. The principal axis method which so far has not been employed
in quantum control turns out to be clearly more efficient than the widely used Nelder Mead
approach. Thus, the principal axis method, in particular when combined with a sequential
parametrization update, represents an efficient and viable tool for quantum control.

Admittedly, parameter optimization comes with the disadvantage of depending, some-
times critically, on the chosen parametrization. This is outweighted in our case by the ease
of implementation, even for a non-Hermitian Hamiltonian. The latter is due to the fact
that the long propagation times for photoionization require the use of a complex absorb-
ing potential. For comparison, the alternative approach of gradient-based optimization
always involves backward-in-time propagation of Lagrange multiplier wave functions, and
the CAP becomes, in the adjoint equation, a source term which can easily give rise to
numerical instability.

The technique introduced here can be further improved by scanning key parameters
prior to optimization. The numerical effort required for the scan is more than paid off by
the reduction in the number of iterations. It also allows for an identification of possible
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control mechanisms. In our example, determination of the photon energy turned out to be
the most important step. Two favorable energies were identified that correspond to two
different scenarios—three-photon ionization of the 3s orbital simultaneously with two-
photon ionization of the 3p0 orbital for pulses with sufficiently large spectral bandwidth
to render the photoelectrons energetically indistinguishable and one-photon ionization of
the 3p0 orbital combined with transitions between 3s and 3p0.

In argon, when only the hole coherence is optimized, without any restriction on the
hole population, the population of the 3p0 hole is found to exceed that of the 3s hole by two
orders of magnitude or more. We have therefore extended the optimization functional to
include a term that prescribes the population ratio. An equal or similar population of both
hole states would be required when using the hole state superposition in time-dependent
spectroscopy studies. SPA-optimization has addressed also this more challenging control
task very successfully, yielding hole coherences close to one for exactly the population
ratio desired, no matter whether the population of the 3s hole should exceed that of the
3p0 or vice versa or whether the populations should be equal. The resulting pulse shapes
were found to be fairly simple, with their spectra indicating the second control scenario
to be at work.

In all optimizations for hole creation in argon, channel coupling was found not to
play any role. This is in contrast to photoionization in xenon where channel coupling is
expected to be the main source of decoherence [52]. It may explain why, for argon, hole
coherences very close to the absolute maximum can be achieved. Of course, this raises
the question as to what the maximum hole coherence is in a case where channel coupling
is known to be important.

The SPa-optimization formalism developed in the present work was found to be an
versatile tool and a perfect candidate to address this question. Therefore, it has been ap-
plied to the suppression of hole decoherence in xenon. In order to explore new mechanisms
for the suppression of hole decoherence, we have restricted the frequency components of
the optimized pulse and limit the photon energies to avoid the “trivial” solution of reduc-
ing the interaction time between photoelectron and ionic hole by increasing the photon
energy [52]. that can be accomplished by increasing the photon energies.

The optimization results along with the inspection of the resulting photoelectron spec-
trum allowed us to find that the physical mechanism leading to a high DOC is the pre-
dominant ionization of 4d0 and 5s electrons into the same final electronic continuum state
with p-character at low photoelectron energies. This is accomplished by optimized pulses
which enable and appropriately combine one- and three-photon ionization, such that the
ionization of a 4d electron into f -states is strongly suppressed since this process leads
to decoherence. Despite the fact that the optimized pulses produce predominantly slow
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photoelectrons which leave the parent ion at low velocity, the DOC can be effectively
increased. During the ionization process the freed electron can still interact with the ionic
system which always leads to decoherence. Nevertheless, introducing appropriate chirps
the pulse is capable of preparing a significant part of the final state in a superposition
of the 4d0 and 5s hole states which enhances the coherence. We have thus discovered a
control mechanism which exploits multiphoton ionization and leads to a noticeable en-
hancement of the DOC at low photoelectron kinetic energies, in contrast to the results
of Ref. [52] where the high mean photon energies are critical to ensure short interaction
times between the freed electrons and ionic core.

Using xenon as paradigm atom with many ionization channels, we have demonstrated
that the challenge of preparing coherent superpositions can be met by optimized pulses
which interfere single- and multiphoton ionization pathways in the attosecond photoion-
ization process. Therefore ionization occurs at comparatively low photon energies and
into the same partial waves of the final photoelectron state which dramatically increases
the coherence in the final ionic state. Since the optimized pulses are of reasonable inten-
sity and shape and Auger decay was taken into account in the calculations, a comparison
of our results with experimental coherence measurements seems feasible, e.g., by probing
the ionic hole state in a similar fashion as in Ref. [243] on an attosecond timescale.

The multiphoton mechanism found in the present work can be generalized to other
complex systems and the conclusions drawn for xenon may be applied to other materials.
The availability of ultrashort pulses in combination with pulse shapers and the resulting
amazing controllability in the generation of light pulses regarding their amplitude, band-
width, phase and polarization have enabled substantial progress in experiments, see, e.g.,
Ref. [210]. In view of the discussed coherent wave packet preparation, the development
of such technologies is of particular interest for various applications in chemistry and
materials science since they will enable the utilization of specific coherence properties of
atoms and molecules. Using modern attosecond light sources, see, e.g., Ref. [260], which
might soon advance to generate tailored light pulses similar to the optimized pulses found
in this work, the presented paradigm could be tested experimentally and coherent states
could be produced and controlled in the laboratory.
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10.1 Fingerprints of Chirality: Context and Motivation

The term “chiral”, derived from the Greek χεlρ, “hand” was first introduced by Lord
Kelvin in 1893 to refer an object that is distinguishable from its own mirror image[261].
A chiral molecule refers to a molecule that cannot be superimposed with its mirror im-
age by pure translation and rotation operations. The term enantiomer, from the Greek
enantiomorph, “opposite forms”, designates the left and right mirror images of the chi-
ral molecule. In the context of nowadays available technology, enantiomers of a chiral
molecule can be distinguished, for instance, by their interaction with left- or right-handed
circularly polarized photons, defining the polarization of the electromagnetic field.

Another important terminology, that reflects the interaction of chiral molecules with
light, is circular dichroism (CD), and it is intrinsically related to chiral activity. In fact,
the term CD refers to the differential absorption of left and right circularly polarized light
by different enantiomers, and when such difference in absorption exist, it is said that the
molecule presents a chiral activity.

Although chiral activity can be measured by direct absorption, in practice, however,
experimental conditions usually involves low optical densities, and therefore such mea-
surements are experimentally challenging to perform. Consequently, the necessity of an
equivalent method for measuring chiral activity in gas phase, less challenging from a
practical perspective, becomes unavoidable.

An alternative approach is based on photoelectron spectroscopy in gas phase. It con-
sist of gas phase photoionization with subsequent measurement of photoionization-related
quantities. Within this alternative approach, intense short laser pulses for the ionization,
which easily drive multi-photon transitions, allow to observe effects in table-top exper-
iments that otherwise would require synchrotron radiation. In such experiments, the
normalized difference in the ion yield of the photoelectron circular dichroism (PECD)
is measured. The latter defines the laboratory-frame forward/backward asymmetry of
photoelectron emission with respect to the propagation axis of the beam that ionizes
a randomly oriented ensemble of chiral molecules [262]. Historically, PECD effect was
demonstrated experimentally in the framework of one-photon [263] and resonantly en-
hanced multi-photon ionization (REMPI) [264–267].

A recent example that motivated the present theoretical work is the photoelectron
circular dichroism (PECD) of chiral molecules [264, 265, 267–269]. It refers to the
forward/backward asymmetry with respect to the light propagation axis in the photo-
electron angular distribution (PAD) obtained after excitation with circularly polarized
light [263, 270–272]. When the resulting PAD is expanded in Legendre polynomials, the
PECD is characterized by the expansion coefficients of the odd-order polynomials with the
highest order polynomial being determined by the order of the process, i.e., the number
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of absorbed photons [270, 273].

A theoretical description of such experiments with intense femtosecond laser pulses
requires proper account of the multi-photon excitation pathways. In this context, a first
pioneering model accounting for simultaneous absorption of two photons including the
corresponding modified molecular selection rules was formulated by McClain and co-
workers in the earlies seventies [274–276] and a theory of two-photon circular dichroism
was developed in a independent work in Ref. [277], where the effect were attributed to a
difference in the absorption coefficient for the two left and two right polarized photons.
Both approaches are based on a perturbation expansion of the light-matter interaction,
which requires relatively low intensity fields. A complementary alternative description is
provided by the so-called strong-field approximation, which is particularly suited for very
intense fields [278, 279].

Generally speaking, multi-photon transitions driven by strong femtosecond laser pulses
may or may not involve intermediate states. In recent experiments with bicyclic ke-
tones [264, 265, 267–269], a 2+1-REMPI process was employed for the measurement of
PECD in chiral molecules. The nature of the intermediate state, populated prior to ioniza-
tion, as well as the fingerprints of the latter in the PECD, remains yet to be elucidated.
In particular, randomly oriented molecules of fenchone and camphor molecules in gas
phase served as a prototype for the measurement the photoelectron angular distributions
and photoelectron circular dichroism resulting from ionization with circularly polarized
femtosecond laser pulses in Ref. [264, 265], .

From a theoretical point of view, the validity of a physical model is irrevocably sen-
tenced by its capability of reproducing experimental results. In a attempt to model the
photoionzation process and reproduce the experimental observations referenced in the
above lines , a first theoretical study, based on the so-called strong-field approximation,
was proposed in Ref. [280]. While the standard strong-field approximation using a purely
plane wave basis for the photoelectron fails to describe any chiral activity, i.e. no differ-
ence in PAD for circularly right and left polarized fields, it was found that accounting for
the Coulomb interaction between photoelectron and photoion within the Born approxi-
mation allowed for observation of PECD. However, the resulting Legendre coefficients, as
well as overall PECD obtained from the calculated angular distribution of photoelectrons
did not agree with the experimental ones. When analyzing the theoretical treatment in
Ref. [280], it becomes obvious that the discrepancy between theory and experiment may
be explained, to a large extent, by the role of the intermediate excited state in the REMPI
process which is unavoidable ignored in the strong-field approximation [280].

Motivated by the dichotomy between the experimental [264] and theoretical [280] re-
sults, we construct and propose an alternative and novel approach based on perturbation
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theory treatment of the multi-photon process. For a fair comparison with experiment,
our model is constructed exclusively for a 2 + 1 REMPI process, therefore taking into
account the geometrical properties of the resonant intermediate excited state. Within our
model, ionization is viewed as a (weak) one-photon transition into the continuum spec-
trum, from the ’initial’ state, which is prepared by non-resonant two-photon absorption.
Justification of such a perturbative approach is based on the moderate intensities, of the
order of 1012 W/cm2, used in the experiments [264, 265, 267–269]. Although clearly in the
multi-photon regime, such intensities can be described comparatively well by low order
perturbation theory [249, 281, 282].

It is well established that the non-resonant two-photon preparation step yields an
important difference compared to pure one-photon excitation [270]. In the latter case,
the first order Legendre polynomial alone accounts for the PECD [283–285]. This re-
sults from the random orientation of the molecules, or, in more technical terms, from
integrating the differential cross section over the Euler angles. In contrast, non-resonant
two-photon excitation may lead to an orientation-dependent probability distribution of
the molecules in the resonant intermediate state [267, 286]. In this case, the maximum
order of Legendre polynomials contributing to the PAD is not limited to 2, but 6 for a
2+1 process. Whether the two-photon absorption is orientation-dependent is determined
by the two-photon transition matrix elements. In order to compare our theoretical re-
sults with the experimental counterparts, the two-photon transition matrix elements are
calculated using state of the art ab initio methods.

As a rule of thumb, modeling the complete photoionzation process for molecules as
complex of camphor and fenchone from first principles is extremely challenging, even when
using the most advanced ab initio methods. We therefore split the theoretical description
into two parts.

First, as long as all electrons remain bound, state of the art quantum chemical ap-
proaches, for example the coupled cluster methods, can be used to accurately determine
the electronic wave functions. However, once an electron starts to leave the ionic core, the
standard basis sets of electronic structure theory are not well adapted. An alternative is
offered by a single-center expansion into eigenfunctions of a hydrogen-like atom for which
both bound and continuum functions are known analytically. The hydrogenic continuum
functions properly account for the long-range Coulomb interaction between ionic core and
ejected electron but neglect the effect of short-range correlations in the ionization step.
Second, the basis functions for the single center expansion are chosen such as to yield
the simplest possible model that is able to reproduce the laboratory-frame photoelectron
angular distributions (LF-PADs) resulting from a 2+1-REMPI process in randomly ori-
ented chiral molecules. The two descriptions are matched at the resonant, electronically
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excited intermediate state by projecting the numerically calculated wavefunction onto the
basis functions of the single center expansion.

To conclude, our approach of calculating the PAD as a one-photon absorption cross
section for an effective “initial” state in a single center expansion, while neglecting dynam-
ical effects, provides a simple, yet rather general model for PECD in randomly oriented
chiral molecules after 2+1 REMPI. It allows us to analyze, beyond the examples of fen-
chone or camphore and independent of details specific to those molecules, the role of the
laser polarization for each step in the 2+1 ionization process and the conditions on the
two-photon absorption matrix elements for yielding PECD.

10.2 Derivation of the theoretical model

In an attempt to reproduce the experimental observations [264, 265, 267–269], we con-
struct a first principles-based model, in which we explicitly model the resonantly enhanced
multi-photon photoionization as a 2+1 process [286]. Specifically, we assume the last pho-
ton to constitute a weak probe of the molecular state that is prepared by non-resonant
two-photon absorption. Justified by the orders of magnitude stated in the above lines,
the strict electric dipole approximation is employed. Therefore, contributions from mag-
netic dipole terms, which are important for circular polarization dependent differences in
absorption cross sections, as well as higher order electric and magnetic multipole terms
are neglected.

In order to derived the PAD in the laboratory frame of reference, two coordinates
systems, namely the molecular frame of reference R and the laboratory frame R′, are
defined. Respectively, ε′%2 denotes the polarization of the laser field with respect to the
laboratory frame (where we distinguish the polarization of the ionizing photon, ε′%2 from
that of the first two photons, ε′%1). In order to easily extract symmetry information from
the Wigner symbols latter in the derivations, we work in the spherical basis. Thus, ε′%2

and ε′%1 refer to the spherical unit vectors in the laboratory frame, with %1,2 = ±1, 0
denoting left/right circular and linear polarization of the laser beam which propagates in
the positive z′ direction (the relation between the spherical and Cartesian unit vectors
is found in Eq. (C.7)). Primed (unprimed) coordinates refer the laboratory (molecular)
frame of reference throughout. Both frames, R′ and R, are related by an arbitrary
coordinate rotation D(αβγ), where ω = (α, β, γ) denote the Euler angles defining the
orientation of R with respect to R′.

Consider a one-photon (1P) transition in a molecule whose orientation with respect
to R′ is given by the Euler angles ω. The corresponding differential photoionization cross
section, when measured in the molecular frame R, reads, within perturbation theory and
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the electric dipole approximation and in SI units [287],

d2σ1P

dω dΩk
= c0

∣∣∣〈Ψk|ε′%2 · r|Ψo〉
∣∣∣
2
, (10.1)

where c0 = 4π2α~ωph with α being the fine-structure constant, ~ωph the energy of the
ionizing photon, ~ the reduced Planck constant and r the position operator of the electron
(or a sum of the various position operators in the multi-electron case). The polarization
of the electric field in the laboratory frame of reference is specified by ε′%2 , where %2

takes the value 0 for linear and +1(−1) for left (right) circular polarization, respectively.
|Ψk〉 denotes an energy normalized molecular state with one electron transfered to the
ionization continuum with asymptotic electron linear momentum k. |Ψo〉 is the (bound,
unity normalized) molecular state prepared by the non-resonant two-photon absorption,
which is defined in the molecular frame of reference. In Eq. (10.1), the standard notation
for doubly differential cross sections in the molecular frame of reference [285, 288, 289] that
depend not only on the solid angle Ωk but also on the orientation of the molecule via the
Euler angles ω, is employed. A single-center approximation [290] is employed. This allows
to calculate the matrix elements in Eq. (10.1) explicitly. In other terms, we project the
multi-electron wave function obtained from ab initio calculations, |Ψo〉, on one-electron
basis functions and neglect electron correlations in the continuum description.

10.2.1 Single center expansion

The “initial” state for the one-photon ionization is a multi-electron wavefunction which is
usually expanded in specially adapted basis functions developed in quantum chemistry. In
contrast, the single center expansion is based on the fact that any molecular wavefunction
can be written as a linear combination of functions about a single arbitrary point [290].
Of course, such an ansatz will converge very slowly, if the multi-center character of the
wavefunction is important. Writing the wavefunction of the electronically excited state of
the neutral molecule, that is prepared by the two-photon absorption process, as 〈r|Ψo〉 =
Ψo(r), we expand it into eigenfunctions of a hydrogen-like atom,

Ψo(r) =
∞∑

no=0

no−1∑

`o=0

`o∑

mo=−`o
a`omo

(no)Rno
`o

(r)Y `o
mo

(Ωr) . (10.2)

Here, a`omo
(no) stands for the unknown expansion coefficients, Rno

`o
(r) denotes the radial

eigenfunctions of the hydrogen-like atom, and Y `o
mo

(Ωr) are the ordinary spherical har-
monics. Ωr = (ϑr, φr) refers to the polar and azimuthal angles of the position vector r
in the molecular frame of reference. Note that all information about the geometry and
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the symmetry properties of the “initial” electronically excited state is contained in the
expansion coefficients a`omo

(no). The number of basis functions must be truncated in any
actual calculation, i.e.,

Ψo(r) ≈
nmax

o∑

no=nmin
o

no−1∑

`o=0

`o∑

mo=−`o
a`omo

(no)Rno
`o

(r)Y `o
mo

(Ωr) . (10.3)

Strictly speaking, all molecular orbitals that are involved in Slater determinants de-
scribing the excited state should be subject to the single center expansion. In the present
model, we employ an effective one-electron picture by expanding only one representative
virtual orbital around the single center, namely the one that is additionally occupied in
the supposedly leading configuration for the respective excited state.

We will also ask what the simplest possible model is that gives rise to PECD. In this
case, we assume a single quantum number n, n = no, to contribute to Eq. (10.2), i.e.,

Ψs
o(r) ≈

Lo,max∑

`o=0

`o∑

mo=−`o
a`omo

Rno
`o

(r)Y `o
mo

(Ωr) , (10.4)

where Lo,max refers to the highest angular momentum state appearing in the “initial”
wavefunction. It follows from basic symmetry arguments that the minimal value of Lo,max

for which a PECD can be expected is Lo,max = 2, that is, at least d-orbitals are required.

We model the photoionization as a one-electron process arising from a hydrogenic-like
system exclusively, which allows for neglecting the bound molecular part (the remaining
molecular parent ion) in |Ψk〉. Thus, the resulting continuum wave functions, Ψk(r),
are expanded into partial waves in a way that allows for an explicit expression of the
photoionization cross section in terms of the scattering solid angle Ωk [284, 288, 289, 291],

Ψk(r) = 4π
∞∑

l=0

l∑

m=−l
i`φk,`,m(r)Y ∗ `m (Ωk)Y `

m(Ωr) . (10.5)

Here, Y `
m(Ωr) and Y `

m(Ωk) correspond to the spherical harmonics describing the orientation
of the photoelectron position and momentum, respectively, and φk,`,m(r) is the radial
part of the photoelectron wavefunction. For simplicity, we use here and in the following
Y ∗ `m (Ωk) as an abbreviation for (Y `

m(Ωk))∗. Modeling photoionization as a one-electron
process, we can approximate

φk,`,m(r) ≈ e−iδ`Gk,`(r) , (10.6)

where Gk,`(r) are the well-known radial continuum wavefunctions of the hydrogen atom,
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recalled in Appendix C.1.1, and δ` stands for the Coulomb phase shift of the `−th scattered
partial wave, with δ` = Γ(`+ 1− i/k) [285, 289, 291]. Note that we expect the phase shift
for molecules to depend on `o and mo since the molecular potential of chiral molecules is
not spherically symmetric. Neglecting the mo-dependence of the phase shift involves no
approximation when using Eq. (10.2) since the hydrogen eigenfunctions form a complete
orthonormal basis. However, this is not true anymore when truncating the basis, cf.
Eq. (10.3). Our ansatz thus involves an additional approximation, namely Eq. (10.6).

By construction, Eq. (10.6) yields orthogonality between bound and unbound wave-
functions which is required to avoid spurious singularities [288] and reproduce the correct
threshold behavior of the photoioization cross-sections [292]. With the approximation
of Eq. (10.6), we account for the long-range Coulomb interaction between photoelectron
and a point charge representing the ionic core but neglect the short-range static exchange.
Also, dynamic changes in the electron distribution, such as adjustments of the electronic
cloud due to nuclear motion, as well as the interaction of the outgoing photoelectron with
the driving electric field upon photoionization are neglected.

Inserting Eq. (10.6) into Eq. (10.5) yields

Ψk(r) = 4π
∞∑

l=0

l∑

m=−l
i`e−iδ`Gk,`(r)Y ∗ `m (Ωk)Y `

m(Ωr) , (10.7)

and we can evaluate the matrix element in Eq. (10.1).

10.2.2 Photoelectron Angular Distributions

Because the wavefunctions are given in the molecular frame of reference, we need to rotate
the spherical unit vector ε′%2 in Eq. (10.1) into that frame [285]. Expanding the rotation
operator D(αβγ) connecting r and r′ into irreducible rank 1 tensor representations, cf.
Appendix C.1.3, Eq. (10.1) becomes

d2σ1P

dωdΩk
= c0

1∑

q=−1

1∑

q′=−1
(−1)q′−%2 D(1)

q,%2(ω)D(1)
−q′,−%2

(ω)〈Ψk|rq|Ψo〉〈Ψk|rq′ |Ψo〉∗ . (10.8)

Inserting Eqs. (10.4) and (10.7) to evaluate the overlap integrals yields

d2σ1P

dω dΩk
= c0

∑

`,m
no`o,mo

∑

`′,m′

n′o,`
′
o,m
′
o

1∑

q=−1

1∑

q′=−1
(−i)`−`′ei(δ`−δ`′ )S`,m`o,mo

(q)S∗`′,m′`′o,m
′
o

(q′)

×a`omo
(no) a∗`

′
o

m′o
(n′o)Ino

k
(`, `o)In

′
o

k
(`′, `′o)Y `

m(Ωk)Y ∗`′m′ (Ωk)D(1)
q,%2(ω)D∗(1)

q′,%2
(ω)

(10.9)
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In Eq. (10.9), we have introduced radial and angular integrals Ik(`, `o) and S`,m`o,mo
(q), given

by

Ino
k (`, `o) = Io

∫ +∞

0
r3Gk,`(r)Rno

`o
(r) dr (10.10a)

for a fixed no in Eq. (10.2) with Io = 4π/3, and

S`,m`o,mo
(q) =

∫
Y ` ∗
m (Ωr)Y 1

q (Ωr)Y `o
mo

(Ωr) dΩr (10.10b)

= (−1)−m b`,`o



` 1 `o

0 0 0







` 1 `o

−m q mo




(10.10c)

with

b`,`o =
√

3 (2`+ 1)(2`o + 1)/4π

and using Wigner 3j symbols [143–146]. The angular integral S`,m`o,mo
(q) determines, for

each spherical unit vector q = 0,±1, the selection rules between the angular compo-
nents of the bound excited electronic state with quantum numbers `o, mo and the partial
wave components of the continuum wavefunction with quantum numbers `, m. Equa-
tion (10.10b) implies that transitions are allowed if and only if ` + 1 + `o is even and
mo + q−m = 0 for all |`o− 1| ≤ ` ≤ `o + 1. This is a special case of the more general rule
for multipole transitions derived in Ref. [273]. The angular integrals can be evaluated
analytically using the standard angular momentum algebra, whereas the radial integrals
in Eq. (10.10a) are computed numerically.

The choice of basis to describe the radial part of the continuum wavefunction deter-
mines the weight with which each excited state expansion coefficient a`omo

(no) contributes
to the PAD, cf. Eqs. (10.9) and (10.10a). Thus, choosing for example planes waves, i.e.,
the eigenfunctions of the “free” photoelectron, which is described in terms of the Bessel
functions [143, 145, 146], and does not take into account the Coulomb interaction between
the outgoing photoelectron and the remaining ion, would translate into a PAD different
from the one obtained with the hydrogenic continuum wavefunctions of Eq. (10.7) [293].
Whether or not the model is able to reproduce the measured Legendre coefficients will to
some extent depend on the choice of basis for the radial part in Eq. (10.5).

The missing ingredient to determine the differential photoionization cross section,
Eq. (10.1), are the expansion coefficients, a`omo

(no), of the intermediate excited state wave-
function. In the framework of this work, they are determined from ab initio calculations,
cf. Ref. [294].
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Two more steps are then required to connect the differential ionization cross section to
the experimentally measured PAD. First, the PAD is measured in the laboratory frame
and the differential ionization cross section thus needs to be rotated from the molecular
into the laboratory frame. Second, the orientation of the molecule with respect to the
laboratory frame, defined by the polarization axis of the laser electric field, is arbitrary.
We therefore need to average over all possible orientations, i.e., integrate over the Euler
angles ω = (α, β, γ), as we consider a randomly oriented initial ensemble of molecules [270,
271, 295].

Rotating the differential cross section from the molecular into the laboratory frame
requires rotation of the continuum state |Ψk〉 into |Ψk′〉 using the inverse of Eq. (C.4).
This leads to

d2σ1P

dω dΩk′
= c0

∑

`,m
no,`o,mo

∑

`′,m′

n′o,`
′
o,m
′
o

∑

q,q′
(−i)`−`′(−1)m′+q′−%2ei(δ`−δ`′ )

×a`omo
(no) a∗`

′
o

m′o
(n′o)Ino

k
(`, `o) In

′
o

k
(`′, `′o)

×
`+`′∑

L=|`−`′|
(2L+ 1)



` `′ L

0 0 0






` `′ L

m −m′ −(m−m′)


D(1)

q,%2(ω)D(1)
−q′,−%2

(ω)

×
L∑

µ=−L
eiµϕ′kD(L)

m′−m,−µ(ω)P µ
L (cosϑ′k) ς

µ
L(`, `′)S`,m`o,mo

(q)S∗`′,m′`′o,m
′
o

(q′) , (10.11)

where ςµL(`, `′) is defined in Eq. (C.15) in Appendix C.2.1. P µ
L (cosϑ′k) denotes the associate

Legendre polynomials. A detailed derivation of Eq. (10.11) is found in Appendix C.2.1.
Equation (10.11) provides the explicit expression for the differential photoionization cross
section of the 2+1 REMPI process.

10.2.3 Orientation-dependent two-photon absorption

When averaging over all orientations in the second step, we need to account for the fact
that the probability for non-resonant two-photon absorption from the ground state to the
intermediate electronically excited state is, depending on the properties of the two-photon
absorption tensor, not isotropic [286]. The differential ionization cross section in the
laboratory frame therefore needs to be weighted by the probability of the electronically
excited state to be occupied after absorption of the first two (identical) photons. In
fact, since every molecule possesses a given (different) orientation ω, the projection of the
electric field polarization direction onto each molecular frame ω may differ. Consequently,
the strength of the dipole interaction between the molecule and driving field depends on
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the orientation of the molecule with respect to the electric field polarization. Therefore,
the probability of two-photon transition is orientation-dependent and should be taken
into account when calculating the probability of ionization from the excited state.

The orientation-dependent probability to reach the intermediate excited state, ρ2P (ω),
is obtained from the transition probability for two-photon absorption from the ground
state |Ψg〉 to the intermediate electronically excited state |Ψo〉 [286]. The latter in general
is defined as [296]

A(2)
o,g = Ñ0(ωph) |M|2 , (10.12a)

where M, in the strict electric dipole approximation, exp(ik · r) ≈ 1, reads

M =
∑

n

{
(e1 · 〈Ψo|r|Ψn〉)(〈Ψn|r|Ψg〉 · e2)

~ωg − ~ωn + ~ωph,2
(10.12b)

+(e1 · 〈Ψo|r|Ψn〉)(〈Ψn|r|Ψg〉 · e2)
~ωg − ~ωn + ~ωph,1

}
.

In Eq. (10.12b), ej denotes the polarization direction (without specifying a certain frame of
reference) of photon j (j = 1, 2) with energy ~ωph,j. To shorten notation, the polarization
independent quantity Ñ0(ωph) in Eq. (10.12a) contains all prefactors,

Ñ0(ωph) = 2πe4
0

~3c2 (F1 ~ωph,1) I(ωph,2) ,

with e0 being the elementary charge, and where F1 and I(ωph,2) refer to the incident
laser-photon-flux (of type 1) and the energy flux per unity frequency (of type 2), re-
spectively [296]. Evaluation of Eq. (10.12b) requires a frame transformation, since the
wavefunctions involved in the two-photon transition matrices are known in the molecu-
lar frame whereas the polarization directions of the photons are given in the laboratory
frame of reference. As before, transformation of the polarization directions from the lab-
oratory frame to the molecular frame is carried out by means of the Wigner rotation
matrices around the Euler angles ω = (α, β, γ). Consequently, the orientation dependent
two-photon absorption probability is obtained as

ρ2P(ω) =
(

8π2~
3

)2

Ñ0(ωph)
∣∣∣∣∣
∑

q1,q2

D(1)
q1,%1(ω)D(1)

q2,%1(ω)Tq1,q2

∣∣∣∣∣

2

,

(10.13a)

where we have applied the properties of the rotation matrices between both frames, de-
tailed in Appendix C.1.3, to Eq. (10.12b). In Eq. (10.13a), Tq1,q2 denotes the two-photon
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absorption tensor in the molecular frame of reference, whose tensor elements read

Tq1,q2 =
∑

n

〈Ψo|rq1|n〉〈n|rq2|Ψg〉
~ωg − ~ωn + ~ωph,2

+ 〈Ψo|rq2|n〉〈n|rq1 |Ψg〉
~ωg − ~ωn + ~ωph,1

,

(10.13b)

and %1 denotes the polarization direction in the laboratory frame of reference, i.e.,
%1 = ±1, 0, driving the two-photon absorption process, both photons having the same
polarization direction. Additionally, the indexes q1 and q2 take the values ±1, 0. Finally,
rqk

denotes the spherical component of the position operator r̂, with qk = ±1, 0. The
correspondence between the spherical and Cartesian components of rk are detailed in
Eq. (C.7). The correspondences are detailed in Eq. (C.8), in Appendix C.1.3.

A further step consist of normalizing the probability density, such that the normaliza-
tion condition,

∫
ρ2P (ω) dω = 1 (10.14)

is fulfilled. Using the properties of addition of angular momenta, it is straightforward to
find that the normalization factor reads, upon integration of Eq. (10.13a) over the Euler
angles,

Ñ0(%1) = γ̃(ωph)B(%1) (10.15a)

where we have defined,

B(%1) =
∑

q1,q2
q′1,q
′
2

Tq1,q2 T
∗
q′1,q
′
2

2∑

Q=0
(2Q+ 1)




1 1 Q

q′1 q′2 −q′1 − q′2







1 1 Q

%1 %1 −2%1




×




1 1 Q

q1 q2 −q′1 − q′2







1 1 Q

%1 %1 −2%1


 ,

(10.15b)

with γ̃(ωph) ≡ (8π2~/3)2 Ñ0(ωph). To retrieve Eqs. (10.15b), we have made use of the
properties involving the product of two Wigner rotations matrices, as well as the in-
tegration involving a product of three Wigner rotations matrices, and apply them to
Eq. (10.13a). These properties are outlined in Eq. (C.9) and Eq. (C.26), in Appendix C.1.3
and Appendix C.2.3, respectively.



163
10.2 Theoretical description of photoelectron circular dichroism of randomly

oriented chiral molecules

Finally, the orientation dependent probability density reads

ρ2P (ω) = N0(%1)
∣∣∣∣∣
∑

q1,q2

D(1)
q1,%1(ω)D(1)

q2,%1(ω)Tq1,q2

∣∣∣∣∣

2

(10.16)

with N0(%1) = B−1(%1). In order to alleviate notations, and unless otherwise stated, we
write N0 = N0(%1). It is important to note, however, that in practice, computation of N0

is not required, since this factor is common to all Legendre coefficients, and all of them
are given normalized with respect to c0, which is also customary for the presentation of
experimental data [264, 265]. Equations (10.19) and (10.16) provide a prescription for
calculating the partial alignment of molecules in multi-photon ionization. This effect has
been widely discussed in the literature, see e.g. Refs. [267, 283], but without stating an
explicit way for quantifying it.

Each component of the second-rank tensor Tq1,q2 determines a property of the system,
namely, the average transition rate. As a result of that the tensor Tq1,q2 has two types of
symmetry properties. The first one is due to an intrinsic symmetry originated from the
property itself. For instance, Tq1,q2 defines the probability of a absorption of two identical
photons. Since two photons of the same energy and polarization are not the same, Tq1,q2

has to be symmetric. The second type of symmetry comes from the geometric symmetry
of the molecule, and that specifies which of tensor components have to be zero [297, 298].

In the isotropic case, ρ2P(α, β, γ) = 1, and evaluation of Eq. (10.19) is analogous
to integrating over Eq. (10.11), resulting in the standard expressions for the differential
photoionization cross section [268, 283–285, 288, 299]: If the weak probe photon is linearly
polarized (ε′%2 = ε′0), only the Legendre coefficients c0 and c2 can become non-zero, whereas
for circularly polarized light, c0, c1 and c2 can have non-vanishing values. Moreover, the
laboratory frame PAD preserves the cylindrical symmetry with respect to the propagation
direction of the light z′, i.e., µ = %2 − %2 = 0 in Eq. (10.11).

The situation changes dramatically if the probability to populate the intermediate
electronically excited state becomes anisotropic. If this probability depends on the initial
orientation of the molecule, given in terms of the Euler angles ω with respect to the
laboratory frame R′, the Wigner rotation matrices in Eq. (10.13a) couple to those in
Eq. (10.11). Upon integration over the Euler angles in Eq. (10.19), this gives rise to
higher order Legendre polynomials in the PAD, as we show now. In order to evaluate the
angular momentum coupling in Eq. (10.19), we expand the norm squared in Eq. (10.13a).
Making use of the product rule for Wigner rotation matrices, Eq. (10.13a) then becomes

ρ2P(ω) = N0
∑

q1,q2
q3,q4

(−1)q3+q4 Tq1,q2T
∗
q3,q4

4∑

K=0
g(K)
q1,q2,q3,q4D

(K)
s,0 (ω) , (10.17a)
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with s = q1 + q2 − q3 − q4, and where we have defined

g(K)
q1,q2,q3,q4(%1) =

2∑

Q=0

2∑

Q′=0

Q+Q′∑

K=|Q−Q′|
γ

(K)
Q,Q′




1 1 Q

q1 q2 −q1 − q2







1 1 Q

%1 %1 −2%1




×




1 1 Q′

q3 q4 −q3 − q4







1 1 Q′

%1 %1 −2%1




×




Q Q′ K

q1 + q2 −q3 − q4 −s






Q Q′ K

2%1 −2%1 0




(10.17b)

with γ
(K)
Q,Q′ = (2Q + 1)(2Q′ + 1)(2K + 1). In Eq. (10.17a), the orientation dependence

is contained in D, the polarization dependence in g and the dependence on molecular
parameters in T . The derivation of Eqs. (10.17), employing the standard angular mo-
mentum algebra, is rigorously detailed in Appendix C.2.2. We make once more use of the
product rule for two rotation matrices, namely those involving the laser polarization in
Eq. (10.11), cf. Eq. (C.9a) in Appendix C.2.3. Thus, a product of three rotation matrices
is obtained when inserting Eqs. (10.17) and (C.23), into Eq. (10.18).

10.2.4 Orientation-averaged 2+1 REMPI differential cross-section

Having derived the expression for the orientation-dependent probability density, ρ2P(ω),
we are now in a position to define the orientation-averaged differential cross-section for
a 2+1 REMPI photoionization. In fact, as stated earlier, the differential ionization cross
section in the laboratory frame requires averaging over the orientation-dependent prob-
ability of the electronically excited state to be occupied after absorption of the first two
(identical) photons. In this context, the differential cross section for photoemission into
a solid angle dΩk′ around the axis k′ in the laboratory frame, after resonant one-photon
transition from the electronically excited intermediate state, reads

d2σ2+1

dω dΩk′
= ρ2P(ω) d2σ1P

dω dΩk′
, (10.18)

where ρ2P(ω) is the orientation-dependent probability to reach the intermediate excited
state by absorption of two identical photons from the ground state, derived in Sec-
tion 10.2.3. Equation (10.18) assumes a molecule to have, in its electronic ground state,
an initial orientation of ω = (α, β, γ) with respect to the laboratory frame of reference.
Note that Eq. (10.18) makes an additional assumption, namely the relative phase between
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the two-photon and one-photon steps to be irrelevant for the photoelectron spectrum and
angular distribution. This is motivated by the fact that only contributions to photo-
electron spectrum arising from the probed resonantly excited state, is assumed. As a
consequence, relative phase between both process becomes irrelevant. For a discussion of
similar approximations in related multiphoton transitions between bound states, see for
instance Refs. [274, 275]. For a practical example where relative phases are (ir)relevant
in the context of a pump-probe set-up, see Refs. [185] and [60].

The experimentally measured PAD contains contributions from all molecules in the
isotropic sample, each of them with a specific orientation ω. The total photoelectron
signal is therefore obtained by an incoherent summation over the contributions from all
molecules. This is equivalent to integrating Eq. (10.18) over the Euler angles weighted by
the probability of two-photon absorption. The “averaged” photoionization cross section
in the laboratory frame therefore reads,

dσ2+1

dΩk′
=
∫
ρ2P(ω) d2σ1P

dω dΩk′
dω , (10.19)

where the integration is carried over the Euler angles α, β, γ.

Evaluating the products of the Wigner 3j symbols, the differential cross section,
Eq. (10.18), for a specific orientation ω of the molecule becomes

d2σ2+1

dωdΩk′
= co

∞∑

L=0

+L∑

µ=−L
bµL(ω)P µ

L (cosϑ′k) eiµφ
′
k , (10.20a)

where the only orientation-dependent quantity, bµL(ω), is given by

bµL(ω) =
∑

λ

κ(λ) DKs,0(ω)Dνq−q′,0(ω)DLm′−m,−µ(ω) . (10.20b)

Note that the summation in Eq. (10.20b) runs over all possible indices, except L and µ, i.e.,
λ = {K, ν,Q,Q′, q, q′, qk, no, n′o, `, `′, `o, `′o}, with K = 1, 2, 3, 4 and ν = 0, 1, 2 appearing
from the coupling of the first and second Wigner rotation matrices in Eq. (10.11), cf.
Eq. (C.21). The specific form of κµL(λ) is detailed in Eq. (C.25), in Appendix C.2.3.

We can now use the integral properties of a product of three Wigner rotation matri-
ces [143, 145, 146], cf. Eq. (C.26) in Appendix C.2.3. Integration of bLµ,ν(ω) over the Euler
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angles then yields

c̃µL ≡
∑

λ

∫
bµL,λ(ω) d3ω =

∑

λ

κµL(λ)

K ν L
s q − q′ m′ −m




K ν L

0 0 −µ




=
∑

λ

κµL(λ)

K ν L
s q − q′ m′ −m




K ν L

0 0 0


 δµ,0 .

Note that the second Wigner symbol in the right-hand side of Eq. (10.21) is non-zero
only if µ = 0 and K + ν + L is even with |K − ν| ≤ L ≤ K + ν. Because µ = 0, the
terms depending on the azimuthal angle in Eq. (10.11) do not contribute and we retrieve
cylindrical symmetry for the PAD of Eq. (10.19) which can therefore be expressed in terms
of the ordinary Legendre polynomials PL(cosϑ′k). Furthermore, according to the fifth and
sixth Wigner symbols in Eq. (10.17b), K = 0, . . . , 4, because |Q−Q′| ≤ K ≤ Q+Q′, and
0 ≤ Q ≤ 2 according to the first and second Wigner symbols in Eq. (10.17b). The same
applies to Q′, reflecting the addition of angular momentum in a two-photon absorption
process.

Making use, in Eq. (10.21), of the fact that the non-zero contributions for ν are given
by ν = 0, 1, 2, cf. Eq. (C.21), one obtains that L runs from 0 to 6, and higher orders
give only vanishing contributions. Therefore, the highest order Legendre polynomial that
contributes to the PAD is Lmax = 6, as expected for a 2+1 process from the 2(m+n)− 1
rule [283].

Finally, evaluating Eq. (10.19) with the help of Eq. (10.21) yields the experimentally
measured PAD that is obtained for an initial ensemble of randomly oriented molecules,

dσ2+1

dΩk′
=

6∑

L=0
cL PL (cosϑ′k) . (10.21a)

Defining cL ≡ c̃µ=0
L with c̃µ=0

L defined in Eq. (10.21), the Legendre coefficients finally reads,
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∑
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×



` `′ L

m −m′ m′ −m






` `′ L

0 0 0







1 1 ν

q −q′ q′ − q







1 1 ν

%2 −%2 0




×



K ν L

s q − q′ m′ −m






K ν L

0 0 0


 a`omo

(no) a∗`
′
o

m′o
(n′o)Tq1,q2T

∗
q3,q4 . (10.21b)
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with Ñ0 = c̃0N0 and c̃o = 4πco, and where ς̂(`, `′) =
√

(2`+ 1)(2`′ + 1). Derivation of
Eq. (10.21) is explicitly detailed in Appendix C.2.3. Note that the coefficients cL(%1, %2)
depend on the expansion coefficients a`omo

(no) describing the intermediate electronically
exited state, the two-photon absorption tensor elements, Tq1,q2 , and the laser polarization
directions of the two-photon absorption step, %1, and of the one-photon ionization, %2.
Equation (10.21b) is the central result of our perturbation theory treatment of the pho-
toelectron angular distribution, based on separating non-resonant two-photon absorption
and one-photon ionization. We recall that it intrinsically connects the electronic struc-
ture of the molecule directly to the Legendre coefficients of the PAD which is accessible
in experiment.

It is important to note that, according to the model herein presented, contributions
of Legendre polynomials with order higher than 2 in Eq. (10.21) are exclusively due to
the orientation dependence of populating the intermediate electronically excited state by
two-photon absorption from the electronic ground state. In other terms, the density ρ(ω)
expresses the fact that molecules with a certain orientation ω = ω1 have a larger prob-
ability to undergo non-resonant two-photon absorption than molecules with some other
different orientation ω = ω2. So although the molecules are assumed to be completely
randomly oriented with respect to the laser beam axis when they are in their electronic
ground state, an effective alignment results for those molecules that absorb two photons.
Such an effective alignment results from selection of certain orientations rather than ro-
tational dynamics which would occur on a much slower timescale. The contribution of
higher order Legendre polynomials to the PAD is then entirely determined by the prop-
erties of the two-photon absorption tensor and the electronically excited state, i.e., the
missing link in Ref. [280]. In order to interpret the experimentally observed PADs for
fenchone and camphor in terms of their expansion in Legendre polynomials, at least qual-
itatively, we estimate a`omo

(no) and Tq1,q2 using ab initio calculations or via fitting. The
details about the ab initio calculations are given in Ref. [294], we discuss below the basic
symmetry properties of these parameters of our model as well as the dependence on the
laser polarization directions %1, %2.

10.3 Symmetry properties of the model

By definition, PECD is obtained if the sign of the odd Legendre coefficients change when
the helicity of the electric field changes. Analogously, for fixed electric field circular
helicity, the odd Legendre coefficients change sign when enantiomers are interchanged.
Checking such parity transformations under enantiomer and helicity exchange are crucial,
since the present model, albeit based perturbation theory treatment of the multi-photon
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process, should reproduce such minimal parity transformations, which is confirmed by
experimental observations [264, 265]. We therefore first inspect sign changes in the Leg-
endre coefficients for molecules of opposite handedness within our one-center expansion
framework. The relation between a given enantiomer and its mirror image is given by
the parity operator, which changes the coordinates r to −r. We therefore check, in the
following lines, that our model transforms properly under parity.

Moreover, we determine the role that the excited state coefficients a`omo
(no) and two-

photon absorption tensor elements play for each Legendre coefficient that contributes to
the PAD. This is important in order to understand the effect of the geometric properties
of the resonantly excited electronic state on the obtained Legendre coefficients. To this
end, we rewrite Eq. (10.21b), expressing each cL(%1, %2) explicitly in terms of the a`omo

(no)
and Tq,q′ ,

cL(%1, %2) =
∑

no,`o,mo

n′o,`
′
o,m
′
o

∑

q1,q2
q3,q4

γno,`o,m,n′o,`
′
o,m
′
o

q1,q2,q3,q4 (L, ε′%1 , ε
′
%2)a`omo

(no) a∗`
′
o

m′o
(n′o)Tq1,q2 T

∗
q3,q4

(10.22)

Equation (10.22) allows for determining each Legendre coefficient as a function of the
intermediate electronically excited state via a`omo

(no) and Tq,q′ . In other words, it connects
the measured Legendre coefficients to the electronic structure properties. We can thus
compare the contribution of different a`mo

(no) to different Legendre coefficients cL, and ex-
plain differences, observed e.g. for different molecules, in terms of the electronic structure.
This is important because investigation of camphor and fenchone revealed, for example,
the same order of magnitude for the first and third Legendre coefficient in camphor, in
contrast to fenchone where c3 is about one order of magnitude smaller than c1 [264, 265].
This observation suggests a significantly different electronic structure despite the fact that
the two bicyclic monoketones are constitutional isomers which differ only in the position
of the geminal methyl groups [300].

In the following, we discuss the behavior under parity and the contribution of the
a`omo

(no) and Tq,q′ to the cL(%1, %2) separately for the excited state coefficients, the two-
photon absorption tensor and the laser polarization.

10.3.1 Parity transformation under handness exchange:

Role of the excited state expansion coefficients

In this section, we explicitly show that our single-center expansion for the (2 + 1) REMPI
process properly transforms under parity. Note that the two-photon absorption process
conserves parity, which implies that exchanging enantiomers results in a parity change of
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the expansion coefficients of the intermediate electronically excited state, from a`omo
(no)

to (−1)`o a`omo
(no). For practical convenience, we define the following quantity present in

Eq. (10.21b) depending on `o and mo,

PL = a`omo
(no)a`

′
o
m′o

(n′o)S`,m`o,mo
(q) S`′,m′`′o,m

′
o
(q′)



` `′ L

0 0 0


 .

(10.23)

Upon application of the parity operator, Eq. (10.23) becomes

P̃L = (−1)`o+`′o a`omo
(no)a`

′
o
m′o

(n′o)S`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′)



` `′ L

0 0 0


 .

(10.24)

Furthermore, we make use of the following property of the Wigner 3j symbols [143, 145,
146, 287],



j j′ J

m m′ M


 = (−1)j+j′+J




j j′ J

−m −m′ −M


 , (10.25)

and apply it to the first Wigner 3j symbol in the expressions for S`,m`o,mo
(q) and S`′,m′`′o,m

′
o
(q′),

i.e., Eq. (10.10b), containing triple zeros in the second row. The parity-transformed PL
thus becomes

P̃L = (−1)`o+`′o (−1)`+`o+`′+`′o S`,m`o,mo
(q) S`′,m′`′o,m

′
o
(q′)



` `′ L

0 0 0


 . (10.26)

Applying Eq. (10.25) once more to the Wigner 3j symbol in Eq. (10.26) allows for elimi-
nating the explicit dependence of P̃L on the partial waves ` and `′,

P̃L = (−1)`o+`′o (−1)`+`o+`′+`′oS`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′)(−1)`+`′+L



` `′ L

0 0 0




= (−1)LS`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′)



` `′ L

0 0 0




= (−1)LPL . (10.27)
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Because PL and P̃L refer, by construction, to enantiomers of opposite handedness,
Eq. (10.27) implies a change of sign for L odd, cf. Eq. (10.21), when interchanging
enantiomers, and no sign change for L even. Our model properly reproduces this ba-
sic symmetry behavior. The corresponding behavior under change of the light helicity,
keeping the same enantiomer, is checked below in Sec. 10.3.2.

10.3.2 Parity transformations under field polarization helicity exchange

Role of Polarizations %1 and %2

Having shown sign inversion for the odd Legendre coefficients for enantiomers of oppo-
site handedness and a fixed circular polarization direction, we outline, in the following,
an analogous symmetry property that is relevant when considering the same enantiomer
but inverting the polarization direction. By definition, PECD requires all odd Legendre
expansion coefficients for a given enantiomer to change sign when changing circular po-
larization from left to right, and vice versa. In order to show that our approach also prop-
erly reproduces this behavior, we employ again the symmetry properties of the Wigner
3j symbols in Eq. (10.21b), similarly to Sec. 10.3.1. For the sake of completeness, we
consider the general case of independent polarizations for the two-photon absorption and
the one-photon ionization processes.

First, we consider all terms in Eq. (10.21b) depending on ε′%2 . We apply Eq. (10.25)
to the fourth and sixth Wigner 3j symbol in Eq. (10.21b) for cL(−%1,−%2). This yields




1 1 ν

−%2 +%2 0


 = (−1)2+ν




1 1 ν

%2 −%2 0


 (10.28a)

for the fourth Wigner 3j symbol, and


K ν L

0 0 0


 = (−1)K+ν+L



K ν L

0 0 0


 (10.28b)

for the sixth Wigner 3j symbol in Eq. (10.21b) when the polarization direction driving the
ionization proceess is −%2. Next, we evaluate the expression containing the information
about the polarization direction driving the two-photon absorption process. For ε−%1 , the
term gK%1(q1, q2, q3, q4), defined in Eq. (10.17b), reads

gK−%1(q1, q2, q3, q4) = (−1)K gK+%1(q1, q2, q3, q4) , (10.28c)

when changing %1 to −%1. In Eq. (10.28c), we have applied Eq. (10.25) to the sec-
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ond, fourth and sixth Wigner 3j symbols in Eq. (10.17b). The Legendre coefficient
cL(−%1,−%2) involves, according to Eq. (10.21b), the triple product of Eqs. (10.28), that
is,

gK−%1(q{j})




1 1 ν

−%2 +%2 0






K ν L

0 0 0


 = (−1)LgK+%1(q{j})




1 1 ν

+%2 −%2 0






K ν L

0 0 0


,

(10.29)

with gK−%1(q{j}) ≡ gK−%1(q1, q2, q3, q4). Equation (10.29) implies, according to Eq. (10.21b),

cL(−%1,−%2) = (−1)L cL(+%1,+%2) , (10.30)

i.e., indeed, only odd Legendre coefficients change sign when changing simultaneously the
polarization directions %1 and %2, whereas all even coefficients remain unchanged.

To conclude, making use of the symmetry properties of the Wigner 3j symbols, we
have demonstrated that the theoretical model herein derived, reproduce the parity trans-
formations under handness and helicity exchange, observed experimentally.

10.3.3 Mixing polarization directions and photoelectron circular dichroism

The parity transformations under helicity exchange derived in Section 10.3.2 are not lim-
ited to the same polarization directions, i.e., ε′%1 and ε′%2 for the two-photon excitation and
photoionization process, respectively. In fact, we can go further and derive the predic-
tions of our model for different., i.e., mixed, polarization directions. In particular, such
analysis allows to determine the role that the two-photon excitation and photoionization
processes play in the sign of the resulting Legendre coefficients. This is, it allows to elu-
cidate which process, two-photon excitation or one-photon ionization, is responsible for
changing the sign of the odd Legendre cofficients, when the polarization direction in ques-
tion is exchanged. Also, it allows to understand the role of a linearly polarized electric
field, in the generation of PECD if combined with circular polarization direction. As it
will be shown, the order, of the polarization directions, i.e. ε′%1 = 0 followed by ε′%2 = ±1
or vice-versa is crucial to generate circular dichroism when mixing different polarization
directions. For the sake of simplicity, important results requiring long lines of calculations
are just stated in the following lines, but the lecturer may find their explicit derivations
in Appendix C.2.4.

In order to derive the properties involving mixing polarization directions, and therefore
understand the role the excitation and ionization processes play for the generation of
PECD, we evaluate all non-vanishing Legendre coefficients as a function of the polarization
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directions %1 and %2 without making any assumptions on the two-photon absorption tensor
T. At a first state, we may consider the case where the two-photon absorption process is
driven by linearly polarized light, %1 = 0. The second Wigner 3j symbol in Eq. (10.17b)
then becomes




1 1 Q

%1 %1 −2%1


 =




1 1 Q

0 0 0


 .

It does not vanish if and only if Q = 0, 2; and analogously for the fourth Wigner symbol
in Eq. (10.17b) involving Q′. Furthermore, the sixth Wigner 3j symbol in Eq. (10.17b)
becomes



Q Q′ K

0 0 0


 ,

which is non-zero only if K is even, because Q and Q′ are even, and K + Q + Q′ = 2n
with |Q−Q′| ≤ K ≤ Q+Q′. As a consequence, because both Q and Q′ are restricted to
0 and 2, K must be equal to 0, 2 or 4. Now, we consider the fourth Wigner 3j symbol in
Eq. (10.21b), namely




1 1 ν

%2 −%2 0


 , (10.31)

which contains the information about the photoionization transition. If the photoioniza-
tion process is driven by linearly polarized light (%2 = 0), the allowed values for ν in
Eq. (10.31) are ν = 0, 2. Therefore, the last Wigner symbol in Eq. (10.21b),



K ν L

0 0 0


 , (10.32)

has non-vanishing values only for |K−ν| ≤ L ≤ K+ν and K+v+L must be even due to
the triple zeros in the second row. Because K = [0, 2, 4] for %1 = 0 and ν = 0, 2 for %2 = 0,
the maximal order of Legendre coefficients is Lmax = 6 and the non-vanishing Legendre
coefficients are those for L = 0, 2, 4, 6, i.e., there are no odd Legendre polynomials in the
PAD for %1 = %2 = 0.

On the other hand, if we keep %1 = 0 but the photoionization transition is driven
by circularly polarized light (%2 = ±1), the non-vanishing values in Eq. (10.31) are not
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anymore restricted to even ν, but instead to ν = 0, 1, 2. Using these values for ν together
with the requirement |K− ν| ≤ L ≤ K + ν in Eq. (10.32), we obtain, for K = 0, 2, 4 (due
to %1 = 0), even as well as odd Legendre polynomials in the PAD, i.e., L = 0, 1, . . . , 6.

Next we check whether PECD can arise, i.e., whether the non-zero odd coefficients
change sign under changing the light helicity, for %1 = 0 and %2 = ±1. To this end,
we explicitly write out the dependence of Eq. (10.21b) on the polarization direction %2

driving the ionization step and define

ζK,νL (%2) =




1 1 ν

%2 −%2 0






K ν L

0 0 0


 , (10.33a)

corresponding to the fourth and sixth Wigner 3j symbol in Eq. (10.21b). For the opposite
polarization direction −%2, this quantity becomes

ζK,νL (−%2) =




1 1 ν

−%2 %2 0






K ν L

0 0 0




= (−1)2ν+K+L




1 1 ν

%2 −%2 0






K ν L

0 0 0




= (−1)L ζK,νL (%2) , (10.33b)

where we have applied Eq. (10.25) to both Wigner 3j symbols in Eq. (10.33b), together
with the fact that K is even for %1 = 0, as previously discussed. Finally, inserting
Eq. (10.33b) into Eq. (10.21b) yields

cL(%1 = 0,−%2) = (−1)LcL(%1 = 0,+%2) . (10.34)

As a consequence, also for linearly polarized light driving the two-photon absorption pro-
cess, odd Legendre coefficients change sign when the polarization direction of the ionizing
field is changed from right to left, and vice versa. Whereas K must be even for %1 = 0,
ν is ν = 0, 1, 2 for %2 = ±1,allowing L to take odd and even values in Eq. (10.33b). This
implies that there is no need for circular polarization to drive the two-photon absorption
process: Two-photon absorption driven by linearly polarized light followed by photoion-
ization with circularly polarized light is sufficient for observing PECD in chiral molecules.
In Section 10.4.2 we investigate the specific role of the two-photon aborption tensor for
all the cases discussed above. Conversely, the two-photon transition may be driven by
circularly polarized light followed by photoionization with linearly polarized light, i.e.,
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%1 = ±1 and %2 = 0. As shown in Eq. (C.36) in Appendix C.2.4, such a configuration
leads to a PAD consisting exclusively of even Legendre contributions.

In Eq. (10.30) we have shown that only odd Legendre coefficients change sign when
changing simultaneously the polarization direction driving the two-photon absorption and
the one-photon ionization. In Appendix C.2.5, we show that

cL(%1, %2) = (−1)LcL(%1,−%2) , (10.35)

i.e., odd Legendre coefficients change sign when the polarization direction of the photoion-
ization transition is changed, whereas the polarization of the field driving the two-photon
absorption is kept fixed. This suggests the polarization direction of the ionizing field
alone to impose the sign for all odd Legendre coefficients; the polarization direction in
the two-photon absorption process plays no role. In order to verify this statement, we
calculate cL(−%1, %2) in Appendix C.2.6 and find indeed

cL(−%1, %2) = cL(+%1, %2) . (10.36)

That is, the two-photon process determines only the degree of anisotropy prior to ioniza-
tion.

To summarize, using linearly polarized light for both two-photon absorption and one-
photon ionization results in a PAD consisting only of even Legendre polynomials, i.e.,
vanishing PECD. In contrast, when the (2 + 1) REMI process is driven by circularly
polarized light, higher order odd Legendre polynomials may contribute, depending on the
geometric properties of the resonantly excited state. The occurrence of non-zero Legendre
coefficients for all polarization combinations is summarized in Table 10.1 below.

10.4 Anisotropy of photoelectron emission:

As shown in Section 10.2.4, the orientation-averaged differential cross section for 2 + 1
photoionization relies on two families of parameters: On one hand, the expansion coeffi-
cients of the intermediate excited state a`omo

(no), and on the other hand, on the two-photon
absorption tensor Tq1,q2 . In this section, we investigate the requirements on the partial
wave decomposition of the expansion coefficients, via their partial wave decomposition
in order to achieve PECD. Analogously, important results regarding the combination of
different polarization direction, for different partial wave decomposition of the expansion
coefficients, for isotropic and anisotropic tensor elements Tq1,q2 are discussed.
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10.4.1 Angular momentum dependence of the intermediate state

Next we check the dependence of the non-zero Legendre coefficients contributing to the
PAD on the maximum order Lo,max of the excited state coefficients, a`omo

(no), cf. Eq. (10.4).
According to Equation (10.21b), a non-zero projection of the electronically excited state
onto d-orbitals (`o = 2) is required to ensure that higher orders cL are non-zero. In fact,
an additional requirement to reach Lmax = 6 is that Lo,max ≥ 2. This is straightforward
to see by inspecting the term



` `′ L

0 0 0




in Eq. (10.21b), defining the PAD for a (2 + 1) REMPI process. This term vanishes
unless ` + `′ + L is even and |` − `′| ≤ L ≤ ` + `′. In order to reach Lmax = 6, the
minimal requirement in terms of the angular momentum for the continuum wavepacket
is `max = 3. Together with the selection rule `max = Lo,max + 1, cf. Eq. (10.10b), this
implies Lo,max = 2, i.e., presence of d-waves in the resonantly excited state. Note that a
contribution from higher partial waves only modifies the algebraic value of the Legendre
coefficients, but does not lead to higher orders because, as we have already pointed out,
the maximal order of the Legendre coefficients is also limited by the term



K ν L

0 0 0




in Eq. (10.21b).
Perhaps even more interestingly, for circular polarization direction (%1 = %2 = ±1), c5

vanishes if the projection of the electronically excited state onto `o = 3 is zero. In other
words, expansion of the electronically excited state in terms of s, p and d orbitals results
in non-zero Legendre coefficients cL for L up to 6, except for c5. In fact, we found c5 to
appear only in presence of a non-vanishing contribution of f orbitals. This does not result
from selection rules as discussed before, but rather from an accidental compensation of
terms in the summations in Eq. (10.21b) which arises from the central symmetry of our
single center basis functions. Conversely, small f− wave contribution resulting from the
intermediate excited state results in small amplitudes for c5.

Given the experimental observation of Ref. [264, 265], we expect the electronically
excited state for fenchone and camphor to have non-vanishing projections onto s-, p-,
d- and possibly f -orbitals. Also, the eventual expansion coefficients of the electronically
excited state will most likely be different for fenchone and camphor to account for the
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different ratios of c3 and c1 observed for the two molecules [264, 265].

10.4.2 Two-photon absorption tensor dependence of the intermediate state

The number of Legendre coefficients contributing to PECD in our model of the 2+1
REMPI process is also determined by the degree of anisotropy of the ensemble of electron-
ically excited molecules. Such a statement follows from the properties of the two-photon
absorption tensor. In the following lines, we check the conditions that Tq1,q2 shall fulfill in
order to give rise to any anisotropy in the photoelectron emission. To this end, we intro-
duce the two-photon absorption amplitude A2P(ω), where for convenience the multiplying
factor in Eq. (10.16) has been dropped out,

A2P(ω) =
∑

q1

∑

q2

D(1)
q1,%1(ω)D(1)

q2,%1(ω)Tq1,q2 , (10.37)

i.e., ρ2P(ω) ∝ |A2P(ω)|2, cf. Eq. (10.16). For simplicity, we define Ã2P(ω) such that
A2P(ω) = 4π

3 Ã2P(ω). We first check the ’trivial’ case of an isotropic two-photon absorp-
tion tensor, i.e., a two-photon tensor that is diagonal in the Cartesian basis with equal
elements. In this case, Ã2P(ω) becomes

Ã2P(ω) = +D(1)
0,%1(ω)D(0)

0,%1(ω)Tzz −
1
2D

(1)
−1,%1(ω)D(1)

+1,%1(ω) (Txx + Tyy)

−1
2D

(1)
+1,%1(ω)D(1)

−1,%1(ω) (Txx + Tyy) ,

where the transformation between spherical and Cartesian basis has been employed, cf.
Eq. (C.7). Taking the elements to be equal, Txx = Tyy = Tzz = 1 without loss of generality,
Ã2P(ω) can be written as

Ã2P(ω) = D(1)
0,%1(ω)D(1)

0,%1(ω) − 2D(1)
−1,%1(ω)D(1)

+1,%1(ω)

=
∑

µ=0,±1
(−1)µD(1)

µ,%1(ω)D(1)
−µ,%1(ω)

=
∑

µ=0,±1
(−1)−%1D(1)

µ,%1(ω)D∗(1)
µ,−%1(ω)

= (−1)−%1 δ%1,−%1 , (10.38)

where we have used Eq. (C.20). That is, for an isotropic two-photon tensor, it is not
possible to reach an anisotropic distribution by absorption of two identical photons. The
PAD for the (2 + 1) REMPI process then reduces to the well-known one for one-photon
ionization of randomly oriented molecules, i.e., only P0 and P2 contribute if %2 = 0, and
P0, P1 and P2 are non-zero for %2 = ±1.
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ε′0/ε
′
±1 ε′±1/ε

′
0 ε′0/ε

′
0 ε′±1/ε

′
±1 ε′±1/ε

′
∓1

isotropic s p d f s p d f s p d f s p d f s p d f

c0 • • • • − − − − • • • • − − − − − − − −
c1 − − • • − − − − − − − − − − − − − − − −
c2 • • • • − − − − • • • • − − − − − − − −
c3 − − − − − − − − − − − − − − − − − − − −
c4 − − − − − − − − − − − − − − − − − − − −
c5 − − − − − − − − − − − − − − − − − − − −
c6 − − − − − − − − − − − − − − − − − − − −

ε′0/ε
′
±1 ε′±1/ε

′
0 ε′0/ε

′
0 ε′±1/ε

′
±1 ε′±1/ε

′
∓1

anisotropic s p d f s p d f s p d f s p d f s p d f

c0 • • • • • • • • • • • • • • • • • • • •
c1 − − • • − − − − − − − − − − • • − − • •
c2 • • • • • • • • • • • • • • • • • • • •
c3 − − • • − − − − − − − − − − • • − − • •
c4 − • • • − • • • − • • • − • • • − • • •
c5 − − − • − − − − − − − − − − − • − − − •
c6 − − • • − − • • − − • • − − • • − − • •

• contributing to the PAD
− not contributing to the PAD

Table 10.1: Contribution of Legendre coefficients to the PAD as a function of the partial
wave cut-off in Eq. (10.4) and the polarizations ε′%1 and ε′%2 of two-photon absorption
and photoionization, respectively, for an isotropic and anisotropic two-photon absorption
tensor T within the strict electric dipole approximation.

In what follows, we discuss a general two-photon absorption tensor, decomposing it as

T = αo 13×3 +




βxx 0 0
0 βyy 0
0 0 βzz


+




0 Txy Txz

Txy 0 Tyz

Txz Tyz 0




≡ TId + Td + Tnd , (10.39)

where we have split the diagonal elements into TId and Td in order to differentiate between
isotropic and anisotropic two-photon tensors. The contributions of odd and even Legendre
polynomials to the PAD as a function of Lo,max, the number of partial waves in the
electronically excited state, the polarizations ε′%1 and ε′%2 , and the two-photon absorption
tensor are summarized in Table 10.1. If the complete (2 + 1) REMPI process is driven
by linearly polarized light and only α0 6= 0, then Po and P2 contribute to the PAD
as just discussed. If the two-photon absorption tensor is anisotropic, even Legendre
polynomials of higher order can appear. For a molecule characterized by such a two-
photon absorption tensor, odd Legendre polynomials can contribute to the PAD if the
polarization of the ionization step is circular (ε′%2 = ε′±1). Analogously, both even and
odd Legendre polynomials can appear if ε′%1 = ε′%2 = ε′±1. Note that anisotropy of the
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two-photon tensor is sufficient, i.e., it does not matter whether the anisotropy is due to
diagonal or non-diagonal elements of the Cartesian tensor. The latter case is the one
discussed in Ref. [267], where a “nearly” diagonal two-photon absorption tensor was used.
In other words, an anisotropic tensor with non-zero off-diagonal elements in the Cartesian
basis also yields the pattern in the lower part of Table 10.1.

As indicated, the point group symmetry of the molecule determines which tensor com-
ponents of Tq1,q2 must be zero. This tensor pattern is a property of the states involved
in the transition and is determined by the symmetry of the initial and final states. For
instance, in molecular systems with point groups T and O, the photon absorption tensor
becomes more selective. The 2+1 process between two states that transform like the
totally symmetric representation of these point groups will only take place with linearly
polarized laser light. In this case the isotropic part TId of Eq. (10.39) can remain nonzero.
If the 2+1 process involves initial and final states that transform like non-totally sym-
metric representations of the point group, the tensor pattern changes and thus the tensor
might have isotropic or anisotropic parts. This determines whether the 2+1 process is
allowed or not. We refer the reader to Refs. [297, 298] for more detailed discussion of this
issue.

10.5 Numerical Results

10.5.1 Fenchone

We start by addressing the question of how many partial waves are required in the in-
termediate electronically excited state to yield odd Legendre coefficients with L > 1,
as observed experimentally. To this end, we consider the expansion of the intermediate
electronically excited state, cf. Eq. (10.3), with Lo,max = 2 and Lo,max = 3, i.e., up to d
and f waves, for the states B and C, and employ the two-photon tensor elements from
the CCSD/Rydberg-TZ calculations outlined in Ref. [294]. The results are presented in
Table 10.2. Presence of f -waves is required to obtain a non-zero coefficient c5, as expected
from Table 10.1. Allowing for f waves (with n0=4) results in a perfect match for the odd
coefficients for states C1, C2 and C3, cf. the upper part of Table 10.2. In contrast, for
state B, c3 and c5, while having the correct sign, are off by an order of magnitude. Mod-
ifying the optimization weights improves c5 for state B, but only at the expense of the
agreement for c1 and c3. State B can therefore be ruled out as intermediate electronically
excited state. This is further confirmed by the lower part of Table 10.2, showing the re-
sults for both odd and even Legendre coefficients in the optimization target. For state B,
the sign of c6 does not match the experimental one. Fitting both odd and even Legendre
coefficients also allows to differentiate between the C states—only state C3 reproduces
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state B state C1 state C2 state C3
coeffs. exp. [265] d waves f waves d waves f waves d waves f waves d waves f waves

c1 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067
c3 +0.008 +0.080 +0.080 +0.008 +0.008 +0.008 +0.008 +0.008 +0.008
c5 +0.004 − +0.0005 − +0.004 − +0.004 − +0.004

c1 −0.067 −0.028 −0.041 −0.045 −0.036 −0.040 −0.048 −0.045 −0.046
c2 −0.580 −0.076 −0.102 −0.274 −0.176 −0.146 −0.226 −0.224 −0.246
c3 +0.008 +0.006 +0.005 +0.006 +0.008 +0.003 +0.004 +0.006 +0.005
c4 −0.061 −0.004 −0.004 −0.021 −0.012 −0.012 −0.011 −0.012 −0.019
c5 +0.004 − +0.0001 − +0.001 − +0.002 − +0.001
c6 −0.008 +0.0002 +0.0003 +0.0007 +0.0001 +0.0006 +0.001 −0.002 −0.002

Table 10.2: Legendre coefficients for the PAD of fenchone (calculated at a photoelec-
tron energy of 0.56 eV and normalized with respect to c0), obtained by fitting to the
experimental values with the excited state coefficients a`omo

as free parameters. Only odd
(top) and both odd and even (bottom) contributions were accounted for in the fitting
procedure. The Rydberg states B, C1, C2 and C3 of fenchone are characterized by their
two-photon absorption tensor obtained from ab initio calculations, cf. Ref. [294].

the correct sign of c6. For all other Legendre moments, signs and order of magnitude of
the coefficients match the experimental ones for all three C states. Fitting to all and not
just the odd Legendre coefficients decreases the agreement between theoretical and exper-
imental results for all C states. This may indicate that the model, with a single no, is not
capable of reproducing the full complexity of the process, or it may be due to different
experimental error bars for even and odd Legendre coefficients. In our fitting procedure,
we have neglected the experimental error bars to keep the calculations manageable. The
experimental error bars for the even Legendre coefficients are much larger than for the
odd ones [265], and ignoring them may introduce a bias into the optimization procedure
that could also explain the decreased agreement.

While already Table 10.2 suggests that C3 is likely the intermediate electronically ex-
cited state state probed in the 2+1 photoexcitation process, the ultimate test consists in
using ab initio results for all parameters in Eq. (10.21), i.e., the excited state expansion
coefficients and the two-photon tensor elements, and compare the resulting Legendre co-
efficients to the experimental data. The results are shown in Table 10.3 (“fixed tensor
elements”). Choosing a slightly larger photoelectron energy, specifically 0.58 eV instead
of 0.56 eV, with the shift of 0.02 eV well within the error bars of the calculated excitation
energies, considerably improves the agreement between theoretical and experimental val-
ues, in particular for the c1 coefficient. Additionally, we allow the tensor elements to vary
within a range of ±20% to account for unavoidable errors in the electronic structure cal-
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state B state C1 state C2 state C3
coeffs.exp. [265] fixed error bars fixed error bars fixed error bars fixed error bars

c1 −0.067 +0.003 +0.003 −0.004 −0.003 −0.002 −0.001 −0.013 −0.015
c2 −0.580 −0.238 −0.193 −0.272 −0.217 −0.409 −0.358 −0.250 −0.213
c3 +0.008 −0.039 −0.029 +0.050 +0.038 +0.033 +0.025 +0.008 +0.010
c4 −0.061 −0.095 −0.113 −0.084 −0.105 +0.010 −0.015 −0.023 −0.048
c5 +0.004 −0.001 −0.001 +0.003 +0.002 −0.004 +0.003 −0.0004 −0.00004
c6 −0.008 −0.003 −0.005 +0.003 −0.001 −0.004 −0.017 −0.013 −0.007

Table 10.3: Legendre coefficients for the PAD of fenchone (calculated at a photoelectron
energy of 0.58 eV and normalized with respect to c0), obtained by employing the excited
state coefficients and two-photon tensors from the ab initio calculations. When including
error bars, the tensor elements are allowed to vary within ±20%.

culations. The best tensor elements within the error range are obtained by minimization.
The corresponding functional is defined as

Γ = 1
Γ(0)

6∑

j=1
ωj

(
cj − cexp

j

cexp
j

)2

, (10.40)

where ωj are optimization weights and Γ(0) is the value of the functional using the fixed
tensor elements. Table 10.3 confirms state B to be ruled out, since it does not reproduce
correctly even a single sign of the odd coefficients. For all states C, the correct signs are
obtained for the lower order Legendre coefficients, up to c4. State C1 yields the correct
sign of c6 only if the tensor elements are allowed to vary within ±20%; the same holds
for C2 and the sign of c5. C3 does not reproduce the correct sign of c5, but the value of
c5 is very small and close to zero when accounting for the error bars. In terms of PECD,
the most important coefficient for fenchone is c1, since its experimental value is an order
of magnitude larger than that of the other odd coefficients. For c1, the best agreement
is obtained for state C3, differing from the experimental value by a factor of five. In
contrast, the difference is by a factor of about twenty for state C1, and even larger for
state C2. While c1 is too small by more than an order of magnitude for states C1 and
C2, c3 is overestimated by a factor of five for C1 and a factor of three for C2. For states
C1 and C2, the largest odd Legendre coefficient is thus c3, unlike the experimental result
where it is c1. In contrast, the theoretical result for c3 is in quantitative agreement for
state C3 which therefore yields the correct ordering of the odd Legendre coefficients in
terms of their magnitude. We thus conjecture that for fenchone, state C3 is most likely the
intermediate electronically state probed in the experiment, despite the fact that c5 is very
close to zero. The reason for the discrepancy exclusively for c5, while all other coefficients
match the experimental ones at least qualitatively, is not entirely clear. A necessary
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coefficient exp. [265] fixed ±20% ±30% ±50% ±20% ±30% ±50%

c1 −0.067 −0.012 −0.015 −0.016 −0.016 −0.015 −0.018 −0.022
c2 −0.580 +0.250 −0.213 −0.210 −0.212 −0.223 −0.227 −0.268
c3 +0.008 +0.008 +0.010 +0.010 +0.010 +0.010 +0.011 +0.014
c4 −0.061 −0.023 −0.045 −0.048 −0.048 −0.045 −0.0504 −0.033
c5 +0.004 −0.0004 −0.00004 −0.00001 +0.00002 +0.00004 +0.0004 +0.001
c6 −0.008 −0.013 −0.007 −0.007 −0.007 −0.006 −0.001 −0.001

Γ (equal ωj) 1.0 0.714 0.711 0.705 − − −
Γ (unequal ωj) 1.0 − − − 0.775 0.710 0.686

Table 10.4: Legendre coefficients for the PAD of fenchone (calculated at a photoelectron
energy of 0.58 eV and normalized with respect to c0), obtained by employing the excited
state coefficients and two-photon tensor elements from the ab initio for state C3 and
increasing error bars of the two-photon tensor elements. Minimization of the functional
in Eq. (10.40) carried out with equal (top) and unequal (bottom, ω5 = 10ω, ωj=1,...,4,6 = ω)
optimization weights.

condition for non-vanishing c5 is, according to Table 10.1, that the f -wave contribution of
the intermediate state to be non-vanishing. The results shown in Table 10.3 thus suggest
that our calculations underestimate the f -wave character of C3. This may be caused
by an improper description of long-range interaction between the photoelectron and the
remaining ion, i.e., by the fact that the true potential felt by the photoelectron is neither
central nor point-like, or by the interaction between the laser field and the photoelectron
whose time dependence is neglected in our model. Finally, the error bars of the two-
photon tensor elements may be larger than 20%. Indeed, allowing error bars of ±50%
in the two-photon absorption tensor elements removes the disagreement for c5 and state
C3. At the same time, these error bars do not significantly improve the agreement for the
other two states. For example, the coefficient c1 is −0.0061 for state C1 and −0.0045 for
state C2, leaving the conclusion that state C3 is the intermediate resonance unchanged.
A systematic increase of the two-photon tensor error bars for state C3 is presented in
Table 10.4. We compare minimization of the functional (10.40) with equal weights for all
Legendre coefficients (upper part of Table 10.4) to that with a ten times larger weight of
c5 (lower part of Table 10.4). The motivation behind the second choice is to see whether
the correct sign can be obtained for c5 without the need to increase the error bars to a very
high value. When increasing the error bars of the two-photon tensor elements, while using
the same optimization weights in Eq. (10.40), the value of c5 is increased until it changes
sign. The overall value of the functional decreases monotonically, as expected. When
the optimization weight of c5 is taken 10 times larger than those of all other Legendre
coefficients, assuming an error range of ±20% for the two-photon tensor elements of state
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Figure 10.1: Fenchone: Comparison of experimentally obtained and theoretically cal-
culated Legendre coefficients in the PAD for S-(+)-fenchone, using state C3 and right
circular polarization. The calculations were carried out for a fixed photoelectron energy
of 0.56 eV, respectively 0.58 eV, as well as integrating over a Gaussian distribution of
photoelectron energies (denoted by ρ(E)) centered at 0.56 eV with a FWHM of 200 meV.

C3 already yields the correct sign for all Legendre coefficients. Increasing the error range
in this case further improves the magnitude of c5, until it differs from the experimental
one by a factor of four for error bars of ±50%. However, this comes at the expense of the
agreement for all other Legendre coefficients except c1. It is quantified by evaluating Γ in
Eq. (10.40) with equal weights, using the optimized two-photon tensor elements obtained
with unequal weights.

Overall, already the two-photon tensor elements taken directly from the ab initio cal-
culations yield a satisfactory agreement for the PAD between theory and experiment for
state C3. The agreement is further improved by allowing the two-photon tensor elements
to vary within a range of ±20% to account for the error bars of the ab initio calculations.
All Legendre coefficients except c3 are sensitive to a variation within this range. Ex-
cept for c5, i.e., underestimation of the excite state f -wave character, a surprisingly good
agreement between theoretical and experimental values is obtained, with the numerical
values differing from the experimental ones up to a factor of five. The semi-quantitative
agreement between theory and experiment is further illustrated in Fig. 10.1, left panel,
where we compare calculation results for two specific photoelectron energies, 0.56 eV and
0.58 eV, to the experimentally obtained Legendre coefficients. The differences for the
Legendre coefficients for 0.56 eV and 0.58 eV indicates the dependence of our results on
the error bar of the calculated excitation energy of the intermediate electronically excited
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Figure 10.2: Fenchone: Photoelectron angular distributions obtained with left circu-
larly polarized light for ionization from the state C3 of S-(+)-fenchone (left panel) and
of R-(-)-fenchone (middle) employing the fixed two-photon absorption tensor elements
(dashed green lines) and two-photon absorption tensor elements with ±20% error bars
(solid red lines with black circles). The theoretical curves are compared to those obtained
for the experimentally determined Legendre coefficients of Ref. [265] (blue solid lines).
The differences between the PAD for the two enantiomers are shown in the right panel.
The calculated difference (right panel) is scaled by a factor of 2.5 times in order to have
theoretical and experimental curves on the same scale.

state. Additionally, left panel in Fig. 10.1 also shows the result of integrating over a
normal distribution of photoelectron energies centered at 0.56 eV with a full width at half
maximum (FWHM) of 200 meV. This accounts for the experimental averaging over pho-
toelectron energies [265]. The disagreement between theoretical and experimental results
amounts to a factor of about two which translates into a “mean” PECD of 3% and 4%
for the fixed and ±20% adjustable tensor elements, respectively, compared to the experi-
mental value of 10.1% [265]. Figure 10.2 displays the photoelectron angular distributions
(PAD) for both enantiomers (S-(+) and R-(-)) of fenchone, corresponding to state C3,
which was identified as being the most likely resonantly excited state in the 2+1 process.
The experimental Legendre coefficients are taken from Ref. [265] left circularly polarized
light is assumed. Also shown is the difference between the PAD of the two enantiomers
(botton panel of Fig. 10.2). Overall, the shapes obtained with the theoretical and ex-
perimental Legendre coefficients are similar, illustrating the semi-quantitative agreement
between the calculated and experimental results. The main difference between theoret-
ical and experimental curves arises from the factor of four between the experimentally
obtained and calculated coefficient c1 (which is one order of magnitude larger than the
other odd coefficients).

The dependence of the calculated Legendre coefficients on the photoelectron energy
is further investigated in Fig. 10.3. A non-monotonic behavior is observed for all orders.
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Figure 10.3: Fenchone: Dependence of the calculated Legendre coefficients on photoelec-
tron energy for the PAD of state C3 for S-(+)-fenchone , using right circular polarization.

Such a non-monotonic behavior of the Legendre coefficients as a function of the photo-
electron energy has already been reported for c1 in the one-photon ionization of randomly
oriented molecules [301]. It reflects the dependence of the Legendre coefficients on the
radial part of the photoelectron wavefunction.

10.5.2 Camphor

This section is devoted to the application of our 2+1 REMPI-based model to cam-
phor. Numerical results and experimental results, the latter referenced in Ref. [265],
are compared. For camphor, the experimentally recorded photoelectron spectrum peaks
at 0.52 eV. [265]. As for fenchone, the ultimate test to rule out a given state, in the frame-
work of our model, consists in using both two-photon tensor elements and excited state
expansion coefficients obtained from the ab initio calculations. The corresponding results
are shown in Table 10.5. Already Table 10.5 confirms that states C2 and C3 are not the
intermediate resonance probed in the experiment, since both states yield the wrong sign
for both c1 and c3. By comparing the remaining two candidates, namely states B and C1,
it is clear that a much better agreement is observed for C1 which yields the correct signs
for all Legendre coefficients. In contrast, state B only yields correct signs for the lower
orders, c1, c2, and c3. When accounting for the error bars in the two-photon tensor, a
correct sign is additionally obtained for c4, but the signs for c5 and c6 still cannot properly
be reproduced with state B as intermediate resonance. As to the state C1, not only all
signs but also the correct order of magnitude for c2, c3 and c4 are properly reproduced,
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state B state C1 state C2 state C3
coeffs. exp. [265] fixed error bars fixed error bars fixed error bars fixed error bars

c1 +0.026 +0.003 +0.002 +0.002 +0.001 −0.002 −0.002 −0.001 −0.001
c2 −0.678 −0.384 −0.383 −0.389 −0.401 −0.395 −0.395 −0.421 −0.425
c3 −0.053 −0.025 −0.022 −0.020 −0.017 +0.005 +0.008 +0.004 +0.003
c4 +0.012 −0.066 −0.050 +0.020 +0.023 +0.004 −0.002 −0.008 +0.0001
c5 +0.008 −0.002 −0.001 +0.0001 +0.0001 +0.001 +0.001 +0.0003 +0.001
c6 −0.001 +0.043 +0.035 −0.026 −0.023 −0.008 −0.001 +0.005 −0.0004

Table 10.5: Camphor: Legendre coefficients for the PAD of camphor (calculated at
a photoelectron energy of 0.52 eV and normalized with respect to c0), obtained by em-
ploying the excited state coefficients and two-photon tensor elements from the ab initio
calculations. When including error bars, the tensor elements are allowed to vary within
±20%.

state B state C1 state C2 state C3
coeffs. exp. [265] fixed error bars fixed error bars fixed error bars fixed error bars

c1 +0.026 +0.033 +0.030 +0.026 +0.027 −0.005 −0.009 −0.004 −0.002
c2 −0.678 −0.450 −0.498 −0.477 −0.502 −0.431 −0.427 −0.432 −0.437
c3 −0.053 −0.029 −0.031 −0.024 −0.022 −0.003 −0.0002 +0.001 −0.003
c4 +0.012 −0.074 −0.034 +0.003 +0.009 −0.022 −0.036 −0.026 −0.018
c5 +0.008 −0.001 −0.001 +0.0001 +0.0001 +0.0002 +0.001 +0.0002 +0.0001
c6 −0.001 +0.030 +0.024 −0.015 −0.011 −0.020 −0.010 +0.0001 +0.003

Table 10.6: Camphor: The same as Table 10.5 but for a photoelectron energy of 0.58 eV.

whereas the values are too small by one order of magnitude for c1 and by two orders for
c5 and too large by one order of magnitude for c6. Allowing the two-photon absorption
tensor for state C1 to vary within an error range of ±20% does not yield any significant
improvement. It therefore does not seem to be the unavoidable error in the two-photon
tensor elements that is important. Analogously to fenchone, a second source of error in
the ab initio calculations is found in the excitation energy of the intermediate electroni-
cally excited state. This is reflected in the photoelectron energy. We thus present results
for a second photoelectron energy, namely 0.58 eV in Table 10.6. For state C1, all signs
still match, and the correct order of magnitude is now obtained for c1 to c4. In particular,
c1 is now in quantitative agreement with the experimental value, and c2 and c3 differ
by less than factor of 1.5, respectively 2.5. Despite the disagreement in the numerical
values for c5 and c6, C1 is clearly the state the best matches the experimental data—the
results obtained for states B, C2 and C3 show the same deficiencies as in Table 10.5. The
agreement with the experimental data obtained for state C1 can be further improved by
allowing for larger error bars in the two-photon tensor elements. This is demonstrated in
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coeffs. exp. [265] fixed ±20% ±30% ±50%

c1 +0.026 +0.026 +0.027 +0.026 +0.022
c2 −0.678 −0.477 −0.502 −0.515 −0.529
c3 −0.053 −0.024 −0.022 −0.020 −0.014
c4 +0.012 +0.003 +0.009 +0.012 +0.012
c5 +0.008 +0.0001 +0.0001 +0.0001 +0.0003
c6 −0.001 −0.015 −0.011 −0.008 −0.001

Γ (equal ωj) 1.0 0.50 0.26 0.01

Table 10.7: Camphor: Legendre coefficients for the PAD of camphor (calculated at a pho-
toelectron energy of 0.58 eV ) for increasing error bars of the two-photon tensor elements.
Ab initio data for state C3 was used.

Table 10.7. In fact, the agreement can be made fully quantitative, except for c5, when
increasing the error bars up to ±50%, as indicated by the small value of the optimization
functional.

In comparison to fenchone, cf. Table 10.4, minimization results in significantly smaller
values for Γ, as the error range is increased. Also, the higher order Legendre coefficients
are found to be more sensitive to modifications of the two-photon tensor elements than the
lower ones. This is not surprising since the higher order coefficients depend more strongly
on the anisotropy induced by the two-photon absorption. Analogously to fenchone, c5

has the correct sign but remains too small by one order of magnitude. This indicates
once more that we underestimate significantly the d-wave contribution to the intermedi-
ate electronically excited state. It amounts to just 6% for both fenchone and camphor
in our calculations. The discussion above is summarized and illustrated in Fig. 10.4, left
panel, which shows, besides the Legendre coefficients for photoelectron energies of 0.52 eV
and 0.58 eV, those obtained when integrating over a normal distribution of photoelectron
energies, centered at 0.52 eV, with a FWHM of 200 meV. The latter mimicks the spec-
tral bandwidth in the experiment. Introducing a distribution of photoelectron energies
slightly worsens the agreement between theory and experiment. This can be attributed
to the striking sensitivity of the Legendre coefficients on photoelectron energy, as shown
in Fig. 10.4, right panel. A further improvement of the theoretical model would thus
require experimental data for more than one photoelectron energy and with better energy
resolution.

Figure 10.5 displays the photoelectron angular distributions (PAD) for ionization from
those intermediate states in camphor that were identified as the most likely resonances in
the 2+1 process, namely state C1 for camphor. Experimental Legendre coefficients are
taken from Ref. [265] and assuming left circularly polarized light. Angular distributions
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Figure 10.4: Camphor. Left panel: Comparison of experimentally obtained and theo-
retically calculated Legendre coefficients in the PAD for R-(+)-camphor , using state C1
and right circular polarization. The calculations considered fixed photoelectron energies
of 0.52 eV and 0.58 eV as well as an integration over a Gaussian distribution of energies
centered at 0.58 eV with a FWHM of 200 meV. Right panel: Dependence of the calcu-
lated Legendre coefficients in the PAD of camphor, state C1, on the photoelectron energy
within the range of 0.50 eV to 0.58 eV using right circularly polarized light.

obtained from both enantiomers of camphor (R-(+) and S-(-)) are shown. Also shown is
the difference between the PAD of the two enantiomers (right panel of Fig. 10.5). As for
fenchon, the overall shapes obtained with the theoretical and experimental Legendre co-
efficients are similar, illustrating the semi-quantitative agreement between the calculated
and experimental results. For camphor, the main difference between the theoretical and
numerical curves relies in the c3 coefficient (-0.022 instead of -0.053). Because c3 is of the
same order of magnitude as c1, the overall scale is correctly reproduced for the theoretical
curves. The theoretical curve fails to reproduce, however, the left lobe. To be able to
properly reproduce this feature, a larger value of the numerical c3 coefficient is required.
For example, increasing c3 from -0.022 to -0.042 would introduce the left lobe, while keep-
ing the shape of the right part of the plot almost unchanged. It is worth mentioning,
nevertheless, that for the experimentally obtained odd Legendre coefficients, the moduli
are not exactly identical when changing the enantiomer (as one would expect in the ideal
case). If they were, the left lobe in the difference PAD for camphor would be smaller.
Such an artifact of experimental nature, introduces further differences to its theoretical
counterpart, for which a only the sign of the odd Legendre changes, while keeping the
same moduli.
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Figure 10.5: Camphor: Photoelectron angular distributions obtained with left circularly
polarized light for ionization from the state C1 of R-(+)-camphor (left panel) and of S-
(-)-camphor (middle panel), employing the fixed two-photon absorption tensor elements
(dashed green lines) and two-photon absorption tensor elements with ±20% error bars
(solid red lines with black circles). The theoretical curves are compared to those obtained
for the experimentally determined Legendre coefficients of Ref. [265] (blue solid lines).
The differences between the PAD for the two enantiomers are shown in the right panel.
Note that for the experimentally determined Legendre coefficients, the moduli are not
exactly identical when changing the enantiomer. If they were, the lobe on the left-hand
side in the bottom right panel for camphor would be smaller.

10.6 Intermediate state dependence of photoelectron circular dichro-
ism in (2+1) REMPI

Motivated by recent experimental work [302], we study the intermediate state dependence
of the PECD in (2+1) resonance-enhanced multi-photon ionization of randomly oriented
fenchone molecules. In Ref. [302], the experimental Legendre coefficients are averaged
over a set of measurements characterized by a particular central laser frequency. The
central laser frequency can be used as a x-coordinate to plot the corresponding Legendre
coefficients, cj. In detail, the “averaged” Legendre coefficients are calculated according to
the following formula

cj ≡ 〈cj(Ek)〉 =
∫
ω(E)c̃j(E) dE , (10.41)

where ω(E), and c̃j(E) refer to the weight and the j−th Legendre coefficient obtained
with a given the photoelectron energy E, respectively. In Eq. (10.41), Ek denotes the
energy peak of the (Gaussian) distribution ω(E). The calculations are performed using
the weights provided by the authors [303] of Ref. [302]. Further details about the average
procedure (weighting protocol, peak positions and FWHM of the Gaussian weight) are
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found in Sections III.B.1 and III.B.2 of Ref. [302].

The goal of the present work is to test the perturbative approach for a (2+1) REMPI
of randomly oriented chiral molecules developed in Ref. [294] for varying the central laser
frequency. Analogously to Section 10.5, the goal is to answer the question whether we can
infer which orbital is the one populated prior to ionization. The Legendre coefficients c̃j(E)
are obtained with the help of the formalism developed in Ref. [294]. Their “averaged”
counterpart cj ≡ cj(Ek) are obtained using Eq.(10.41). The expansion coefficients a`omo

and tensor elements Tq1,q2 associated with each orbital are obtained in the context of the
ab initio technique described in Ref. [294]. In this section, the orbital 47 correspond to
the state C3 in Section 10.5.1, which was found to be the most likely populated according
to the numerical calculations of Ref. [294]. Here, we extend our previous calculations in
the framework of Eq. (10.41) to the orbital 47 and to orbitals of higher binding energies,
labeled 48 to 51.

The scan of the laser wavelength performed in the experiment is such that it leads
to photoelectron energies ranging from 0.4 to 1.4 eV [302]. These photoelectron energies
serve as a x axis in Fig. 10.6. Experimental coefficients [302, 303] together with the
numerical ones are shown in Fig. 10.6. The numerical results for the orbitals 47 to 50 are
shown in panels (a) to (d), i.e. red and blue data points for the coefficients c1 and c3,
respectively. The same experimental data (gray and green data points) is shown in all
four panels for comparison. As can be observed, there is a sudden jump between 0.9 and
1.0 eV in the experimental data, i.e. a gap between gray and green data points. According
to Ref. [302], this is due to the fact that, in addition to the resonantly excited state in
Ref. [265], another intermediate state of higher binding energy is excited above 1.0 eV.
The low photoelectron spectrum is interpreted to result from excitation an intermediate
state having S character, while the high photoelectron energy part of the spectrum is
generated from excitation of an intermediate state with P character. This interpretation
is corroborated in Fig. 10.6(a). In fact, in the region of moderate photoelectron energy,
i.e. specifically at 0.9 eV, just when the jump is observed, the contribution of both S
and P characters coexists. For the experimental c3, this is reflected by the simultaneous
presence of the gray empty-circles (S-character) and gray filled-circles (P-character). An
analogous behavior is encountered for the c1 coefficients, i.e. it corresponds to the gray
empty-squares (S-character) and their counterparts gray filled-squares (P-character) in
Figs. 10.6(a-d).

We compare the behavior of the theoretical “averaged” coefficients, namely c1(th) and
c3(th) in Fig. 10.6, to the experimental ones. In particular, we focus our attention to the
“low” (< 0.9 eV) and “high” (> 1.1 eV) energy parts of the photoelectron spectrum. In
fact, the region of moderate photoelectron energy (0.9 < E < 1.1 eV.), might be, according
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to Ref. [302], characterized by the contribution from a superposition of two intermediate
excited states that are simultaneously excited while performing the scanning procedure,
which is not reproduced by our model (we would need previous knowledge of the respective
weights, phases). A brief description of the numerical results is outlined in the following:

1. Photoelectron energies up to 0.9 eV:

(a) Orbital 47, cf. Fig. 10.6(a): For c3, it describes the proper signs, order of
magnitude as well as general behavior, i.e. decreasing c3 towards negative
values as the photoelectron energies increases. It starts from positive values
and cross to negatives ones, just as the experimental case [302]. However,
near 0.9 eV, the sign of the averaged (numerical) c3 changes (from negative to
positive again), which is not observed experimentally. This can be explained
under the assumption that close to 0.9 eV, a single orbital might not contribute
alone, to the photoionization process [302]. For c1, the general tendency is
qualitatively reproduced, i.e. increasing values as the photoelectron energy
increases, despite, however, some differences in sign near 0.85 eV.

(b) Orbital 48, cf. Fig. 10.6(b): For c1, it describes proper signs as well as
the behavior of increasing values as the photoelectron energy increases. It
presents, however, a more oscillating character, compared to that obtained
with the orbital 47. For c3, it also reproduces the overall tendency, however, it
conserves mostly a positive sign over the interval, which is not the case in the
experimental case.

(c) Orbital 49, cf. Fig. 10.6(c): For c1 , it starts with the wrong tendency, but it
redress itself to the proper one after ≈ 0.5 eV. From 0.5 to 0.85, it reproduces
the experimental order of magnitude, signs and behavior, i.e. increasing values
of c1 as the photoelectron energy increases. For c3, it reproduces the overall
tendency, i.e. c3 decreases as the photoelectron energy increases, however, and
analogously to orbital 48, c3 keeps positive values almost over the entire do-
main, contrary to the experimental ones, that cross from positives to negatives
values as the photoelectron energy increases.

(d) Orbital 50, cf. Fig. 10.6(d): For c1, it starts with the wrong sign and wrong
slope/tendency. It matches the experimental signs in general, however, the
tendency is far different from the experimental case. For c3, the overall ten-
dency is reproduced, i.e. c3 decreases as the photoelectron energy increases,
however, it conserves positive sign almost over the entire interval, which is
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in contradiction to the experimental data. Orbital 51 suffers from the same
limitations and has not been included in Fig. 10.6.

(e) Conclusion: Taking into account the lines above, we conclude that among all
orbitals here considered, it is the orbital 47 the one that reproduces (qualita-
tively) the best the experimental results.

2. High photoelectron energies > 1.0 eV.

(a) For the sake of comparison, we define the following properties,

i. Experimental 3P1 band: (i) the c1 coefficients are small (amplitude)
and negative (sign) over the entire interval. (ii) On the contrary, the c3

counterparts are positives and of the same order of magnitude.

ii. Experimental 3P2 band: (iii) Both, c1 and c3 have positive values, and
are of the same order of magnitude.

(b) Orbital 47: The numerical c1 takes mostly negative values as the photo-
electron energy increases (from moderate to high energies), while c3 oscillates
changing sign with a tendency of becoming larger as the photoelectron energy
increases. This is in contradiction to properties (i), (ii) and (iii). Therefore,
orbital 47 (alone) fails to reproduce either the 3P1 nor the 3P2 bands.

(c) Orbital 48: Both, c1 and c3 have a similar behavior– starting with negative
values, they become positive and then negative again. This does not reproduce
properties (i), (ii) nor (iii).

(d) Orbital 49: With the exception of c3 at 1.05 eV (which is fine since we cannot
expect to reproduce the experimental behavior for moderate photoelectron
energies), both c1 and c3 have positive values entire the interval (high energies),
therefore reproducing the property (iii) for the 3P2 band. However, both
coefficients have a stronger oscillatory character, compared to the experimental
counterparts.

(e) Orbital 50: If we consider energies above 1 eV, c1 is negative while c3 is positive.
satisfying property (i) and (ii) for the 3P1 band. However, for energies ranging
from 0.9 to 1.0 eV., (4 calculated points) these properties are not longer fulfilled,
because the sings of c1 and c3 differs from the experimental ones. Also, their
behavior differs from the experimental counterparts for higher photoelectron
energies.

To summarize, we find that, among all orbitals considered in the present calculations,
orbital 47 reproduce the best the experimental points, but only for the low energy part
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Figure 10.6: Intermediate state dependence of PECD: Numerical averaged c1 (red-
squared lines) and c3 (blue-circled lines) coefficients (in percentage of c0) for orbitals 47
to 50 shown in panels (a) to (d), respectively. Experimental data [302, 303] corresponds
to all gray and green data points. For comparison, the same experimental data are shown
in all four panels.

of the spectrum. In fact, it reproduces (semi) qualitatively orders of magnitude, sign
and general behavior of the experimental coefficients for the 3S band in the lower part of
the photoelectron spectrum. It is to note however, that despite the fact that behavior,
sings and order of magnitude are mostly reproduced, the numerical values, however,
differ from the experimental ones. Regarding the higher part of the spectrum, some
(qualitative) similarities, such that positive signs of c1 and c3, would suggest the orbital
49 to roughly reproduce the behavior for c1 and c3 associated with the 3P2 band. Also
orbital 50 seems to have some points in common with the 3P1 band. The difference with
the experimental points, in both cases, occurs in the medium (to moderate) part of the
photoelectron spectrum. Furthermore, the main difficulty concerns the small magnitude
of the experimental c1 and c3 in the high-energy part of the spectrum. Consequently,
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the qualitative agreement is much worse than in the low energy part. Also, the overall
tendency, i.e. the asymptotic behavior for high photoelectron energies differs that of the
experimental data points. It is therefore difficult to make a clear concluding statement
when only a single orbital is assumed to be ionized.

To remedy this, two approaches might be envisioned. On one hand, if we consider
that more than one state indeed contribute to the ionization while performing the laser-
frequency scanning procedure, a full time-dependent description of the (2+1) REMPI pro-
cess becomes unavoidable. This would allow to account for the relative population ratios
and phases between the ionized states which are not described by the theoretical model
presented in this work. In fact, our theoretical description is based on Refs. [264, 265]
where only the (single) resonantly excited state contributes to the photoelectron spec-
trum. On the other hand, a more relevant role of the chirality of the continuum should
be considered. In fact, the theoretical model derived in this work takes into account
only the chiral structure of the bound states. The information about chirality is then
contained in the expansion coefficients and two-photon absorption tensors of the bound
states, while the continuum spectrum is constructed from continuum hydrogenic wave
functions, cf. Eq. (10.6), where their respective phase shift is only `− but not m`− depen-
dent. In fact, the extraction of expansion coefficients and two-photon absorption tensors
are limited by the ab-initio technique utilized in this work, which only allows to have
access to a given range of bound states within a reasonable accuracy [294]. Further-
more, expanding the the molecular continuum wave functions as a linear superposition
of continuum hydrogenic wave functions for a posteriori optimization of the expansion
coefficients is not the best solution, due to the large dimensionality of the optimization
problem. Instead, an alternative approach consists in constructing a m`-dependent phase
shift function and optimizing the m` components of the latter such that the chirality
of the continuum is effectively taken into account, while reducing the dimensionality of
the optimization problem. This is the current direction of this work. This would might
also allow to explain the non-symmetric behavior of the absolute value of the Legendre
coefficients when changing the helicity of the light polarization.

10.7 Conclusion and Remarks

Throughout this chapter, we have derived a theoretical model to study PECD after (2+1)
resonantly enhanced multi-photon ionization in randomly oriented chiral molecules. The
model is based on a perturbative treatment of the light-matter interaction within the
electric dipole approximation. In order to take into account for the Coulomb interaction
between photoelectron and photoion as well as electronic correlations in the transition to
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the intermediate electronically excited state, the model relies on an ab initio description of
the non-resonant two-photon absorption with a single-center expansion of the photoelec-
tron wavefunction into hydrogenic continuum functions. Assuming that the contribution
to the photoelectron spectra is due exclusively to resonantly photoionization of the in-
termediate excited state, the model is constructed upon the assumption of separability
of the 2+1 process into an initial two-photon photoselection step with subsequent one-
photon photoionization. As an extention of the first order time-dependent approximation
of the photoionization dynamics, it naturally neglects all possible static exchanges and
dynamic correlations in the interaction of the photoelectron with the parent ion as well
as the time-dependence of the laser pulse. Based on a single-center expansion of the in-
termediate excited state, possible multi-center character of the continuum wavefunction
are neglected. Despite these approximations, the model has shown to not only to cor-
rectly reproduce the basic symmetry behavior expected under exchange of handedness and
exchange of light helicity, but also to satisfactorily reproduce experimental data, improv-
ing the current theoretical attemps to reproduce, at least quantitavely, the experimental
observations.

The potential of the model has been tested to sucessfully verify the parity transfor-
mation under parity and helicity exchange experimentally observed. Making use of the
symmetry properties of the Wigner 3j symbols, reflecting the fundamental selection rules
for two-photon absorption and one-photon ionization, we have shown which Legendre co-
efficients may be expected in the photoelectron angular distributions, depending on the
basic geometric properties in the electronic structure of the molecules as well as the pos-
sible combinations of polarization for two-photon absorption and one-photon ionization.
Complementary, we have identified the role of the two-photon absorption tensor and in-
termediate state wavefunction—it is the partial wave decomposition of the latter which
determines PECD whereas the two-photon absorption tensor (in the electronic dipole
approximation) merely introduces an anisotropic distribution of photoexcited molecules.
Notably, the anisotropy is achieved by selection and not by rotational dynamics which
would occur on a much slower timescale than that of femtosecond laser excitation.

As an application, we have tested our theoretical framework to fenchone and camphor,
which have been studied extensively in recent experiments [264, 265, 267–269]. The ab
initio calculations employed the coupled cluster method as well as density functional
theory. Due to the Rydberg-like character of the intermediate electronically excited state,
diffuse basis functions needed to be added to the standard basis sets. This has allowed to
reach a reasonable agreement with experimental values for the excited state energies.

Electronic structure data has been utilized to calculate the photoionization cross sec-
tion. Accounting for the basic structure of the two-photon absorption tensor alone has
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already allowed us to qualitatively reproduce the experimental results for fenchone and
camphor. Among the minimal requirements to reproduce PECD, a contribution of d-
waves in the intermediate electronically excited state is crucial. Such a contribution can
be expected if the two-photon absorption tensor is anisotropic. Overall, employing the
ab initio data in the calculation of the photoelectron angular distribution, allowed us to
semi-quantitatively reproduce the experimental Legendre coefficients characterizing the
photoelectron angular distribution.

Despite the simplicity of the model herewith constructed, the satisfactory agreement
with experimental data encourages a number of follow-up studies. It is to note, never-
theless, that a fully time-dependent description should be employed, following the lines
of Ref. [304], because the photoelectron angular distributions depend on the polarization
as well as the dynamics [301]. Based on the model developed here, an extension to time-
dependent studies is straightforward, but will require substantial numerical effort. Such
time-dependent simulations will then be possible to model excitation where the pump
and ionization pulses occur at a time delay such that the intermediate state structure
and dynamics as well as possible non-radiative relaxation pathways can be probed. A
time-dependent extension of the basic model presented here will also allow to investigate
the dependence of the photoelectron angular distribution on the laser parameters, includ-
ing intensity, central frequency, spectral bandwidth and varying polarization. The latter
being of great interest, since it will consolidate a first step towards the coherent control
of PECD.

As important as taking into consideration time-dependent effects, it is worth to men-
tioning that the electronic structure treatment on which our model has been tested, may
be improved. In particular, the multi-center character of the continuum wavefunction
should be accounted for by employing Dyson orbitals, for instance, in the calculation of
the photoionization cross section [292, 305–307].

As for the time-independent structure of the model, a perturbative treatment of the
static exchange for the photoelectron as well as an extension to beyond the electric dipole
approximation should be envisaged and straightforward to implement. While the former
would allow for a detailed study of the dependence of the angular distribution on the
photoelectron energy, including low photoelectron kinetic energies, the latter would allow
for a unified theoretical treatment of further observables beyond PECD, such as circular
dichroism in laser mass spectrometry of photoions [308–310], as well as comparison with
different levels of electronic structure theory [311].
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11.1 Introduction

11.1.1 Brief review of atomic parity-nonconservation (PNC)

The standard model of unifying the electromagnetic and the weak interaction predicts
parity nonconservation (PNC) in atoms. Such violation of parity arises from interfer-
ence between the neutral weak and electromagnetic interactions induced by neutral cur-
rents [312, 313]. It results in a mixing of atomic eigenstates with opposite parity [313–
316]. Three decades after Eugene Wigner formalized the principle of conservation of
parity [317], pioneering work on electron scattering by Zel’dovich [313] suggested that
parity might not be conserved and that it would lead to a mixture of atomic levels of
different parity. A more detailed and comprehensible theoretical analysis in the language
of low energy physics was presented in 1974 by Marie-Anne Bouchiat and Claude Bouch-
iat [314, 315]. The current interpretation of the weak interaction is based on the exchange
of weak neutral Z0 bosons between the electrons and the nucleus of the atom [318]. Quan-
tum electrodynamics (QED) prohibits the existence of electric dipole moments between
atomic states of equal parity. However, the weak Z0 exchange interactions violates this
rule and grant same parity states a small non-vanishing electric dipole amplitude. Partic-
ularly for atomic systems, the perturbation describing the short-range weak interaction
between the nucleus and the (outermost) electron can be mathematically defined by means
of the point-like parity-violating scalar potential ĥpv(r) [319]. In the non-relativistic limit,
the single-electron form of the latter reads [314, 315]

ĥpv(r) = GF

4
√

2me c
Qω σ̂ ·

[
p̂ δ3(r) + δ3(r)p̂

]
, (11.1a)

where me symbolizes the mass of the electron, c the speed of light, and where σ̂, p̂ and r̂
refer to electron’s spin, momentum and position operators, respectively. For molecular sys-
tems, the effective description of the PNC potential, accounting for additional degrees of
freedom, reduces to a scalar effective point-like expresssion analogous to Eq. (11.1a) [320–
322]. In Eq. (11.1a), GF denotes Fermi’s constant which is given by

GF ≈ 3× 10−12mec
2
(

h

mec

)3

(11.1b)

= 3α× 10−12 a.u. (11.1c)

with α = 1/137.035999139(31), the fine structure constant1. Finally, the so-called weak
charge Qw is a model-dependent dimensionless constant that represents the most general

1also known as Sommerfeld’s constant. Although it is often referred to as a physical fundamental
constant, noticeable evidences for its cosmological evolution can be found in e.g. Ref. [323].
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form of a zero-range parity violating potential (where the nuclear and spin momenta have
been neglected) and that is invariant under time reflection [314]. It can be derived from
the Weinberg model [324] and to lowest order reads

QW (N,Z) = −N + Z(1− 4 sin2(θW)) , (11.1d)

where θW is the weak mixing angle, often referred to as Weinberg angle, and where N and
Z refer to the number of neutrons and protons, respectively. In particular, QW ≈ −75 for
cesium [319]. The perturbation caused by the weak interaction leads to an admixture of
atomic levels with opposite parity. The matrix elements defining such admixture can be
straightforwardly evaluated. In fact, because the short-range weak Hamiltonian is a scalar
operator that can be very well approximated by a “point-like” operator in position as de-
fined in Eq. (11.1a)– which is a good approximation particularly for atomic systems [319],
it can only couple different parity states with ` = 0 and ` = 1 with the same total angular
momentum j = 1/2 and with the same projection mj = 1/2. The non-vanishing matrix
elements of ĥpv in the (`, j) basis read [314, 315, 319]

〈nS1/2|ĥpv|n′P1/2〉 = 3i
16πmec

(
GF√

2

)
QW (N,Z)

×Rn,`=0(0) ∂

∂r
Rn′,`=1(r)

∣∣∣∣∣
r=0

, (11.2)

where Rn,`(r) refers to the radial wavefunction associated to the state with principal
quantum number n and orbital angular momentum `. Defining the perturbed states as
˜|noS1/2〉 and ˜|n1P1/2〉, in contrast to the unperturbed counterparts |nS1/2〉 and |n′P1/2〉,

the first order time-independent perturbation expansion gives the correction, due to ĥpv,
that contains the mentioned admixture, namely

˜|nS1/2〉 = |nS1/2〉+
∑

n′

〈n′P1/2|ĥpv|nS1/2〉
εnS1/2

− εn′P1/2

|n′P1/2〉

+
∫ ∞

0
dε
〈εP1/2|ĥpv|nS1/2〉

εnS1/2
− ε |εP1/2〉 , (11.3a)

where εnS1/2
< 0, and εn′P1/2

< 0 refer to the eigenenergies for bound S1/2 and P1/2 states, re-
spectively, whereas ε > 0 refers to their counterpart positive valued energies for continuum
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states. For ` = 1, j = 1/2, i.e. P1/2 states, the perturbed states take the form,

˜|nP1/2〉 = |nP1/2〉+
∑

n′

〈n′S1/2|ĥpv|nP1/2〉
εnP1/2

− εn′S1/2

|n′S1/2〉 (11.3b)

+
∫ ∞

0
dε
〈εS1/2|ĥpv|nP1/2〉

εnP1/2
− ε |εS1/2〉 .

It can be noted from Eq. (11.3), that the weak interaction violates parity by transferring
a (small) amount of the P1/2 character to all S1/2 states and vice-versa. The mixing
amplitude between states of different parity is remarkably small. In fact, the leading
terms characterizing the parity admixture are of the order of 10−11 (or smaller) in the
case of cesium and depend on the principal quantum numbers n and n′. Hence, by virtue
of such “parity transfer” between states of opposite parity, parity-based electric dipole
E1 and non-relativistic magnetic dipole M1 transition moments are no longer strictly
forbidden. In particular, E1 electric dipole transitions of the type |nS〉 → |n′S〉 are
henceforth (weakly) allowed. In fact, the admixture of opposite parity states results in an
extremely small E1 electric dipole transition amplitude between states of the same parity,
for instance[315],

EPNC(n, n′) = eµ ˜〈n′S|d̂|ñS〉 (11.4)

= eµ
{∑

n′′

(
〈n′S1/2|d̂|n′′P1/2〉〈n′′ P1/2|ĥpv|nS1/2〉

EnS1/2 − En′′P1/2

)

+
∑

n′′

(
〈n′S1/2|ĥpv|n′′P1/2〉〈n′′P1/2|d̂|nS1/2〉

En′S1/2 − En′′P1/2

)}
,

where eµ refers to the polarization direction of the driving field, ĥpv the short range scalar
parity-violating potential, cf. (11.1a), and d̂ = −|e|̂r the dipole operator, and where the
summation is carried out over the bound and unbound states [314, 315]. It is this violation
of the standard selection rules that is typically exploited in PNC experiments[314–316,
319, 325–329] despite the fact that the order of magnitude involved in such measurements
is extremely challenging even for the best techniques.

In 1974 the Bouchiat’s demonstrated that the mixing amplitude between states of
different parity is proportional to the cube of the atomic number Z [314, 315]. The
amplitude of the parity-mixing being extremely small, the Z3-law greatly favors heavy
atoms for the measurement of such extremely small PNC effects. Hence, they proposed
low-energy experiments in heavy atoms, taking cesium (Cs) with Z = 55 and thallium
(Tl) as a paradigms, establishing a new era for the test of the standard model with AMO
physics in the low-energy regime. However, even for Cs with Z = 55, the amplitude of



201 11.1 New approach for the observation of electroweak parity violation effects

the admixture is extremely small and consequently the weak EPNC(n, n′) transition is
extremely small compared to the standard allowed E1 transitions. In detail, for cesium,
the weakly allowed EPNC(n, n′) transitions are of the order of [315]

EPNC(n, n′) ≡ 〈̃7S1/2|d̂z ˜|6S1/2〉
≈ −1.7i× 10−11ea0 , (11.5a)

with n′ = 7 and n = 6 for the doubly forbidden |6S1/2〉 → |7S1/2〉 transition, and

EPNC(n, n′) ≡ 〈̃8S1/2|d̂z ˜|6S1/2〉
≈ −0.65i× 10−11ea0 , (11.5b)

for |n = 6, S1/2〉 → |n′ = 8, S1/2〉 transition, to be compared to ≈ 1ea0 for the |nS1/2〉 →
|n′P1/2,3/2〉 allowed electric dipole E1 transitions. Despite the extremely small amplitude
involved, experimental observation of the fingerprints of the weak interaction is nowadays
possible and can be inferred from the interference between the allowed parity-conserving
and the much smaller parity-violating contributions [314, 316]. Thus, the pioneering
work of the Bouchiats defined an unexplored and complementary approach to high-energy
experiments for the observation of PNC effects. Furthermore, observation of PNC in
atomic systems can be strategically designed to extract valuable information beyond the
standard model, since they are performed to probe mechanisms in a very different regime
from that probed in the framework of high-energy experiments. In this context, low-energy
experiments may be viewed as an alternative model-independent approach to determine
electron-quark weak coupling constants [330].

Typically, the predictions of the standard model are tested by confronting the value
of the forbidden transition predicted by the standard model, that has been referred here
to as EPNC(n, n′), and the same quantity inferred from experimental observations. Given
the extremely small quantities involved in the admixture of opposite parity states, this
comparison unavoidably requires extremely high precision experiments as well as an accu-
rate description of the electronic structure of the species under consideration. Although
PNC effects have been observed in atomic systems other than Cs [316, 325–328, 330]
such as Tl [312], the former is, from a theoretical prospective, of particular interest be-
cause its electronic structure is one of the most accurately known [330]. This results in
a non-negligible reduction in the number of sources of discrepancies. In fact, Cs enjoys
a highly single-electron character having only one S-state electron outside a fully filled
closed shell core [329], rendering the numerical calculations relatively tractable. From an
experimental prospective, the interest of using Cs as prototype – besides enjoying a large
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Z, relies on the availability of a tunable laser at the right frequency to excite the doubly
forbidden |6S1/2〉 → |7S1/2〉 M1 transition as suggested by the Bouchiats [314].

11.1.2 Current approaches to the observation of PNC effects

Atomic Parity violation measurements

As previously discussed, the essence of any PNC experiment relies on the admixture
of different parity states induced by the (weak) parity-violating interaction between the
nucleus and the electrons. As a result, electric dipole E1 transition between states of
the same parity are not longer strictly forbidden, but weakly allowed. Observation of
such a forbidden transitions may concern |nS1/2〉 → |n′S1/2〉 as in cesium or |nP1/2〉 →
|n′P1/2〉 in case of tallium [314]. The question is then how to properly choose n and
n′ to maximize the effect taking into account experimental constraints. In an extensive
work [314], the Bouchiats reviewed a series of preliminary attempts to detect parity mixing
in atomic states and proposed to excite a doubly forbidden magnetic transition such as
|(n− 1)S1/2〉 → |nS1/2〉. In particular, they proposed excitation of the doubly forbidden
|6S1/2〉 → |7S1/2〉 transition in Cesium, mediated by means of one-photon absorption at
λ = 539.5 nm.

The essence of the proposed experiment relies on the excitation of the doubly forbidden
transition |6S1/2〉 → |7S1/2〉 in cesium, followed by fluorescence mediated by stimulated
emission resulting from the decay |7S1/2〉 → |7P1/2〉 . The changes in the polarization
of the of “probe” beam under field reversal are then scrutinized to infer the value of the
weak chargeQW , which provides direct evidence of the PNC effect [314]. The experimental
value is then compared to the theoretical counterpart, predicted by the standard model.

In this context, two experimental approaches have emerged and are historically referred
to as the Paris [325–328] and Boulder [316, 329–331] experiments. Both groups are
constantly improving their measurements in the quest of reducing the signal-to-noise
ratio as well as refining theirs experimental setup to improve the sensitivity of their
measurements [325–327, 330].

In order to distinguish the current approaches and the one we propose in this work,
we start by quoting the principles of the experiment carried out by the Paris group
as described in Ref. [325] and published in 2007. In this recent version of the Paris
experiment, the fingerprints of the PNC is obtained by combining stimulated-emission
detection and asymmetry amplification. In detail, a pulsed 539 nm laser beam is utilized
to excite the “forbidden” |6S1/2,F=3〉 → |7S1/2,F=4〉 hyperfine transition in atomic cesium
together with a longitudinal electric field El, which is applied for a duration of 100ns.
After excitation of the forbidden transition, a weak infrared beam is used to stimulate
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emission on the |7S1/2,F=4〉 → |6P3/2,F=4〉 allowed transition for 20 ns. The propagation
direction of the pump and probe beams are superposed, with same (linear) polarization
direction. The essence of the experiment relies of measuring the change of the probe
polarization associated to the excitation of the forbidden transition. In fact, the cesium
vapor acts on the probe pulse as an amplifier with eigen-axes [325] tilted, with respect to
the polarization of the probe pulse, by a small angle of θpv ≈ 10−6radian [325]. Despite
the small magnitude, θpv is odd under under El reversal, indicating the signature of the
PNC effect.

High-resolution spectroscopy for measurement of PNC in chiral molecules

Another option to explore the PNC effects concerns the energy difference between two
molecular enantiomers due to the short-range parity violating potential, that can also be
exploited to infer the signature of the electro-weak interaction in chiral molecules [322].
In fact, the existence of PNC interaction unequally modifies the energy of the two enan-
tiomers at their equilibrium structure, such that their difference ∆pvE, does not vanish
[332–334].

Analogously to the detection protocols for atomic PNC measurements such as the
Paris and Boulder approaches, proposals for spectroscopic experiments for the detection
of molecular parity violation are nowadays well established [322]. The first proposals were
already based on high-resolution spectroscopy and theorized by the pioneering works of
Quack et al.[321, 322, 332–334]. Because the proposal presented in this work also relies
on a pump-probe spectroscopy, we outline in a few lines, for the sake of transparency, the
experimental principles for the detection of parity violation in chiral molecules.

In a nutshell, the protocol idealized in Refs. [321, 322, 332–334] starts by conceiving a
first (pump) pulse to excite, from the ground state, a molecular eigenstate of well-defined
parity. A second pulse is then introduced to transfer the population of the previously ex-
cited state to a superposition state χ(t) composed of two chiral eigenstates, other than the
ground state. Because χ(t) is not an eigenstate of the molecular Hamiltonian, it evolves,
changing its parity, under the field-free Hamiltonian. “Snapshots” of such parity changes
are obtained as a function of of time, by introducing a third pulse (probe) that probes
the parity-changing wave packet to a (bound) high-lying molecular eigenstate of well-
defined parity. This transition has a time dependent-probability pD(t), which is initially
forbidden by the regular parity selection rules, but becomes allowed due to the changes
of parity of χ(t) [321]. Under this condition, the probability of the “forbidden” high-lying
state to be populated follows pD(t) = sin2(π∆pvE t/h) [321, 332, 333]. This high-lying
state is detected with very high sensitivity by resonantly-enhanced multiphoton ioniza-
tion (REMPI) technique, whose sensitivity is limited by the background signals [321]. In
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practice, the value of ∆pvE being significantly small, the period of the oscillations is of
the order of several seconds. Consequently, in order to mitigate the detrimental effects of
collisions, practical application the detection is restricted to the millisecond time scale and
the corresponding signal fitted according to (π∆pvE t/h)2 [321], which allows to extract
the parity violating energy difference ∆pvE.

11.1.3 New proposal. Basic idea

This section introduces an alternative approach for the detection of PNC effects in a
time-dependent perspective. The essence of our approach exploits the versatility of pho-
toelectron spectroscopy [135] that allows to extract valuable information on the photoion
by scrutinizing the properties of the photoelectron momentum distributions. In fact, the
photoelectron momentum distribution contains not only the fingerprints of the interaction
of the electron with the driving electromagnetic field, but also the signature of its inter-
action with the ionic core [135, 137]. Here, the signature of interest concerns the weak
parity-violating interaction described by ĥpv(r). The approach we propose exploits the
weakly induced admixture between different parity states. Extraction of the information
on the underlying PNC is inferred from specific properties in the momentum distribution
of the liberated photoelecton, in particular from the ionization yield.

In detail, a time-dependent pump-probe scheme is envisioned such that the pump
pulse prepares the wave packet in a well-defined superposition of field-free eigenstates.
The field-free eigenstates contain information about the weak interaction described by
ĥpv, since they are perturbed by the latter. The prepared wave packet evolves under the
field-free Hamiltonian during a time interval τp, which defines the time delay between the
pump and the probe pulses. After τp, the probe pulse is introduced to ionize the wave
packet. The resulting photoelectron spectrum is measured, stored and the total yield,
which defines the probability of photoemission, calculated. The procedure is performed
Np times, by incremented values of τp, and repeated Np times with electric field reversal
for the probe pulse. The time-delay difference δτp ≡ τp+1 − τp defines the sampling
rate2 and the stored data (total yield) defines a discretized sample of points (signal) that
oscillates as a function of the pump-to-probe time-delay. The time-delay dependent signal
manifests oscillations containing several frequencies components. They are associated to
(1) the admixture between different parity states caused by the regular dipole allowed
transitions due to the electric field and to (2) those much weaker induced by ĥpv. In
order to separate the parity admixture induced by both sources, both stored signals
obtained with electric field reversal are added up (combined signal). A spectral analysis
of the resulting “combined signal” is performed via Fast Fourier Transform (FFT) and

2subject to the Nyquist-Shannon sampling theorem
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small but well-defined spectral components reveals the signature of the PNC potential.
Importantly, such peaks disappear when the PNC potential is omitted from the equations
of motion describing the interaction of the cesium atom and the driving time-dependent
electromagnetic field. Hence, spectral analysis of the combined signal with observation of
specific frequency components at the “right position” unambiguously indicates observation
of the PNC effect in atomic systems, in this case, in cesium.

11.2 Modeling the cesium atom for observation of PNC effects

11.2.1 Single-active-electron approach with spin-orbit coupling

Accounting for spin-orbit coupling is essential to properly describe the doublet levels of
the cesium atom [335, 336]. In particular, these levels are well determined in the context
of the non-relativistic single-active electron (SAE) approximation with the spin-orbit
term [336], which allows to keep the calculations tractable. Following Ref. [337], only
nuclear-spin-independent PNC effects, i.e. without accounting for different hyperfine
components, are considered in the present work. As alluded to the above, we model
the cesium atom in the context of SAE formalism, previously detailed in Section 3.3,
while incorporating the spin-orbit interaction. Following the notation of Section 3.3, the
effective potential in the framework of the SAE approximation will be referred to as
VSAE(r; j; `). Given the spherical symmetry of the latter [18], it is possible to separate
radial and angular parts. The radial part of the time-independent Schrödinger equation
in atomic units reads [18]

(
− 1

2me

∂2

∂r2 + `(`+ 1)
2mer2 + VSAE(r; j; `)

)
Rn,`,j(r) = En,j,`Rn,`,j(r) , (11.6)

where VSAE(r; j; `) describes the effective screened potential within the frozen-core SAE
picture when the fine structure is resolved. It will be defined later in the text. The general
solution of the time-independent Schrödinger equation, accounting for radial and angular
parts, reads

ψn,`,j,mj
(r) = Rn,`,j(r)

r
Ω(`)
j,mj

(ϑ, φ) , (11.7)

which are eigenfunctions of Ĵ2 and Ĵz, L̂2 and Ŝ2. The second term in the product
represents the functions describing the angular dependency that takes into account the
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fine structure. These correspond to the spherical spinors [143, 314],

Ω(`)
j,mj

(ϑ, φ) =
∑̀

µ=−`

1/2∑

ν=1/2

〈
j,mj

∣∣∣`, µ,
1
2 , ν

〉
Y `
µ (θ, φ)χν , (11.8)

where the terms in brackets are the Clebsch-Gordon coefficients and χν the ordinary Pauli
spinor [314], χν = (δ1/2,ν , δ−1/2,ν)t. Since j = ` + 1/2 or j = ` − 1/2, Eq. (11.8) can be
simplified to a two-component representation,

Ω(`)
`+1/2,mj

(ϑ, φ) =




√
`+mj + 1/2

2`+ 1 Y `
mj−1/2(ϑ, φ)

√
`−mj + 1/2

2`+ 1 Y `
mj+1/2(ϑ, φ)



,

for j = `+ 1/2, and

Ω(`)
`−1/2,mj

(ϑ, φ) =




−
√
`−mj + 1/2

2`+ 1 Y `
mj−1/2(ϑ, φ)

√
`+mj + 1/2

2`+ 1 Y `
mj+1/2(ϑ, φ)



,

for j = l− 1/2. Knowledge of Rn,j,`(r) and Ω(`)
j,mj

(ϑ, φ) allows to evaluate the unperturbed
doublet levels of the cesium atom. It is worth mentioning that given the small admixture
introduced by the PNC Hamiltonian, the perturbed states |̃nS1/2〉 and ˜|n′P1/2〉 can be
evaluated as a perturbation expansion in terms of the unperturbed eigenstates, as outlined
in Eqs. (11.3). Therefore, we first concentrate on the evaluation of the perturbation-free
eigenstates –in particular the radial wavefunctions, and as a second step, use them to
include the corrections due to the weak Hamiltonian ĥpv.

The first step concerns the evaluation of the effective VSAE(r; j; `). To this end, we
utilize a refined version of the statistical Thomas-Fermi theory [338, 339], as prescribed in
Ref. [18]. This approach allows to describe the interaction between the outermost single
electron and the ionic nuclear core [18] by means of an effective potential function while
taking into account the spin-orbit interaction. It relies on the position-dependent spheri-
cally symmetric and semi-empirical effective potential, Veff(r; l) which has been developed
by Marinescu et al. [12] to describe the motion of the valence electron in alkali-metal
atoms. This effective potential depends parametrically on the orbital angular momentum
`, namely [12, 18]

Veff(r; `) = −
[
Zeff(r; `)

r
+ Vpol(r; `)

]
, (11.9a)
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with

Zeff(r; `) = 1 + (Z − 1)e−r a1(`) − r e−r a2(`)
[
a3(`) + r a4(`)

]
, (11.9b)

and where the potential describing the static electric polarizability of the ionic core reads

Vpol(r; `) = αc
2

1− e−(r/rc(`))6

r4 . (11.9c)

Typically, the parameters ap(`), αc and rc(`) need to be optimized, this is, they are
parametrically fitted to reproduce one-electron energies [12, 18]. A further step consists
in introducing the spin-orbit interaction. In order to describe the fine splitting of the
excitation spectrum of the outermost electron of Cs, we follow Ref. [18] and define the
effective spin-orbit term,

VSO(r; j; `) = VSO(r; j; `)
(
1− α2 Veff(r; `)

)2 , (11.10a)

where Veff(r; `) is defined in Eq. (11.9a) and

VSO(r; j; `) = α2 1
r

(
∂

∂r
Veff(r; `)

)[
j(j + 1)− `(`+ 1)− 3/4

2

]
, (11.10b)

which vanishes for ` = 0. In Eq. (11.10), α denotes the fine structure constant, and j > 0
the total angular momentum, such that j ∈ [`− 1/2, `+ 1/2]. Care should be taken with
Eqs. (11.10), particularly when evaluating the wave function near and at the origin ,
which is required for the matrix elements of ĥpv, cf. Eq. (11.2). In fact, the spin-orbit
expression as defined in Eq. (11.10b) is non-relativistic and therefore not valid at small
radii [336]. Therefore, we follow the guidelines of Ref. [18] and describe the effective
single-electron potential (the parity violating potential is treated separately), by means
of the following expression,

VSAE(r; j; `) =





Veff(r; `), if 0 ≤ r ≤ rSO(`) ,

Veff(r; `) + VSO(r; j; `), if r > rSO(`) ,

(11.11)

where rSO(`), for ` = 1, 2, . . . are optimized in the fitting procedure. The latter, together
with ak(`), αc, rc(`) with k = 1, . . . , 4 defined in Eq. (11.9) are hereafter referred to as
semi-empirical parameters, and need to be adjusted to reproduce the doublet levels of the
cesium atom.



11.2 New approach for the observation of electroweak parity violation effects 208

11.2.2 Evaluation of the radial wave functions

Evaluation of the wave function at small radii

Accurate knowledge of the behavior of the radial wavefunctions at the origin3 of the radial
grid are crucial to properly evaluate the mixing terms. However, the equation for the
radial wave function, as defined in Eq. (11.6) introduces a further numerical difficulty that
concerns the singular nature of the effective potential Veff(r; j; `) at the origin. In simple
terms, numerical integration of Eq. (11.6) becomes extremely unstable for small radii
and information of the radial wave function is completely lost for such short distances,
particularly at the origin. In order to get information of the radial wave function at
the origin while avoiding singular potentials, we follow Ref. [12] and use a logarithmic
grid [340], defined by the transformation x = ln(r) together with a transformation of the
radial wave function that allows the use of the Numerov method [341] for solving the
modified radial equation. It also removes the initial singularity at the origin, therefore
avoiding any kind of numerical instability.

As described in Ref. [12], the use of the logarithmic grid increases the density of
points near the origin, which allows to (potentially) evaluate the wave functions at very
small radii accurately. If the integration needs to be performed within the interval r ∈
[10−14, 3 · 103], for instance, it results in x ∈ [−32, 8] in the logarithmic grid. A further
step consists in parametrizing the original solution, namely Rn,j,`(r(x)), according to the
transformation

ζn,`,j(x) = Rn,j,`(r(x))√
r

. (11.12)

This transformation in conjunction with the logarithmic grid allows to avoid the singular-
ity while accurately representing the radial wave function near and at the origin, which
is of our particular interest. In fact, upon the above transformation, Eq. (11.6) becomes

∂2

∂x2 ζn,`,j(x) =
[

2me

~2 r2(x)
(
VSAE(r(x); j; `)− En,`,j

)
+
(
`+ 1

2

)2]
ζn,`,j(x) . (11.13)

Equation (11.13) can be straightforwardly solved using the Numerov approach [341, 342]
according to the guidelines in Ref. [12], and where

VSAE(r(x)) ∼
r→ 0
− Z

r(x) , (11.14)

3they have non-vanishing values for S-waves due to the absence of the centrifugal barrier for ` = 0,
while for P-waves, they have non-vanishing first derivatives
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is not longer singular since 1/r(x) = exp(−x) with x ∈ [−32, 8] according to our example.
Instead, it can take very large values which are counterbalanced by the r2(x) term that
appears in the rhs of Eq. (11.13). Finally, ζn,`,j(r)/

√
r gives the original radial wave

function Rn,`,j/r required in Eq. (11.7) with the proper behavior at the origin and for
small radii.

Accuracy of the radial wave functions

In references [12, 18], the semi-empirical parameters are fitted to reproduce the one-
electron doublet levels of the outermost valence electron, which are obtained via numerical
integration of Eq. (11.6). In addition to the “properly” fitted semi-empirical parameters,
this procedure gives, upon convergence, the approximated radial wave functions Rn,l,j(r)
and one-electron energy spectrum En,j,`, defined in Eq. (11.6), that reproduces the ground
and excited energies in cesium, for each pair of j and `.

In the context of the effective potentials, however, convergence of the eigenenergies
alone does not guarantee a proper representation of the radial wave function [343], which is
unfortunate for our purposes. In fact, it is apparent from Eq. (11.2) that precise knowledge
of the radial wave functionRn,j,`(r) and of its derivative at the origin is required to evaluate
the matrix elements of ĥpv giving rise to the mixing terms. Here, in an attempt to render
the calculations as realistic as possible, we make a further step and include not only
the one-electron energy spectrum, but also the oscillator strengths [336, 344, 345] in the
fitting procedure. In fact, given the amount of fitting variables, it is quite straightforward
to find two different configurations that give the same energy spectrum, for each j and
`, with slightly different radial wave functions. Imposing additional constraints in the
optimization procedure, namely the oscillator strengths, reduces the degree of freedom of
the fitting parameters. In our calculations, the semi-empirical parameters are optimized
using the procedure described in Ref. [50], by setting a fixed number of optimization
variables, for each j and `. Optimization is carried out by minimizing the Euclidean
distance between the calculated eigenenergies and oscillator strengths with respect to
their experimental counterparts. The values for the experimental energies and oscillator
strengths are taken from Ref. [336] and references therein. Both eigenenergies and radial
wave functions are obtained by solving the radial Schrödiger equation defined in Eq. (11.6)
and iteratively adjusting the semi-empirical parameters until the desired convergence is
obtained. The procedure is independently performed for each set of {j, `} with j = `±1/2,
which gives n converged eigenenergies and radial wave functions. The two-component
spherical spinors [143] together with the converged radial functions Rn,j,`(r) are used to
evaluate the oscillators strengths, following Refs. [336, 344].
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Evaluation of the perturbed eigenstates

The action of the PNC Hamiltonian still needs to be introduced. Once the radial parts
Rn,`,j(r) are evaluated according to Eqs. (11.13) and (11.12), the unperturbed wave func-
tions are obtained in accordance with Eq. (11.7). The perturbed states –which contain
the admixture of opposite parity states, are obtained by introducing the first order cor-
rections of each (unperturbed) partial wave component |n`j〉. This results in the states
|̃nS1/2〉, |̃nP1/2〉, |nP3/2〉, |nD3/2〉, . . . et cetera, cf. Eq. (11.3), which define the eigenfunc-
tions of the field-free Hamiltonian, and that now includes the parity violating potential.
The reason for introducing the PNC potential a posteriori allows for avoiding eventual
systematic errors, that might arise from numerical integration (numerical diagonalization,
Numerov method) of the time-independent Schrödinger equation due to the small value
of effective numerical pre-factor associated with the PNC Hamiltonian in Eq. (11.1a).

11.3 Electron dynamics

In this section, we model the interaction of a cesium atom and an external electromagnetic
field in the SAE approximation while taking into account the PNC potential. We derive
the equations of motion describing the dynamics of the outermost valence electron. The
interaction of the latter with an external radiation field in the strict dipole approximation
reads 4 [314]

Ĥem(t) = −E(t) · µ̂E −B(t) · µ̂M , (11.15)

where µ̂E and µ̂M refer to the electric and magnetic dipole moments, respectively. The
former is defined as µ̂E = −êr with r being the position operator, whereas the latter can be
expressed in terms of the non-relativistic magnetic dipole moment, µ̂0 = −e(L̂+2Ŝ)/2mec,
plus first order corrections due to relativistic and spatial effects, namely [314]

µ̂M = − e

2mec
(L̂ + 2Ŝ) + µ̂rel + µ̂ret . (11.16)

The terms µ̂rel and µ̂ret represent relativistic and retardation corrections to the magnetic
dipole moment µ̂0. While these effects might have a negligible impact on light atoms, they
may be noticeable for cesium [314], in particular for calculations involving photoelectron
momentum distributions such as cross sections [55]. The first such correction is due to the
so-called retardation effects, described by µ̂ret. It originates from the phase difference

4homogeneous electric and magnetic fields over the total volume the are assumed, i.e. E(r, t) ≈
E(0, t) ≡ E(t) and B(r, t) ≈ B(0, t) ≡ B(t)



211 11.3 New approach for the observation of electroweak parity violation effects

between the waves emitted at different points of the atomic volume and it is defined
as [314]

µ̂ret = −k
2r2

6 µBσ̂ , (11.17)

where µB = e~/2me is the Bohr magneton, r the radial coordinate of the valence electron
in the SAE approximation, σ̂ the spin operator and k = 2π/λ the photon wave number [56,
314]. As opposed to the non-relativistic magnetic dipole moment µ̂0, Eq. (11.17) is
r−dependent. As a consequence, the forbidden magnetic dipole transitions defined by
∆n 6= 0, where ∆n = |nf − ni| is the difference between principal quantum numbers
describing the initial ni and final nf states determined by the transition, are not longer
strictly forbidden [314, 346]. Additionally, relativistic effects in heavy atoms such as
cesium also break down the ∆n = 0 selection rule. The relativistic correction to the
magnetic dipole moment is given by [314]

µ̂rel = − 2
3mec2

(
p̂2 − 2Ze2

r

)
σ̂ . (11.18)

Having defined the operators involved in Eq. (11.15), as well as the procedure to obtain the
semi-empirical parameters and the approach to treat the radial part of the wave function,
we are now in a position to solve the time-dependent Schrödinger equation,

i~
∂

∂t
|̃ψ(t)〉 =

(
− ~2

2me

∇̂2 + `(`+ 1)
2me r2 + V̂SAE(̂r; j; `) + ĥpv(̂r) + ε(t) · µ̂elec(̂r) (11.19)

+
[
− e

2mec
(L̂ + 2Ŝ) + µ̂rel + µ̂ret

]
·B(t)

)
|̃ψ(t)〉 .

The field-free eigenstates contain the parity admixture due to the PNC interaction5 and
the time-dependent wave packet is projected as a linear combination thereof, namely

|̃ψ(t)〉 =
∑

n

an(t)e−iε
n
S1/2

t |ñS1/2〉+
∑

n

bn(t)e−iε
n
P1/2

t|ñP1/2〉

+
∑

n

cn(t)e−iε
n
P3/2

t|nP3/2〉+
∑

n,j

dn,j(t)e
−iεn

Dj
t|nDj〉 (11.20)

+
∑

n,j

fn,j(t)e
−iεn

Fj
t|nFj〉+ . . . .

The summation in Eq. (11.20) runs over bound and unbound states and j refers to the
total angular momentum with j = ` ± 1. As in Eq. (11.3a) and (11.3b), ε refers to the
doublet energy levels of the cesium atom, where the upper and lower scripts denote the

5only the eigenstates |̃nS1/2〉 and ˜|n′P1/2〉
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principal and angular momentum quantum numbers, respectively. For unbound states,
the counterpart energy will henceforth be referred to as ε. Inserting Eq. (11.20) into
Eq. (11.19) and projecting both sides of the resulting equation onto field-free eigenstates
allows to obtain the relevant equations of motion for the time-dependent expansion coef-
ficients,

ȧn(t) = i
∑

n′

{
eEz(t)

[
an′(t) e

−iεn′
S1/2

t 〈̃nS1/2|ẑ ˜|n′S1/2〉+ bn′(t) e
−iεn′

P1/2
t 〈̃nS1/2|ẑ ˜|n′P1/2〉

+cn′(t) e
−iεn′

P3/2
t 〈̃nS1/2|ẑ ˜|n′P3/2〉+ dn′,3/2(t) e−iε

n′
D3/2

t〈̃nS1/2|ẑ|n′D3/2〉
]

+By(t) an′(t) e
−iεn′

S1/2
t 〈nS1/2|µ̂M|n′S1/2〉

}
e
iεn

S1/2
t
, (11.21a)

describing the dynamics of the |̃n′S1/2〉 states. The first and second lines in the rhs of
Eq. (11.21a) describe the coupling due to the electric component of the electromagnetic
field in the dipole approximation, whereas the third line arises due to the magnetic com-
ponent. Also, note that by virtue of Eq. (11.3a) and the magnetic dipole selection rules,
we find the following approximation,

〈̃nS1/2|µ̂M ˜|n′S1/2〉 = 〈nS1/2|µ̂M|n′S1/2〉+
∑

m,m′

〈mP1/2|ĥpv|nS1/2〉
εmP1/2

− εnS1/2

×〈m
′P1/2|ĥpv|n′S1/2〉
εnS1/2

− εn′P1/2

〈mP1/2|µ̂M|m′P1/2〉

≈ 〈nS1/2|µ̂M|n′S1/2〉 (11.21b)

and similarly for the |̃nP1/2〉 states. For the ` = 1 states, the dynamics obeys the following
equations of motion,

ḃn(t) = i
∑

n′

{
eEz(t)

[
an′(t) e

−iεn′
S1/2

t 〈̃nP1/2|ẑ ˜|n′S1/2〉+ bn′(t) e
−iεn′

P1/2
t 〈̃nP1/2|ẑ ˜|n′P1/2〉

+ cn′(t) e
−iεn′

P3/2
t 〈̃nP1/2|ẑ ˜|n′P3/2〉+ dn′,3/2(t) e−iε

n′
D3/2

t〈̃nP1/2|ẑ|n′D3/2〉
]

+By(t)
[
bn′(t) e

−iεn′
P1/2

t〈nP1/2|µ̂M|n′P1/2〉

+ cn′(t) e
−iεn′

P3/2
t〈nP1/2|µ̂M|n′P3/2〉

]}
e
iεn

P1/2
t
.

(11.21c)



213 11.4 New approach for the observation of electroweak parity violation effects

and

ċn(t) = i
∑

n′

{
eEz(t)

[
an′(t) e

−iεn′
S1/2

t 〈nP3/2|ẑ|n′S1/2〉+ bn′(t) e
−iεn′

P1/2
t 〈nP3/2|ẑ ˜|n′P1/2〉

+
∑

j′
dn′,j′(t) e

−iεn′
Dj′

t 〈nP3/2|ẑ|n′Dj′〉
]

+By(t)
[
bn′(t) e

−iεn′
P1/2

t〈nP3/2|µ̂M|n′P1/2〉

+ cn′(t) e
−iεn′

P3/2
t〈nP3/2|µ̂M|n′P3/2〉

]}
e
iεn

P3/2
t
.

(11.21d)

for j = 1/2 and j = 3/2, respectively and where 〈nP3/2|ẑ|̃n′S1/2〉 = 〈nP3/2|ẑ|n′S1/2〉.
Finally, a key component of the present work is given by the equation of motion obeyed
by the d-wave components, namely

ḋn,j(t) = i
∑

n′

{
eEz(t)

[
an′(t) e

−iεn′
S1/2

t 〈nDj|ẑ ˜|n′S1/2〉+ bn′(t) e
−iεn′

P1/2
t 〈nDj|ẑ|n′P1/2〉

+cn′(t) e
−iεn′

P3/2
t 〈nDj|ẑ|n′P3/2〉+

∑

j′
fn′,j′(t) e

−iεn′
Fj′

t〈nDj|ẑ|n′Fj′〉
]

+By(t)
∑

j′
dn′,j′(t) e

−iεn′
Dj′

t〈nDj|µ̂M|n′Dj′〉
}
e
iεn

Dj
t
, (11.21e)

which holds for bound and unbound states within the SAE approximation.

11.4 Observation of the PNC via photoelectron spectroscopy

11.4.1 Photoelectron spectrum

The essence of our approach consists in detecting the fingerprints of the parity violation
in the photoelectron spectrum. The probability of photoemission, henceforth referred to
as total yield, reads

σ(tf ) =
∫ ∞

0
ρ(ε) dε , (11.22)

where ρ(ε) = |˜〈Ψε(tf )|Ψ̃ε(tf )〉|2 is the probability density for photoelectron emission which
is evaluated after a long time tf after the driving field is over, and 〈r ˜|Ψε(tf )〉 is the unbound
part of the propagated wavefunction with energy ε > 0. In particular, for positive energies,
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the probability for the photoelectron to have an energy between ε and ε+ dε reads

ρ(ε) dε = ρ(k) d3k = ρ(k) k2 dk dΩk (11.23)

with k =
√

2ε and dΩk = sin(θk)dθkdφk refering to the solid angle of photoemission and
where

ρ(k) =
∣∣∣∣∣

∫
e−ik·r Ψ(r, tf ) d3r

∣∣∣∣∣

2

, (11.24)

describes the probability distribution in k−space with Ψ(r, t) = 〈r|̃Ψ(t)〉. The state vector
|̃Ψ(T )〉 is obtaining by solving Eq. (11.19) and each partial wave contribution obeys the
equations of motion defined in Eq. (11.21). The photoelectron spectrum is evaluated by
projecting the propagated wave function onto the continuum eigenstates of the field-free
Hamiltonian. We can thus analyze each partial wave contribution independently. For
instance, the d-wave contribution to the total yield reads

σd(tf ) =
∑

j

∫ ∞

0
|dε,j(tf )|2 dε , (11.25)

where dε,j(t) corresponds to the solution of Eq. (11.21e) for positive-valued energies. It
is apparent from Eq. (11.21e) that not only ` = 1 and ` = 3 contribute to the d-wave
component of the total yield, cf. Eq. (11.25), but also ` = 0 contributes, via |̃nS1/2〉, due
to the parity mixing. The latter statement defines the motivation of our approach, and
will be exploited to infer the signature of the PNC potential, which are imprinted in the
photoelectron yield, more specifically, in the d−wave component of the latter.

11.4.2 Single-photon ionization

Single-photon ionization refers to the ejection of an electron from its initial state to the
continuum. Perhaps the most intuitive and naive approach to infer the contribution of
bound ` = 0 states to the d-wave component of the total yield would consist in measuring
the probability of photoemission from the |̃6S1/2〉 ground state in cesium, via single-photon
ionization. In fact, it is apparent from Eq. (11.3a) that non only E1 bound-bound, but
also bound-continuum one-photon transitions of the type ˜|nS1/2〉 → |ε,D3/2〉, are no longer
strictly forbidden, since |̃nS1/2〉 enjoys a small P1/2 component, proportional to γpv, where
γpv refers to the leading term of the mixing amplitude, cf. Eq. (11.3a). For the case of
cesium, it corresponds to the mixing amplitude between the |6S1/2〉 and |6P1/2〉 states,
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and its value is given by

γpv ≡ i
〈6P1/2|ĥpv|6S1/2〉
ε6S1/2 − ε6P1/2

' 4.3i× 10−12. (11.26)

Having stated the general idea, the limitation of such an approach is discussed next. The
initial state is assumed to be the ground state in cesium, namely the |̃6S1/2〉 state. In
order to obtain a clear picture of this approach, and in particular of its limitations, we
consider a harmonic perturbation with frequency ω and we make use of first order time-
dependent perturbation theory to evaluate the contribution of the ground state to the
d−component of the photoelectron yield. The transition probability per unit of time is,
according to the Fermi’s Golden Rule,

P6S1/2→D3/2 = 2π
∫ +∞

0
dε %(ε)

∣∣∣〈εD3/2|ẑ|6̃S1/2〉
∣∣∣
2
δ(ωif − ω) , (11.27a)

where ωif = ε−εi with εi = ε6S1/2 is the ground state energy, and %(ε) refers to the density
of states (included here to account for eventual multiplicities). The transition amplitudes
〈εD3/2|ẑ|6̃S1/2〉 exhibit non-vanishing values due to the parity violating potential and read

∣∣∣〈εD3/2|ẑ|6̃S1/2〉
∣∣∣
2

=
∣∣∣∣∣
∑

n

〈εD3/2|ẑ|nP1/2〉
〈nP1/2|ĥpv|6S1/2〉
ε6
S1/2
− εnP1/2

∣∣∣∣∣

2

. (11.27b)

Accounting only for the dominant term in the summation, defined in Eq. (11.26), allows
to obtain a good estimate for Eq. (11.27b), namely

∣∣∣〈εDν |ẑ|6̃S1/2〉
∣∣∣
2 ≈

∣∣∣γpv
∣∣∣
2 ∣∣∣〈εDν |ẑ|6P1/2〉

∣∣∣
2
. (11.27c)

The transition amplitude in Eq. (11.27c) being proportional to |γpv|2, the contribution
of the ` = 0 state –and thus the fingerprint of the PNC potential is negligible to be
experimentally detected by any available means. Given the extremely weak character of
the parity exchange, an alternative approach must be conceived in the hope of detecting
the fingerprints of the PNC in the photoelectron spectrum.

11.4.3 Pump-probe approach

In an effort to observe the fingerprints of PNC, we show in the following an alternative
approach that allows to describe the contribution of the parity admixture in terms of
|γpv| instead of |γpv|2. To this end, we suggest pump-probe spectroscopy and we define
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the wavepacket prepared by the pump pulse according to

|ψ0〉 = a0 e
−iφ0|ñoS1/2〉+ b0 e

−iφ1|n1P1/2〉+ c0 e
−iφ2|n1P1/2〉, (11.28)

where a0, b0 and c0 are real-valued normalized weights and φj are the phases that depend
on the pump pulse. In practice, we choose n0 = n1 = n2 = 6. The reason for choosing
a superposition involving the perturbed ground |̃6S1/2〉 and one or both P states relies
on the fact that if only the state |̃6S1/2〉 were used and the P states were omitted, the
contribution to the d-wave component of the total yield arising from the relevant one-
photon process would not be sensitive to the pump-to-probe time-delay τp. The same
applies if a D state were defined instead of the P states in Eq. (11.28). If only two (or
more) |̃nS1/2〉 states were used as a linear combination instead, the d- wave component
would indeed be sensitive to the time delay but still proportional to |γpv|2. Thus, choosing
a linear superposition between the cesium ground state and one P state, for instance the
|n1P3/2〉 state, guarantees the d-wave component of the yield to be sensitive to τp while
being proportional to γpv instead of |γpv|2. Hence, introducing one additional states with
regular non-vanishing one-photon transition matrix elements to the d-continuum, e.g. P
states, allows the latter to be modulated and thus carry the small contribution arising
from the perturbed ˜|noS1/2〉, which also can be coupled to the d-continuum via one-photon
absorption. This will become clearer in Section 11.4.4, where the dynamics of the prepared
wave packet is scrutinized by approximating its time evolution in the context of the second
order time-dependent perturbation theory. Additionally, second order processes effects on
the other wave components of the total yield will be discussed in Section 11.4.5.

After the delay τp, the second pulse interacts with wave packet prepared by the pump
pulse. Within this time interval, the dynamics of the prepared wave packet is dictated
by the field-free time evolution, and at time t = τp, for p = 1, 2, . . . the p th probe pulse
finds the wave packet given by

|ψ(τp)〉 = exp
[
− iĤ0 τp

]
|ψ0〉

= a0 e
−i(εn0

S1/2
τp+φ0) ˜|noS1/2〉+ b0 e

−i(εn1
P1/2

τp+φ1) ˜|n1P1/2〉
+c0 e

−i(εn2
P3/2

τp+φ2) |n2P3/2〉 . (11.29)

For a reason that will become clear later, it is ideal for the pump pulse to excite only
one of the D-lines in neutral cesium. This implies that only the ˜|n1P1/2〉 or the |n2P3/2〉
state in Eq. (11.29) needs to be efficiently populated. In the framework of this work,
we have chosen n0 = n1 = n2 = 6, such that, as discussed earlier, the matrix elements
of the PNC Hamiltonian are maximized. The D1-line in cesium is characterized by an
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energy separation of ωD1 = ω6
P1/2
− ω6

S1/2
= 894 nm while the D2-line corresponds to

ωD2 = ω6
P1/2
−ω6

S3/2
= 852 nm. To efficiently create a linear superposition between only the

6S1/2 and 6P3/2 states, for instance, a resonant laser excitation at ωD2 with a bandwidth
∆ωFWHM < 42 nm is necessary, which excludes very short pulses. Therefore, we consider
here a combination of both j = 1/2 and j = 3/2 for the P state. Also, note that only the
n = 6 is considered in Eq. (11.28). In fact, the energy separation between the 6S1/2 and
7P1/2 is ω6S1/2−7P1/2

≈ 457.988 nm, and that of the 7P3/2 is ω6S1/2−7P3/2
≈ 455.698 nm,

both well above ωD1 and ωD2. Hence, undesirable population transfer to higher |nPj〉
levels with n ≥ 7 can easily be avoided in practice.

As briefly introduced in Section 11.1.3, our approach consists in inferring the weak
parity admixture, due to the parity violation, from specific properties of the photoelectron
spectrum. The principle of the proposed pump-probe approach rests on detecting the
fingerprint of such parity admixture from the oscillations of the total yield, as a function
of the pump-to-probe time delay. In particular, we seek to observe oscillations of the
d-wave component of the total yield, i.e. σd(tf ) in Eq. (11.25), as a function of τp that
originate from the |̃6S1/2〉 perturbed state. Regarding this point, however, a word of
caution should be particularly stressed. The point to be stressed concerns the role of
the electric field component of the laser field on the observable we are interested in, in
particular one and multi-photon process induced by the electric field.

To illustrate the precautions to be taken, let’s consider, for the sake of simplicity that
the prepared state is obtained upon resonant excitation of the D2 line, with equal proba-
bility density a0 = c0 = 1/

√
2. In this case, not only |̃6S1/2〉 but also the |6P3/2〉 state con-

tributes to d-wave component of the spectrum via one-photon absorption. This means
that, even in the absence of the PNC Hamiltonian, i.e. |̃6S1/2〉 = |6S1/2〉, oscillations of
the photoelectron signal as a function of the pump-to-probe delay are observed. Further-
more, since not only ĥpv but also the electric field component of the laser field couples
states of opposite parity, two-photon excitation from the |6P3/2〉 to the d−continuum can
mimick the contribution of the |̃6S1/2〉, even in the absence of the weak parity-violating
Hamiltonian. Consequently, it is imperative to find a procedure that allows to isolate
the contributions to the spectrum due to the PNC potential from those induced by the
driving field, which also couples opposite parity states.

To this end, we scrutinize the electron dynamics generated by the probe pulse by
approximating the time evolution of the prepared wave packet to second order in time-
dependent perturbation theory in Section 11.4.4.
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11.4.4 Time-dependent perturbation theory. Second order corrections

In order to distinguish the contributions due to the weak Hamiltonian and those due to
the laser field, we approximate the electron dynamics, i.e. the coefficients of the prepared
state in Eq. (11.21) up to a second order in time-dependent perturbation theory. As
previously emphasized, first and second order corrections are required to account for one
and two-photon transitions. The former is required to describe, for instance, the contri-
bution of the |6P3/2〉 state in Eq. (11.28) to the d−continuum, while the latter describes
second order processes, that in the case of the |6P3/2〉 state, compete with the (very small)
contribution of the single-photon excitation from the |̃6S1/2〉 to the continuum. For the
sake of simplicity and to avoid cumbersome notation, only the electric field component
within the strict dipole approximation is accounted for in the perturbation expansion –it
is the admixture of states of different parity mediated by the latter that is in competi-
tion with that caused by the PNC potential. In this sense, the magnetic component6

and quadrupole transitions7 only introduce systematic effects of minor importance in the
overall description.

The second order approximation of the partial yield in Eq. (11.25) reads

σd(tf ) ≈
∑

j

∫ ∞

0
|d(0)
ε,j (tf ) + d

(1)
ε,j (tf ) + d

(2)
ε,j (tf )|2 dε

≈
∑

j

∫ ∞

0

{
|d(1)
ε,j (tf )|2 + |d(2)

ε,j (tf )|2

+ d
(1)∗
ε,j (tf )d(2)

ε,j (tf ) + d
(1)
ε,j (tf )d(2)∗

ε,j (tf )
}
dε , (11.30)

where d(k)
ε,j (tf ) denotes the k−th order correction to the d-wave component of the wave

function with energy ε. In particular, according to the expression of the “prepared” state
in Eq. (11.28) d(0)

ε,j = dε,j(τp) = 0. Higher order corrections are obtained in the standard
fashion, for instance

d
(2)
ε,j (tf ) = ie

∑

n′

∫ tf

τp

{
a

(1)
n′ (t) e−iε

n′
S1/2

t 〈εDj|ẑ ˜|n′S1/2〉

+b(1)
n′ (t) e−iε

n′
P1/2

t 〈εDj|ẑ|n′P1/2〉

+c(1)
n′ (t) e−iε

n′
P3/2

t 〈εDj|ẑ|n′P3/2〉
}
eiε tEz(t) dt (11.31)

6the relativistic magnetic components coupling only states with ∆` = 0 and ∆j = ±1
7 electric-quadrupole E2 transitions only coupling equal parity states with ` = 0,±2 and j = 0,±1,±2,

does not interfere directly with the admixture of different parity states induced by ĥpv and electric-dipole
E1 transitions
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where a(1)(t), b(1)(t) and c(1)(t) refer to the first order correction of the expansion coeffi-
cients. Note that the f states do not contribute to d(2)

ε,j (tf ) since its zeroth and first order
approximations vanish i.e. f (1)

n,j (t) = f
(0)
n,j (t) = 0. The first order approximations are eval-

uated following the same perturbation protocol. For instance, the first order correction
for a(t) reads

a(1)
n (t) = ib0 e

−i(εn1
P1/2

τp+φ1) 〈̃nS1/2|ẑ ˜|n′P1/2〉
∫ t

τp

e
−i(εn1

P1/2
−εn0

S1/2
)t′ E(t′) dt′

+ic0 e
−i(εn2

P3/2
τp+φ2) 〈n0S1/2|ẑ|n′P3/2〉

∫ t

τp

e
−i(εn2

P3/2
−εn0

S1/2
)t′ E(t′) dt′ , (11.32)

where we have made use of the properties 〈ñS1/2|ẑ|̃n′S1/2〉 = 0 if n = n′ and
〈ñS1/2|ẑ|n′P3/2〉 = 〈nS1/2|ẑ|n′P3/2〉,

b(1)
n (t) = ia0 e

−i(εn0
S1/2

τp+φ0) 〈̃nP1/2|ẑ ˜|n′S1/2〉
∫ t

τp

e
−i(εn1

S1/2
−εn1

P1/2
)t′ E(t′) dt′

+ic0 e
−i(εn2

P3/2
τp+φ2) 〈ñP1/2|ẑ|n′P3/2〉

∫ t

τp

e
−i(εn2

P3/2
−εn0

S1/2
)t′ E(t′) dt′ , (11.33)

and analogously for c(1)(t)n and d(1)(t). The first order correction to the quantity of
interest reads,

d
(1)
ε,j (t) = ia0 e

−i(εn0
S1/2

τp+φ0) 〈εDj|ẑ ˜|n′S1/2〉
∫ t

τp

e
−i(εn0

P1/2
−ε)t′ E(t′) dt′

+ib0 e
−i(εn1

P1/2
τp+φ1) 〈εDj|ẑ|n1P1/2〉

∫ t

τp

e
−i(εn1

P1/2
−ε)t′ E(t′) dt′

+ic0 e
−i(εn2

P3/2
τp+φ2) 〈εDj|ẑ|n2P3/2〉

∫ t

τp

e
−i(εn2

P3/2
−ε)t′ E(t′) dt′ , (11.34)

so that the first relevant quantity of interest in Eq. (11.30) becomes

|d(1)
ε,j (tf )|2 = |E0|2

{
a0b0 sin(ω01τp + φ01) Im

[
〈εdj|ẑ ˜|n0S1/2〉

]
〈εdj|ẑ|n1P1/2〉Rε,j

n0S1/2
Rε
n1P1/2

+ a0c0 sin(ω02τp + φ02) Im
[
〈εdj|ẑ ˜|n0S1/2〉

]
〈εdj|ẑ|n2P3/2〉Rε,j

n0S1/2
Rε
n3P3/2

+ b0c0 sin(ω12τp + φ12)〈εdj|ẑ|n1P1/2〉〈εdj|ẑ|n2P3/2〉Rε,j
n1P1/2

Rε
n3P3/2

}

+S
(1)
dc , (11.35)

with S
(1)
dc being a non-oscillating DC component proportional to E2

0 and where we have
defined ω01 = εn0

S1/2
− εn1

P1/2
, ω02 = εn0

S1/2
− εn2

P3/2
and ω12 = εn1

P1/2
− εn2

P3/2
. The relative phases
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are given by φ01 = φ0−φ1, etc. Assuming the probe pulse delayed by τp to be of the form

E(t)z = E0 e
−(t−tp)2/2σ2 cos(ω(t− tp)) (11.36)

with tp = τp + nσ and ideally, n > 5 to avoid any superposition of the pump and probe
pulses, Rε

n,`j′
reads

Rε
n,`j′

=
√

2
∫ +nσ

−nσ
e−t

2/2σ2 cos(ωt′) cos
(
(εn`j′ − ε)t

′
)
dt′ . (11.37)

Note from Eq. (11.35), that even in the absence of the PNC potential, which implies
that only the third line is non-zero, oscillations occurs. The second quantity of interest
in Eq. (11.30) is the norm squared of the second order correction of dε,j(tf ). It has the
following expression

|d(2)
ε,j (tf )|2 = |E0|4 a0b0

{(
cos(ω01τp + φ01) Im

[
G̃∗1,ε,j Rε,j)

]
− sin(ω01τp + φ01) Re

[
G̃∗1,ε,j Rε,j)

]}

+|E0|4 a0c0

{(
cos(ω02τp + φ02) Im

[
G̃∗2,ε,j Rε,j)

]
− sin(ω02τp + φ02) Re

[
G̃∗2,ε,j Rε,j)

]}

+S(2)
dc , (11.38)

Again, the small DC component S(2)
dc is proportional to |E0|4 and has no oscillatory be-

havior. The negligible terms proportional to |γpv|2 have been systematically omitted from
the equation. In Eq. (11.38), the term

G̃k,ε,j ≡ G̃k,ε,j(tf ) =
∑

n

{
Im
[
〈εdj|ẑ|̃nS1/2〉

]
〈S1/2|ẑ|nkPk−1/2〉 (11.39)

×
∫ tf

τp

e
−i(εn

S1/2
−ε)t′

∫ t′

e
−i(εnk

Pk−1/2
−εn

S1/2
)t′′
h(t′)h(t′′)dt′ dt′′ ,

describes the second order process via the weakly allowed transition mediated by ĥpv,
when Im[〈εdj|ẑ|̃nS1/2〉] 6= 0 and where h(t) = e−(t−tp)2/2σ2 cos(ω(t − tp)) is defined in
Eq. (11.36). Finally, the term Rε,j = Rε,j(tf ) given by

Rε,j =
∑

n,j′
〈εdj|ẑ|nPj′〉 〈nPj′ |ẑ|n0S1/2〉

∫ tf

τp

e
−i(εn

P1/2
−ε)t′

∫ t′

e
−i(εn0

S1/2
−εn

P′
)t′′
h(t′)h(t′′)dt′ dt′′ ,

describes the regular dipole allowed second order process. After some cumbersome alge-
bra, we find that the oscillating components in the second line in the rhs of Eq. (11.30)
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Figure 11.1: Schematic representation (not drawn to scale) of the spectral components
of the d-wave contribution to the total yield due to the terms |d(1)

ε,j (τp)|2 + |d(2)
ε,j (τp)|2 and

d
(1)∗
ε,j (τp) d(2)

ε,j (τp) + cc. Note that the much smaller contributions due to ĥpv are overshad-
owed by those due the external electric field when the components are added up.

read

d
(1)∗
ε,j (tf )d(2)

ε,j (tf ) + d
(1)
ε,j (tf )d(2)∗

ε,j (tf ) (11.40)

= E0 |E0|2 b0 c0

{(
cos(ω12τp + φ12) Im

[
Q̃∗1,ε,jKε,j)

]
− sin(ω01τp + φ01) Re

[
Q̃∗1,εKε,j)

]}

+ E0 |E0|2 a0 b0

{(
cos(ω01τp + φ01) Im

[
G∗1,ε,j Fε,j)

]
− sin(ω01τp + φ01) Re

[
G∗1,ε Fε,j)

]}

+ E0 |E0|2 a0 b0

{(
cos(ω02τp + φ02) Im

[
G∗1,ε,jMε,j)

]
− sin(ω02τp + φ02) Re

[
G∗1,εMε,j)

]}
,

where Q̃1,ε,j, Kε,j, G1,ε,j , etc. contain the product of terms describing first and second
order processes. Among these terms, only Q̃1,ε,j appearing in the first line of the rhs in the
above equation vanishes if the PNC potential is not included in the equations of motion.

Isolating the PNC signature

Having defined each term appearing in Eq. (11.30), we now present the strategy that
allows to isolate the PNC effect from that due to the parity mixing mediated by the
electric field. For the present discussion, we will assemble all contributing terms appearing
in Eq. (11.30) into three relevant terms that we have conveniently defined in Eqs. (11.35),
(11.38) and (11.40). These three terms together define the d-wave component of the
photoelectron spectrum defined in Eq. (11.30), and their individual contribution to the
latter is represented in a schematic form in Fig. 11.1. In detail, we first note, according to
Eq. (11.35), (11.38) and (11.40), together with Eq. (11.30), that the d-wave components
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of the total yield oscillates periodically as a function of the pump-to-probe time delay, τp,
i.e. σd(tf ) = σd(tf ; τp), with specific frequency components. The spectral analysis of the
oscillatory time-delay dependent signal reveals the signature of the PNC effect as well
as that due to the electric dipole coupling. In detail, if a discrete Fourier transform
of such a signal is performed8, one should expect, according to the first and second
lines in Eq. (11.35), to find small Fourier peaks precisely at ω10 = εn1

P1/2
− εn0

S1/2
, and

ω20 = εn2
P3/2
− εn0

S1/2
, which would be a clear evidence of the fingerprints of the PNC effect.

Indeed, these peaks disappear if |̃6S1/2〉 = |6S1/2〉. The other peak at ω21 = εn2
P3/2
− εn1

P1/2

will be found if both P1/2 and P3/2 states are prepared by the pump pulse. The peak at
ω21 is the signature of the standard one-photon transition from each of the P states to
the d-continuum caused by the E1 dipole transition.

As for the second relevant term in Eq. (11.30), namely |d(2)
ε,j (tf )|2, it also contributes,

although to a weaker extent, to the peaks at ω10 and ω20. This can be clearly seen in
Eq. (11.38) and (11.39). These contributions are attributed to the “forbidden” second
order processes. The above observations concerning the peak contributions arising from
the term |d(1)

ε,j (τp)|2 together with those due to |d(2)
ε,j (τp)|2 are schematically depicted in

Fig. 11.1(a). The small peaks at ωp = εn1
P1/2
−εn0

S1/2
and at ωp = εn2

P3/2
−εn0

S1/2
in Fig. (11.1)(a)

are entirely due to the PNC Hamiltonian. The large peak at much lower frequency
ωp = εn2

P3/2
− εn1

P1/2
, is, according to Eq. (11.35), the signature of the parity mixing due to

the electric component of the electromagnetic field.
The peak contribution due to the mixed terms, cf. Eq. (11.40) is schematized in

Fig. 11.1(b). The terms d(1)∗
ε,j (tf ; τp)d(2)

ε,j (tf ; τp) + cc, which describe the two-photon ab-
sorption process from the P states to the d-continnum, contribute in the opposite way.
This is, the corresponding peak due to the PNC is now located at ωp = εn2

P3/2 − εn1
P1/2,

while the signature of the coupling due to the laser field is now manifested at the (more
prominent) peaks ωp = εn1

P1/2 − εn0
S1/2 and ωp = εn2

P3/2 − εn0
S1/2.

The effective final peak distribution is obtained by adding up the individual contribu-
tions depicted in Fig. 11.1(a) and Fig. 11.1(b). This gives rise to an overlap between peaks
arising from different mechanisms, namely the parity mixing due to the driving electric
field, and the negligible PNC induced admixture of different parity states. Due to small
magnitude of the PNC effect, such peak overlap is detrimental for direct detection of the
PNC effect alone, since the contribution associated to the PNC effect is overshadowed by
the peaks associated to the electric field when both contributions (left and right panels
in Fig. 11.1) are combined.

8 assuming that the sampling rate , i.e. τp+1 − τp, fulfills the Nyquist-Shannon sampling theorem,
this is τp+1 − τp ≤ 1/2νmax, where νmax = ωmax/2π is the highest frequency component of the signal to
be properly resolved
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To remedy this, let us rewrite Eq. (11.30) in the following way,

σd(tf ; τp) = σ
(1)
d + σ

(2)
d + σ

(1,2)
d , (11.41)

where we have defined

σ
(1)
d + σ

(2)
d =

∑

j

∫ +∞

0

{
|d(1)
ε,j (tf )|2 + |d(2)

ε,j (tf )|2
}

(11.42a)

and

σ
(1,2)
d =

∑

j

∫ +∞

0

{
d

(1)∗
ε,j (tf )d(2)

ε,j (tf ) + d
(1)
ε,j (tf )d(2)∗

ε,j (tf )
}
. (11.42b)

The strategy is to separate the peaks due to |d(1)
ε,j (tf )|2+|d(2)

ε,j (tf )|2 and those arising from of
the mixed terms d(1)∗(tf )d(2)(tf ) + d(1)(tf )d(2)∗(tf ), cf. Fig. 11.1. This implies separation
of σ(1)

d + σ
(2)
d and σ

(1,2)
d . Furthermore, it is necessary, for the purpose of experimental

realization, to translate such a separation into a physical observable. Separation of the
peak contribution due to the terms σ(1)

d +σ(2)
d , cf. Fig. 11.1(a), while fulfilling the observable

requirement is achieved by noticing that, for a given τp,

σPNC
d (τp) ≡ σ

(1)
d (τp) + σ

(2)
d (τp)

= 1
2

[
σd(τp; E0) + σd(τp;−E0)

]
, (11.43)

where σd(τp;±E0) = σd(tf ; τp;±E0) refers to d-wave component of the total yield for which
the probe pulse has a peak amplitude of ±E0, respectively.

By construction, σ(1)
d (τp) + σ

(2)
d (τp) in Eq. (11.43) is the quantity that is obtained

by adding the d-wave components of the total yield, σd(τp) obtained under electric field
reversal. This erases all information from regular dipole external field induced second
order processes which manifest themselves in Fourier components located at the same
peak position as those originating from the PNC effect.

Conversely, we may want to isolate the peak contribution due to σ
(1,2)
d (tf ) =

σ
(1,2)
d (tf ; τp), cf. Fig. 11.1(b), while fulfilling the observable requirement. This can be

achieved by subtracting the d-wave components of the total yield σd(tf ) obtained with
electric field reversal, namely

σ
(1,2)
d (τp) = 1

2

[
σd(τp; E0)− σd(τp;−E0)

]
. (11.44)

Given that the expression in Eq. (11.44) is proportional of the matrix elements for two-
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photon absorption, is preferable to measure the observable defined in Eq. (11.43), which
is proportional to the larger one-photon transition matrix elements, as can be seen from
Eq. (11.35).

11.4.5 Effects of second-order processes to the total yield

So far, we have restricted our discussion to the impact of the PNC on the d-
wave component of the photoelectron spectrum and how to isolate the PNC effect
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Figure 11.2: First and second or-
der processes: ”Forbidden” bound-
continuum and bound-bound transitions
due the ĥpv potential. The “forbidden”
bound-bound transitions are utilized by
the regular dipole allowed transition to
populate different wave-components of
the continuum spectrum.

from the laser-induced admixture between dif-
ferent parity states.

The motivation behind this approach re-
lies on the fact that due to ĥpv, the perturbed
|̃6S1/2〉 state can be weakly coupled to the d-
continuum via one-photon absorption. How-
ever, it is apparent from Eq. (11.32) that the
perturbed |̃6S1/2〉 ground state can also be ex-
cited to the (perturbed) S-continuum states
by the same one-photon absorption mechanism.
Thus, one-photon processes reveal not only the
fingerprints of the PNC imprinted in d-wave
component of the photoelectron spectrum, but
also in the s-component of the latter. These
two one-photon absorption mediated mecha-
nisms are schematically depicted by the seg-
ments ˜|noS〉 → |̃εD〉 and ˜|noS〉 → |̃εS〉 in
Fig 11.2, respectively. It is also to note that
not only the perturbed |̃noS〉 can be coupled to
the |εD〉 continuum state, but also to the |nD〉
bound state, which in turn can be

excited via the regular electric dipole allowed transition to the |εF 〉 and |εP 〉 continuum
states. These processes are illustrated by the segments |̃noS〉 → |nD〉 → |εF 〉 and
|̃noS〉 → |nD〉 → |εP 〉 in Fig. 11.2, respectively. Hence, second order processes reveal the
fingerprints of the PNC potential in the p- and f -wave components of the photoelectron
spectrum.

As for the remaining relevant second order contribution, the perturbed ground state
˜|noS〉 with no = 6, can be excited to different perturbed ˜|nS〉 states with no 6= n, which

in turn can be promoted to the ˜|εP 〉 continuum i.e. ˜|noS〉 → ˜|nS〉 → |εP 〉 9 in Fig. 11.2.

9It is straightforward to show that ˜|nS〉 → |̃εP 〉 is equivalent to ˜|nS〉 → |εP 〉 since 〈ñS1/2|ẑ|̃εPj〉 =



225 11.4 New approach for the observation of electroweak parity violation effects

These processes are all proportional to γpv10.
The effects on the total photoelectron yield will be confirmed by the non-perturbative

numerical wave packet dynamics simulation in Section 11.4.6. In conclusion, the finger-
prints of the PNC potential are ultimately imprinted not only in the s− and d−wave
components of the photoelectron spectrum, but in all partial components of the latter.
Thus, it is the entire yield, σtot(τp) that contains the signature of the parity admixture
due to ĥpv, in particular when the intensity of the driving laser field is enough to generate
second order processes. For much weaker fields, the signature is mainly contained in the
s− and d− wave components of the photoelectron spectrum. However, since the ampli-
tude of the oscillations arising from the relevant one-photon processes are proportional to
|E|2, see e.g. Eq. (11.35), it is suitable, given the small amplitude of the parity admixture,
to use moderate-to-intense laser fields to ionize the prepared wave packed. This allows to
observe the PNC signature in the wave components of the photoelectron spectrum that
are populated by higher-order processes.

To summarize, extraction and isolation of the fingerprints of the PNC effect is
achieved by measuring the d-wave component of the photoelectron spectrum (or alter-
natively the total ionization yield) as a function of the pump-to-probe time delay. The
stored data forms a finite sequence of equally-spaced samples. The condition for the time
interval between two consecutive time delays τp and τp+1 are assumed to fulfill the Nyquist-
Shannon sampling theorem and will be given in Section 11.4.6. The procedure is repeated
with electric field reversal for the probe pulse. Ultimately both time-delay-dependent
signals obtained under electric field reversal are added up and Fourier transformed. Ob-
servation of the resulting peaks according to Fig. 11.1(a) irrevocably indicates observation
of the PNC effect.

11.4.6 Numerical results

In the following, we apply the partial wave analysis of the photoelectron spectrum to the
extraction of the PNC signature in the cesium atom. The electron dynamics is obtained
by non-perturbative treatment of the Schrödinger equation. Numerical integration of the
expansion coefficients in Eq. (11.21) is performed by means of the Chebyshev propaga-
tor [152].

As a first intermediate state in the pump-probe process, we consider resonant exci-
tation at the D2 line in cesium. The pump pulse utilized in our numerical simulations
consists of a π/2 pulse with ∆tFWHM = 265 fs. It allows to create the desired super-

〈S1/2|ẑ|εPj〉+O(|γpv|2)
10It is worth mentioning that other possible pathways are possible, for instance |̃noS〉 → ˜|nS〉 → |εD〉

and |̃noS〉 → ˜|nS〉 → |̃εS〉. However, they are proportional to |γpv|2 and thus negligible
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Figure 11.3: Pump-probe spectroscopy: The electron dynamics is started from the
cesium |̃6S1/2〉 ground state and the pump pulse prepares the wave packet as a coherent
superposition of |̃6S1/2〉 and |̃6P3/2〉 states with equal probability (a). After a time-delay
τp the second pulse (b) ionizes the prepared wavepacket (c). The resulting continuum
spectrum is further analyzed to extract the PNC signature. Pump and probe pulses not
drawn to scale (b).

position after a time t0 = (n + 1/2)π/ΩR, where ΩR = 2E0〈6P3/2|ẑ|6S1/2〉 refers to the
Rabi frequency and where n is an integer that is chosen such that t0 ≥ 3∆tFWHM , for a
given E0. The numerical results concerning the preparation of the wave packet are shown
in Fig. 11.3. The electron dynamics is simulated starting from the cesium ground state
|̃6S1/2〉, cf. Fig. 11.3(a) and the pump-pulse interacts with the latter, cf. Fig. 11.3(b).
After the pump pulse is over, the prepared state is in a coherent superposition of |̃6S1/2〉
and |6P3/2〉 states with equal probability. In fact, it is apparent from Eq. (11.35), that
weights a0 = c0 = 1/

√
2 maximize the amplitude of the oscillations. The impact of the

relative phases will be discussed later. Finally, the probe pulse ionizes the prepared wave
packet. At the end of the propagation, both ground and excited state are mostly depopu-
lated, cf. 11.3(c) and the resulting photoelectron spectrum is scrutinized for extraction of
the PNC signature, according to the protocol based on the time-dependent second order
perturbation approximation previously described. To test the validity of our second order
perturbation approach, the electron dynamics is simulated with and without the PNC
potential. As suggested by the rhs of Eq. (11.43), for each time delay τp, the contribution
of the partial wave components to the total yield is evaluated with electric field reversals
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Figure 11.4: Exclusion of the PNC potential: Time-delay dependence of the sampled
d-character of the total yield in (a). Combined signal obtained with field reversals in (b).
Note the no oscillations are present if PNC potential is not included.

and added up. The sampling frequency is given by 1/∆τp with ∆τp = τp+1−τp ≈ 0.012 fs.
The choice of the sampling rate is relevant and a good trade–off between required rate
∆τ and experimental feasibility should be made. For the chosen sampling rate, on one
hand, the Nyquist-Shannon theorem allows to resolve frequencies up to ≈ 170 eV, well
above ωp = ε6

P3/2
− ε6

S1/2
≈ 1.45 eV, which corresponds to the frequency that, according

to Fig. 11.1 we are looking for. On the other hand, such a time delay difference is experi-
mentally achievable [347]. A short 10 fs (FWHM) probe pulse with maximal electric field
amplitude E0 = 41 GVm−1 and circular frequency ω = 2.7 eV is utilized. The reason for
such a short pulse will be motivated later.

Figure 11.4 summarizes the numerical results for which the PNC Hamiltonian is not
included in the equations of motion. As previously discussed, oscillations in the observ-
able σd(τp;±E0) occur, even in the absence of the PNC potential, cf. Fig. 11.4(a). These
oscillations correspond to the one- and two-photon processes that contribute to the pop-
ulation of the d-wave continuum. However, as shown in Fig. 11.4(b), the combination of
the d-components of the yield obtained under field reversal results in a vanishing signal,
well below the machine precision, just as expected.

The same calculation is now repeated with the PNC potential. The results are de-
picted in Fig. 11.5. Although the individual d-wave components σd(τp; E0) and σd(τp;−E0)
resemble those obtained without ĥpv, cf. Figs. 11.5(a) and 11.4(a), their combination under
field reversal now shows, contrary to the previous case, a clear oscillatory structure, con-
firming the validity of the second order perturbation approach. The oscillatory behavior is
shown in Fig. 11.5(b). A discrete Fourier transform of the combined signal, shown bellow,
will confirm that the oscillations correspond to the frequency predicted by the second or-
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Figure 11.5: Inclusion of the PNC potential: Time-delay dependence of the sampled d-
character of the total yield in (a). Combined signal obtained with field reversals in (b).
Note the oscillations are only present if PNC potential is accounted for.

der approximation, namely ω02. Figure 11.5(b) also compares the combined signal under
field reversal obtained with (blue-dotted lines) and without PNC (gray dashed lines). It
is clear that the observed oscillations are a clear evidence of the PNC interaction. These
numerical results reinforce the validity of the perturbative derivations outlined above.
They also confirm the efficiency of the procedure based on the partial-wave analysis of
the combined photoelectron spectrum under field reversal. Such a procedure, as confirmed
by the numerical simulations, allows to eliminate the contribution, at the relevant peaks,
originating from the regular dipole coupling due to the probe pulse and extract only the
one of interest. Thus, the signature of the PNC potential is entirely extracted from the
electron dynamics.

At this point, an important observation is worth being considered. According to
Eq. (11.35), it is the frequency components of the oscillations in the combined signal
σd(τp; E0)+σd(τp;−E0), not its amplitude, that unambiguously defines the fingerprints of
the PNC effect. In fact, the amplitude of the oscillations of the combined signal is not
uniquely characterized by PNC but also depends on the driving time-dependent electric
field. The peak positions, however, are field-independent11, and only depend on the
states involved in the ”prepared” wave packet. To expand this observation, let us consider
Fig. 11.5(b). It is clear that the amplitude of the oscillations observed in Fig. 11.5(b) is
rather small. This is largely, but not uniquely due to the weak strength of ĥpv and the
admixture contained in the term Im

[
〈εdj|ẑ ˜|n0S1/2〉

]
in the rhs of Eq. (11.35), which is

rather small. This small value, however, is multiplied by the integral factors defined in

11for a non-zero electric field and for a non-zero PNC effect, i.e. γpv 6= 0
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Figure 11.6: Electric field parameters: Amplitude of the oscillations due to the PNC
interaction as a function of the driving electric field FWHM and circular frequency for
a fixed maximal field amplitude of E0 = 7.65 GVm−1 of the probe pulse. Short pulse
durations at low photon energies increases the oscillation amplitude of the combined signal
(a). For longer pulse durations (smaller spectral bandwidth) at higher photon energies, the
amplitude of the PNC signal is weaker, which is detrimental to its observation. Conversely,
a small enhancement can be obtained at photon energies lying in the 12−15 eV range for
a pulse duration of FWHM of about 8− 10 fs (b). The “best” field parameter are those
for which both |6S1/2〉 and |̃6P3/2〉 are ionized and thus contribute to the photoelectron
spectrum.

Eqs. (11.37), which are field-dependent. Hence, it is the product of the PNC effect and
the field-dependent integral in Eq. (11.35) that ”effectively and ultimately” defines the
amplitude of the oscillation. In this context, we can ask whether specific electric fields
may ’enhance’ the value of the integral factors so that the peak height in Fig. 11.5(b) is
increased.

In a attempt to find a good choice for the electric field parameters that increase the
amplitude of the oscillations in Eq. (11.43), we evaluate the amplitude as a function of
the circular frequency, FWHM and maximal peak amplitude of the probe pulse. From
Fig. 11.6 it is apparent that for a fixed peak field amplitude of E0 = 7.65 GVm−1, it is
possible to enhance the chances for the observation the PNC effect by means of short pulses
at low photon energies. A further analysis confirms that the best field parameters are those
for which both |̃6S1/2〉 and |6P3/2〉 bound states defining the ”prepared” wave packet are
highly ionized via one-photon absorption. In fact, the spectrum of long pulses (> 6 fs) at
high photon energies (> 5 eV) does not simultaneously overlap with the ionization energies
of the ground |̃6S1/2〉 and |6P3/2〉 states. However, simultaneous ionization of both states is
achieved by employing shorter pulses (broader spectrum) with FHWM ranging from 1 to
4 fs and photon energies up to < 5 eV, which guarantees such an overlap. Consequently,
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Figure 11.7: (a) Combined signal σd(τp; E0)+σd(τp;−E0) for a linear superposition between
the states |6S1/2〉 and |6P3/2〉 (solid lines) and between the states |6S1/2〉 and |7P3/2〉
(dashed-dotted lines) for a fixed probe pulse. Spectral analysis of the combined signal
for the different configurations for the prepared state |ψ0〉 = (|6S1/2〉+ |n2P3/2〉)

√
2, with

n2 = 6, 7, 8, 9 and 10 in (b).

both states are ionized and thus contribute to the d-component of photoelectron spectrum
via one-photon ionization. Ultimately, for shorter pulses (FWHM < 1 fs), second order
processes are favored, which weakens the strength of the relevant one-photon “forbidden”
excitation to the d-continuum. In particular, this is detrimental to the “forbidden” s-to-d
bound-continuum transition of interest. Therefore, intense and short (10 fs) femtosecond
pulses at photon energies not exceeding 5 eV are used for the numerical calculations.

It is worth mentioning, however, that the enhancement due to the probe-pulse pa-
rameters eventually reaches a saturation limit, which is of course only determined by
the magnitude of γpv, thus by the strength of ĥpv, which depends on the atomic system
under consideration. Note also that the numerical simulations for the pump-probe ap-
proach with the prepared state defined in Eq. (11.28) confirms the linear dependence on
the PNC mixing amplitude predicted by the time-dependent second order perturbation
approximation of the measured signal. Hence, the observation of the PNC effect in the
photoelectron spectrum is only proportional to γpv for the case of the superposition in
Eq. (11.28), instead of |γpv|2 which characterizes the one-photon ionization from the 6S1/2

cesium ground state alone.
So far, a linear superposition between the states |n0S1/2〉 and |n2P3/2〉 with n2 = n0 = 6

has been considered. In Fig. 11.7, the role of the |n2P3/2〉 state in the linear superposition
prepared by the pump pulse is further investigated. Figure 11.7(a) compares, for a fixed
probe pulse, the amplitude and frequency of the oscillations for n2 = 6 and n2 = 7. It
is apparent that the amplitude of the oscillations is smaller for the n2 = 7 case and that
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the corresponding signal oscillates faster compared to that related to the n2 = 6 case.
The difference in amplitude can be explained by the characteristics of the pump field,
as previously discussed. In fact the perturbed state |̃6S1/2〉 is kept the same for both
scenarios. Thus, changing |n2P3/2〉 may reduce the efficiency of the probe pulse to ionize
the |n2P3/2〉 state, compared to the efficiency to ionize the n2 = 6 state.

However, the oscillation frequency is electric field-independent and only depends on
the states involved in the linear superposition. In fact, the difference in frequency between
the n2 = 6 and n2 = 7 in Fig. 11.7(a) is straightforwardly explained by the second order
time-dependent perturbation approximation in Eq. (11.35), where the combined signal
oscillates as a function of sin((εn2

P3/2
− ε6

S1/2
)τp). The energy separation for both cases

corresponds to ε6
P3/2
− ε6

S1/2
≈ 1.451 eV and ε7

P3/2
− ε6

S1/2
≈ 2.712 eV. Therefore, faster

oscillations are expected for n2 = 7, compared to the n2 = 6 case.

Analogously to the n2 = 6 case, the position of the peaks coincides with that predicted
by the second order time-dependent perturbation theory. Also in Fig. 11.7(b) are shown
different peak positions for several n2. Every time, the peak position for different n2

obtained by numerical simulation coincides with that predicted by the our model. We also
stress that the oscillations, and therefore the frequency components of the combined signal
σd(τp; E0) + σd(τp;−E0) are completely absent when the PNC potential is not included in
the total Hamiltonian. This is important in order exclude any possible contribution
due to the admixture of different parity states induced by the electric component of
the laser field. Hence, observation of such peaks at the ”right position” is a clear and
unambiguous indication of the observation of the PNC effect. As schematized in Fig. 11.2,
the fingerprints of the PNC admixture revealed by one-photon processes are imprinted in
the s− and d components of the photoelectron spectrum. In addition, the PNC interaction
can also be revealed by higher order processes. When second order process becomes
important, p− and f− wave components of the photoelectron spectrum also contain the
signature of the PNC potential. Consequently it is not only the d−wave component
but the entire yield that contains the signature of the PNC effect. This is confirmed
by the non-perturbative numerical simulations shown in Fig. 11.8. In detail, Fig. 11.8(a)
shows the time-delay-dependent s−wave component of the photoelectron spectrum (upper
panel) and combined signal (lower panel). The latter is obtained by adding up the s−
components obtained under electric field reversal. Analogously, d−wave components of
the photoelectron spectrum, cf. Fig. 11.8(c), also contains the PNC fingerprints. Both
s− and d− components of the total yield are revealed by one-photon absorption process.

For second order processes, the PNC signature are imprinted in the p− and f− compo-
nents, as shown in Figs. 11.8(b),(d). As expected, these second-order-induced oscillations
are smaller, although not vanishing, compared to the ones related to the one-photon ion-
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Figure 11.8: Fingerprints of the PNC potential: Partial s, p d and f−wave components
of the time-delay dependent signal in the upper panels of (a),(b),(c) and (d), respectively.
The corresponding lower panels show the combined signal obtained under electric field
reversal. Fingerprints of the PNC admixture in the partial p and f−components are due
to second order processes. Thus, it is the entire spectrum that reveals the information
about the PNC potential, shown in (e), favoring the possibility of detection as the overall
amplitude is increased. The peak position remains unchanged (f).

ization processes, cf. Figs. 11.8(a),(c). Consequently, the signature of the PNC admixture
is contained in the entire spectrum, cf. Figs. 11.8(e). This favors the chances for exper-
imental detection as the overall amplitude is increased compared to the d−component
alone. Remarkably, the associated peak (frequency component) remains unchanged, as
can be seen in Fig. 11.8(f), the latter being solely determined by the energy difference
of the perturbed |̃6S1/2〉 and |̃6P3/2〉 states defining the prepared wave packet. These
oscillations evanesce when the PNC potential is omitted from the Hamiltonian.

Finally, we consider a prepared wave packet consisting of a linear superposition
involving all three terms in Eq. (11.28). According to Eq. (11.35), Eq. (11.38) and
Fig. 11.1 the combined signal σd(τ ; E0) + σd(τ ;−E0) should be composed of three well
defined frequency components. The lowest frequency corresponds to the energy difference
ωp = ε6

P3/2
− ε6

P1/2
≈ 0.069 eV and is the signature of mixture of different parity states

caused by the field-induced E1 dipole transition between the S and P states. The higher
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frequency components, on the other hand, are entirely due to the PNC potential and are
located at ωp = ε6

P1/2
− ε6

S1/2
≈ 1.393 eV and ωp = ε6

P3/2
− ε6

S1/2
≈ 1.462 eV. The numerical

results are depicted in Fig. 11.9. The “time-delay” dependence of σd(τp;±E0) has a much
more complicated structure due to the additional low frequency. The lower frequency
of the combined data corresponds to the electric-field induced one-photon processes and
thus its amplitude dominates the data. The remaining two higher frequencies are entirely
due to the PNC effect and thus of considerably weaker amplitude. This observation is
indeed observed in Fig. 11.9. Each peak position, characterizing the two different mecha-
nisms, namely the allowed E1 one-photon processes and the parity admixture due to the
PNC potential are centered at the positions predicted by the second order time-dependent
perturbation theory. Compared to the mixture of different parity states induced by the
electric field component of the laser field, the contribution due to the PNC potential is so
weak that the oscillations of the three-frequency signal, cf. Fig. 11.9(b), dotted-red lines,
are dominated by the contribution of the former. This is, the oscillations due to the PNC
are overshadowed by the contribution due to the electric field and thus not not appreciable
at first glance. Only a frequency decomposition of the combined signal reveals the very
small contribution due to the PNC potential, cf. Fig. 11.9(c).

We also note that the amplitude of the peaks associated to the PNC effect is roughly
one order of magnitude smaller compared to the case defined by only two states in the
prepared state. This can be explained by the weights involved in such a superposition,
i.e. |̃6S1/2〉 contributes less to the d-wave continuum component of the spectrum when
more states are included in the prepared state. As alluded to the above, it is suitable
to generate a pump pulse that prepares a wave packet consisting of a superposition of
|̃6S1/2〉 and |6P3/2〉, followed by a probe pulse that ionizes the prepared wave packet,
making sure that both states in the superposition participate in the population of the
continuum. Experimental feasibility of such superposition is nowadays achievable [348]
and it is discussed more in detail in Section 11.6.

11.5 Relations and differences with previous proposals

Conceptually speaking, PNC-based experiments rely on the observation of the admixture
of different parity states induced by weak neutral currents. Observation of such an ef-
fect is inferred from forbidden transitions that become weakly allowed due to the PNC
potential. Such an observation is the building block of the Paris [325–328] and Boulder
experiments [316, 329–331], as well as the principle for the measurement of parity viola-
tion energy difference in chiral molecules [321, 322, 332–334]. In this respect, our proposal
also seeks for the detection of such a fingerprints, based on the detection of “forbidden”
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Figure 11.9: Fingerprints of the PNC potential: Time-delay dependent d-wave compo-
nents of the total yield in (a). In panel (b), the dashed and filled lines corresponds to the
added (Eq. (11.43)) and subtracted (Eq. (11.44)) signals obtained under field reversals,
respectively. In (c) the spectral component of the added signal is depicted. The much
larger peak at ε6

P3/2
− ε6

P1/2
is due to the admixture induced by the electric field while the

much smaller ones are the fingerprints of the PNC potential.

transitions, but utilizes a very different approach.

In comparison to the Paris experiment [325], that also utilizes cesium as prototype,
our approach does not explicitly populate a forbidden transition via a “pump” pulse, nor
infer such a forbidden population transfer from the change of polarization of the ampli-
fied pump pulse that follows the induced allowed transition as outlined in Section 11.1.2.
Instead of looking at the polarization properties of the stimulated photon emission in
a one-pump-probe step scheme, our approach is based on time-resolved photoelectron
spectroscopy that extracts information about the PNC admixture based on the proper-
ties of the photoelectron spectrum.

With respect to the high-resolution spectroscopy approach proposed by Quack et
al. [321, 322, 332–334], our approach shares a pump-to-probe delay measurement scheme.
However, it does not utilize the probe pulse to explicitly populate a “forbidden” bound
state nor seeks to infer the energy difference that results from the parity violating po-
tential. Regarding this point, the implementation of this approach in the context of our
proposal would be completely hopeless since the lowest order of the energy correction
of the S1/2 and P1/2 states due to ĥpv, scales as |γpv|2. A further difference is that, due
to the small value of ∆pvE, cf. Section 11.1.2, the period of parity change in Quack’s
scheme is relatively large. Thus, that approach is limited by the inherent lifetimes that
becomes relevant at the required time scales. Consequently, the latter scheme is restricted
just to a few milliseconds time window and fit of the signal becomes unavoidable [321].
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On the contrary, no fit procedure is required in the context of our approach. Instead,
the limitation of our technique arises from the small magnitude of the amplitude of the
PNC-induced oscillations, not from constrains imposed by the frequency of these small
oscillations. Furthermore, detection of the PNC signature is inferred from specific fre-
quency components of the photoelectron spectrum and a post-processing technique of the
signal, consisting in adding up the time-delay-dependent yields obtained under electric
field reversal is required to exclude the contributions arising from the parity admixture
caused the driving field. Such a procedure is absent in Quack’s approach.

In summary, our technique differs from the previous proposals but also contains a few
common points from both approaches. With the Boulder and Paris experiments, it shares
the field reversal technique to extract information about the PNC effect. Regarding this
point, it is also worth mentioning that such a technique is widely utilized for the observa-
tion of dichroism in the photoelectron angular distribution, cf. Section 10. In this work,
we have analytically shown why this technique works and gave an complementary solu-
tion for discriminating the contribution due to the electric field component of the laser
field. With Quack’s high-resolution approach for the extraction the the parity violating
energy difference in chiral molecules, it shares the time-resolved pump-probe spectroscopy
measurement principle. These already existent techniques, in conjunction with the photo-
electron spectroscopy-based approach and signal analysis techniques here presented make
our approach a complementary alternative for the detection of PNC effect in atomic and
molecular systems.

11.6 Conclusions and outlook

In this work, we have investigated the effect of the parity violation on the photoelectron
spectrum. Motivated by the Bouchiats’s pioneering work, we have modeled the cesium
atom and utilized it as paradigm system. Ultimately, we have theorized a pump-pump
spectroscopy to identify and extract the signature of the parity violating weak interac-
tion mediated by the exchange of weak neutral bosons between the electrons and the
nucleus [318].

Due to this interaction, small admixture between different parity states occurs. The
information about this admixture is contained in all bound and continuum states and can
be transmitted by an outgoing photoelectron. Therefore, signature of PNC interaction
can be extracted upon inspection of specific properties of the photoelectron spectrum.

However, the magnitude of such admixture (information) is so small that observa-
tion of the PNC effect is challenging for experimental detection. To circumvent this, we
have approximated the time evolution of the prepared wavepacked using second-order
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time-dependent perturbation theory and algebraic manipulations of the photoelectron
spectrum-related quantities enabled us to separate the admixtures due to the PNC po-
tential and those generated by the electric field component of the laser field.

The second order time-dependent approximation allowed us to understand how and
why a pump-probe spectroscopy with a well defined “prepared” superposition of states
allows to dramatically increase the hope for detecting the contribution due to the PNC
potential. In the language of signal transmission, the auxiliary state, i.e. the |6P3/2〉
state, involved in the prepared superposition may be interpreted as a “carrier” that
is modulated by the perturbed |̃6S1/2〉 state which contains the (small) information of
interest to be conveyed. In fact, as we have shown in our derivations, introducing the
auxiliary state allows to write the d-wave component of the photoelectron as a function
of γpv as leading term, instead of |γpv| alone while making the total yield time-delay
dependent. The fingerprint of interest to be conveyed is the PNC interaction and is
extracted from small frequency components in photoelectron spectrum as a function of
the pump-to-probe time-delay. In this configuration, the pump-to-probe time-dependent
“combined signal” defined as the combination of the total ionization signal obtained under
field reversal for the probe pulse is characterized by an oscillatory behavior consisting of
well defined frequencies. Such oscillations are absent if the PNC potential is omitted from
the equations of motion. Thus, spectral analysis of the combined signal with observation
of spectral components at well defined frequencies irrefutably indicates observation of the
PNC effect.

Realization of a coherent superposition exclusively defined by the |̃6S1/2〉 and |6P3/2〉
states in cesium with subsequent ionization is experimentally feasible using currently
available experimental techniques. In a recent experimental work [348], a pump-probe
technique using ultrafast laser pulses was performed for the experimental measurement of
the cesium |6P3/2〉 lifetime. In this experiment, a 852 nm single mode-locked pump pulse
was utilized to excite the |6P3/2〉 state from the ground state while keeping the excitation
of |̃6P1/2〉 negligible [348]. Ultimately, a frequency-doubled probe pulse served to ionize
the population remaining in the |6P3/2〉 excited state. In the context of our proposal
though, it is required that both ground and excited states to be ionized. This can be
achieved by a broadband XUV pulse or by two phase-locked pulses that are spectrally
more narrow.

An actual experimental setup of the proposal presented in this work can be accom-
plished by means of an ion-detection technique that allows to detect single ions generated
as a by-product of the ionization process. To this end, we shall consider a high-repetition
rate femtosecond-laser pulse interacting with a transversal cesium atomic beam, for in-
stance, similar to the experimental setup in Ref. [348]. In detail, the pump pulse prepares
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the state in the desired superposition while a broadband (or two phase-locked) ionizing
probe pulse, delayed by τp, ionizes the cesium atom while making sure that both states
in the superposition contribute to the ionization signal. The resulting photoions are col-
lected and counted. The detection sensitivity of such ion-detection technique is in practice
limited by background signals [321]. To mitigate the background signal, a coincidence de-
tection technique [349] may also be envisaged. However, this will require considerably
larger times of signal accumulation. Given the small contribution to the ionization prob-
ability associated to the PNC potential, which is of the order of σpv ≡ 10−12, a large
number of counts per pulse repetition is needed in order to maintain the accumulation
time, for a fixed pump-to-probe time-delay, τp, reasonable. This demands high-repetition
rate laser pulses as well as high-density atomic cesium beams. High-repetition rate fem-
tosecond laser pulses at 1 GHz are commercially available [350]. Other laser sources with
lower repetition rates can be used, depending on the spectral band needed. At such 1 GHz
repetition rates, 100 ion counts per shot can be obtained with reasonable high-density
cesium beams, along with an accumulation time of 2 min. Thus, in this configuration,
there are 8 − 10 ion counts due to the PNC potential, for a total number of ion counts
of ≈ 1012. These few PNC-induced ion counts oscillate as a function of the time-to-
probe time-delay and can be isolated from the total number of events (total ion counts)
by adding up the photoion signal obtained under electric field reversal. As shown in our
numerical calculations, the period of these oscillations is of the order of Tpv = 1.45 fs.
Hence, a δτp = 0.145 fs time-delay step allows to construct a time-delay dependent signal
containing 10 different points within the oscillation period Tpv. In this scenario, this is,
for 10 time-delays, a total of ≈ 20 min of total signal accumulation is required for a
single statistical measurement. The same procedure needs to be repeated under electric
field reversal for the ionizing pulse. Adding up the time-dependent signals obtained un-
der electric field reversal then reveals the oscillations in the combined signal predicted
by our model. Specifically, the small number of counts that ”survive” the addition of
the photoion signal obtained under electric field reversal are due to the PNC potential
and oscillate as a function of the pump-to-probe time-delay. The frequency components
of the combined signal can be obtained by Fourier transforming the latter, and a single
frequency component at ωpv = 1.49 eV should be found for a superposition involving the
|̃6S1/2〉 and |6P3/2〉 states.

For the statistics, this sequence can be repeated N = 100 times, which gives a partial
count time of 34 hours. Repeating the procedure under field reversal would require a
total of 68 hours of signal accumulation. In this scenario, the measurement error can
be decreased by a factor of 10 as the uncertainty σ decreases as the squared root of
N . Of course, a larger number of repetitions N will be required if the measurement
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error is comparable to the mean of the measurement. If this is the case, the total time
of signal accumulation can be drastically increased. Higher pulse-repetition rates and
higher density atomic beams would considerably reduce the total accumulated count time
for the measurements. To conclude, the technique presented in this work may be viewed
as complementary approach for the detection of PNC effect in atomic and molecular
systems.
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Summary and Outlook
This thesis covered the theoretical description, numerical simulation and quantum opti-
mal control of the electron dynamics of complex systems in the multi-photon ionization
regime. Among the most relevant contributions of this thesis, we have combined quantum
optimal control theory and photoelectron spectroscopy to infer the underlying mechanisms
that allow to manipulate a given photoelectron-related observable. To this end, we have
constructed a non-exhaustive list of optimization functionals to control specific properties
the photoelectron momentum distribution.

Numerical simulation of the electron dynamics of complex systems subject to strong
ionizing pulses becomes computationally demanding, if not prohibited. Not only spe-
cial techniques for time-propagation such as the wave function splitting method (WFSM)
become unavoidable, but also the use of numerically efficient optimization algorithms is
crucial. In this context, we have extended the monotonically convergent Krotov’s op-
timization formalism to the WFSM. The resulting algorithm is designed to take into
account the splitting procedure backwards in time, which is required to construct the
Lagrange multiplier while ensuring the monotonically convergence of the algorithm. Im-
portantly, also the optimization functionals are written in the context of the WFSM,
this is, the final-time cost functionals do not depend on a specific target state, only the
contribution of the outer parts needs to strategically be included in the functional. This
allowed, for instance, to maximize the anisotropy of photoemission and rationalize the
physical mechanism leading to such anisotropy. In this case, we have shown that the
optimized pulses achieve the desired asymmetry by driving the dynamics in such a way
that the photoelectron spectrum is composed of partial wave components which interfere
constructively (destructively) in the upper (lower) hemisphere. Our optimization algo-
rithm also takes into account specific constraints on the optimized field, such as frequency
restriction and smoothness. This makes a substantial contribution for the optimal control
of photoelectron spectroscopy.

To mitigate the numerical effort for propagation even further, we have developed a
highly efficient multi-domain pseudospectral propagation approach for the solution of the
time-dependent Schrödinger equation. Our approach is based on the efficiency of the well-
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established FE-DVR and the Chebychev propagation formalism, which approximates the
time-evolution operator as a polynomial series expansion in terms of the Chebychev poly-
nomials. The propagation method then relies on the efficiency of numerical routines for
sparse matrix-vector operations. For an optimal choice of the pseudospectral grid param-
eters, i.e. large number of grid points with small number of collocation points per element
and large number of elements, our method outperforms the numerical performance of the
Dynamical Fourier Grid Method for time propagation.

In the second part of this thesis, we have shifted the direction of our research from
manipulating the photoelectron momentum distribution, to controlling the hole correla-
tion dynamics. The motivation here was to minimize the decoherence between hole-states
resulting from the transient interaction between the photoion and the outgoing photoelec-
tron. The observable of interest concerned the degree of coherence between hole states,
which defined the final-time cost functional to be maximized. In this case, however,
the expression of the optimization functional does not allow the use of gradient-based
optimization methods. In fact, the gradient cannot be either analytically nor numer-
ically evaluated without compromising the stability of the optimization. Furthermore,
the non-convex character of the functional strongly penalizes the efficiency of gradient-
free methods. To circumvent the well known limitations of gradient-free optimization
methods, we have introduced a sequential parametrization (SPa) update of the pulse
parametrization which was implemented in the framework of the Brent’s principal axis
optimization method. In terms of efficiency, we have shown that the sequential update
technique outperforms their non-sequential counterparts. For argon, our approach allowed
to suppress the decoherence between the 3s and 3p0 hole states and to study the role of
the intra- and interchannel couplings. Interestingly enough, the SPa technique allowed
to find optimized pulses that completely suppress the decoherence even when the tran-
sient interchannel couplings are present. To rationalize our findings, we have study the
photoelectron spectrum and identified that the mechanisms for hole-decoherence suppres-
sion correspond to two different scenarios: (i) three-photon ionization of the 3s orbital
simultaneously with two-photon ionization of the 3p0 orbital for pulses with sufficiently
large spectral bandwidth to render the photoelectrons energetically indistinguishable and
(ii) one-photon ionization of the 3p0 orbital combined with 3s − 3p0 resonant excitation
that fills the created 3p0 hole. Motivated by these results, we have applied the SPa tech-
nique to the suppression of hole decoherence in xenon. In fact, the resonant excitation
mechanism found in argon does not apply to the 4d0 and 5s channels in xenon due to
the electric dipole selection rules. Furthermore, we have exploited the flexibility of the
SPa technique to restrict the frequency components of the optimized pulses in order to
avoid the “trivial” solution of reducing the interaction time between photoelectron and
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ionic hole by increasing the photon energy as discussed elsewhere. In this case, the phys-
ical mechanism that allows to suppress the decoherence, almost completely, relies in the
predominant ionization of 4d0 and 5s electrons into the same final electronic continuum
state with p-character at low photoelectron energies. The mechanism is accomplished by
appropriately combining one- and three-photon ionization of the 5s and 4d0, respectively,
while strongly suppressing single photon ionization of the 4d0 to the f continuum since
this process leads to decoherence. By construction, the optimized pulses produce predom-
inantly slow photoelectrons which leave the photoion with low kinetic energies, in clear
contrast to the “trivial case”. Thus, despited the limitations due to the non-convex char-
acter of the optimization functional, the SPa approach allowed to find an efficient control
mechanism which exploits multi-photon ionization and leads to a noticeable suppression
of the decoherence, even at low photoelectron kinetic energies.

In this work, we have also explored a non-exhaustive list of complementary applica-
tions of photoelectron spectroscopy. In particular, it can be applied to study the most
fundamental properties arising from the spatial distribution of atoms in molecules as well
as interactions at the sub-atomic level, such as molecular chiral activity and atomic parity
violation effects. In the first case, the signature of chiral activity is reflected in the an-
gular distribution of the emitted photoelectrons, which exhibits circular dichroism (CD).
Resonantly enhanced multi-photon ionization is a well-established and appropriate tool
to study CD since it allows to probe specific molecular states and thus rationalize the role
of each of the resonantly excited states that contribute to the ionization process. How-
ever, the role of the intermediate excited state remains yet to be elucidated. Of course,
interpretation of experimental observations in the context of photoelectron spectroscopy
in gas phase requires sophisticated numerical techniques to fully describe the electron dy-
namics of the ionization process. However, at low ionizing photon energies, the dynamics,
and thus the ionization process, can be approximated using perturbation techniques in
the hope of interpreting the experimental observations. These observations typically con-
cern symmetric and antisymmetric properties of the photoelectron angular distributions
under enantiomer exchange or, alternatively, under helicity exchange (reversal). Among
the contributions of this thesis, we have derived a theoretical model to study PECD after
(2+1) resonantly enhanced multi-photon ionization in randomly oriented chiral molecules.
Our model is based on a perturbative treatment of the light-matter interaction within the
electric dipole approximation and relies on an ab initio description of the non-resonant
two-photon absorption with a single-center expansion of the photoelectron wavefunction
into hydrogenic continuum functions. Making heavily use of the symmetry properties of
the Wigner rotation matrices appearing in the analytical expression of the Legendre coef-
ficients, we have shown that the model correctly reproduces the basic symmetry behavior
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expected under exchange of molecular handedness and light helicity. We have applied the
formalism to fenchone and camphor and obtained semi-quantitative agreement with the
experimental data. We have shown that a sufficient d wave character of the electronically
excited intermediate state is crucial to reproduce the experimental observations, namely
correct sign and order of magnitude of the Legendre coefficients while a f character allows
to observe non-vanishing c5 coefficients. A first step towards coherent control of PECD
requires a full time-dependent extension of the basic model presented here, or at least,
inclusion of higher order terms in the perturbation expansion. This is essential in order
to investigate the dependence of the photoelectron angular distribution on the laser-field
parameters. Of the same importance is the multi-center character of the continuum wave
function that should be accounted for by employing more sophisticated techniques such
that, for instance, Dyson orbitals. Ultimately, an extension the light-matter interaction
to beyond the electric dipole approximation should be envisaged and straightforward to
implement for direct comparison with different levels of electronic structure theory.

The asymmetric response of matter to laser fields under electric field polarization re-
versal is not restricted to chiral molecules. In fact, a new application of photoelectron
spectroscopy conceived in this thesis concerns the observation of atomic parity violation
effects, that exploits such asymmetry of response under electric field reversal. Parity
non-conservation (PNC) arises from the interference between the neutral weak and elec-
tromagnetic interactions induced by neutral currents. The current interpretation of the
weak interaction relies in the exchange of weak neutral Z0 bosons between the electrons
and the nucleus of the atom, leading to a mixture of atomic levels of different parity. In this
thesis, we have shown that the information about the admixture of different parity states
can be transmitted by the outgoing photoelectron and thus, signature of PNC interaction
can be extracted upon inspection of specific properties of the photoelectron spectrum.
We have shown that observation of PNC effects via photoelectron spectroscopy requires,
however, a two-fold challenge to be faced. The first challenge concerns the extremely
small magnitude of the admixture. In this regard, we have shown that any attempt to
extract the signature of the PNC effect via ionization from the ground state is, in prac-
tice, hopeless. To dramatically increase the chances of detection, we have conceived a
pump-probe spectroscopy approach. It is based on a strategical preparation of a wave
packet consisting of a coherent superposition of well-defined field-free eigenstates, followed
by ionization. The second challenge consists in separating the parity admixture due to
the weak neutral currents and those induced by the ionizing electromagnetic field. To
this end, we have approximated the electron dynamics of the prepared wave packed us-
ing second-order time-dependent perturbation theory and algebraic manipulations of the
photoelectron spectrum obtained under electric field reversal enabled us to separate the
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admixtures due to the PNC potential and those generated by the electric field component
of the laser field. Combination of the time-delay-dependent signal obtained under electric
field reversal gives rises to small oscillations with well-defined frequencies components that
are only present if the PNC potential is included in the equations of motion. In order to
test the predictions of our analytical formalism, we have performed a non-perturbative
treatment of the electron dynamics by solving the time-dependent Schrödinger equation
numerically, with and without the PNC potential. Indeed, oscillations as a function of
the pump-to-probe time-delay are only observed if the PNC potential is included in the
Hamiltonian and the spectral components coincide with those predicted by our analytical
model. Furthermore, the oscillations vanish when the PNC potential is omitted from the
equations of motion. Thus, spectral analysis of the combined signal with observation of
spectral components at well defined frequencies irrefutably indicates observation of the
PNC effect.

To conclude, this thesis provides a comprehensive framework of the systematic method
developments conceived for the quantum optimal control of photoelectron spectroscopy. It
also provides a detailed description of (i) the derivation of the models, (ii) the algorithms
constructed to circumvent the limitations in terms of numerical efficiency encountered
throughout this thesis as well as (iii) a non-exhaustive list of applications.

The results presented in this thesis required non-negligible effort that has been spent
to extend the TDCIS method in the context of the gradient-based and gradient-free
optimization methods developed to accomplish our optimization purposes, as well as
development of a multi-domain pseudospectral propagation approach that allowed to push
further the limits of the propagation efficiency. These techniques were implemented as
part of XCID [253] and QDYN [351] Fortran 90 libraries, respectively.

The application of the tools described in this thesis is by far from being exhausted.
On a longterm perspective, the range of applicability of these tools should be extended to
beyond closed-shell atoms while improving the description of the electronic correlations:
from open-shell atoms to molecular systems, which might enable to find new interest-
ing mechanisms to achieve a desired outcome. From a control prospective, extension of
the light-matter interaction to beyond the (simplistic) linear polarization scenario is the
perfect candidate to study the effects of angular momentum mixing as well as of their
magnetic quantum numbers due to the break of cylindrical symmetry about the light po-
larization axis. Last but not least, implementation of accurate and numerically efficient
methods for the representation of the many-body continuum wave function is of great
interests, particularly in the context of photoelectron spectroscopy and quantum control.
In order to keep the calculation tractable in the framework of these implementations, a
more efficient description of the many-body electronic structure as well as implementation
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of numerically efficient propagation and optimization methods become unavoidable.
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An efficient mapped
pseudospectral method for
solving the time-dependent
Schrödinger equation
A.1 Semi-global representation

Here, we derive a sparse representation of the Hamiltonian (7.11). It is based on domain
decomposition, the variational or weak solution [168] of the Schrödinger equation, La-
grange interpolation, and polynomial series expansions of operators [78]. The concept of
the local de Broglie wavelength, central to the mapped Fourier grid Hamiltonian [154–
156], is used to determine the size of the domains. The pseudospectral multi-domain rep-
resentation of the Hamiltonian is derived from the weak formulation of the Schrödinger
equation in Section A.1.1. Within each domain, a Gauss-Lobatto-Legendre collocation is
employed, as described in Section A.1.2, and a global representation of the Hamiltonian
is derived in Section A.1.3 by assembling all domains.

A.1.1 Multi-domain weak formulation

In order to derive a matrix representation of the Hamiltonian H0, cf. Eq. (7.11), we
consider the time-independent radial Schrödinger equation,

− ~2

2µ∇
2u(r) + V (r)u(r) = λu(r) (A.1)

with r ∈ Ω = [rmin, rmax] and λ an eigenvalue. Note that a multi-dimensional problem
may be mapped onto Eq. (A.1) by representing all degrees of freedom other than r in basis
sets [92]. We employ domain decomposition for Ω. The main idea behind this method
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is to split the domain of (spatial) integration Ω into M non-overlapping intervals Ωk of
arbitrary size. The total domain, Ω, is given by the union,

Ω =
M⋃

k=1
Ωk with Ωk ∩ Ωk′ =




{rkN} if k′ = k + 1,

∅ otherwise,
(A.2)

where rkN = rk+1
0 . Each interval Ωk = [rk0 , rkN ] is discretized using N + 1 points, and the

constraint rkN = rk+1
0 ensures connection of all Ωk. Within each interval Ωk, Eq. (A.1)

becomes

− ~2

2µ∇
2uk(r) + V (r)uk(r) = λuk(r) . (A.3)

In order to derive the weak solution of the Schrödinger equation for a given Ωk, we multiply
both sides of Eq. (A.3) by an arbitrary test function vk(r) defined on the Sobolev space
H1(Ωk) =

{
φ ∈ L2(Ωk) ,∇φ ∈ L2(Ω)

}
. Integrating over the domain Ωk and applying

Green’s theorem, we find

− ~2

2µ

∫

Ωk

∇vk(r)∇uk(r)dr +
∫

Ωk

vk(r)V (r)uk(r)dr + ~2

2µ

∮

∂Ωk

vk(r)∇nu
k(r) dΓ

= λ
∫

Ωk

vk(r)uk(r) dr , (A.4)

where∇ denotes the usual gradient and∇n stands for the normal derivative. The solution
uk(r) satisfying Eq. (A.4) is called the weak solution on Ωk, as opposed to the strong
solution, i.e., uk(r) satisfying Eq. (A.3). Note that uk(x) ∈ H1(Ωk). It is obtained from





ak(u, v) = λ(u, v)Ωk

u(r) = ũ(r) in ∂Ωk ,
(A.5a)

where ũ(r) stands for the boundary condition of uk at the domain boundary, ∂Ωk, and
the bilinear forms ak(·, ·) and (·, ·)Ωk

are defined as

ak(u, v) = ~2

2µ

∫

Ωk

∇vk(r)∇uk(r)dr +
∫

Ωk

vk(r)V k(r)uk(r) dr (A.5b)

+ ~2

2µ

∮

∂Ωj

vk(r)∇nu
k(r) dΓ ,

(u, v)Ωk
=

∫

Ωk

uk(r)vk(r)dr . (A.5c)

In order to derive an explicit representation of the Hamiltonian from the weak formulation
of the Schrödinger equation, we rewrite the bilinear forms as a linear operator equation in
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dual space. To this end, we employ a Galerkin-type method based on piecewise cardinal
functions with bounded support in Ωk, δk(r − rj) where rj ∈ Ωk.

A.1.2 Gauss-Lobatto-Legendre collocation

Consider the vector space spanned by N + 1 cardinal functions defined within Ωk and
denote the set of basis functions by {vkj }j=0,...,N . We can expand uk(r) in this basis,

uk(r) =
N∑

j=0
uk(rj)vkj (r) =

N∑

j=0
uk(rj)δk(r − rj) . (A.6)

Inserting Eq. (A.6) into Eq. (A.4), multiplying both sides of Eq. (A.4) by one of the
cardinal functions and integrating over Ωk, we obtain a set of N + 1 algebraic equations,

N∑

j=0
ukja

k(vi, vj) = λ
N∑

j=0
ukj (vi, vj)Ωk

, (A.7)

where i = 0, . . . , N , ukj = uk(rj) and rj ∈ Ωk by construction.

In the particular case of a discrete variable representation [148], the expansion coeffi-
cients uk(rj) in Eq. (A.6) correspond to the wavefunction amplitudes at every collocation
point, and the error is only due to the Gaussian quadrature approximation. In other
words, in each domain Ωk, uk(r) is approximated at the collocation points by the inter-
polant in Eq. (A.6). Correspondingly, we can evaluate the integrals in Eq. (A.5b) by
means of a Gaussian quadrature rule within each interval Ωk,

∫

Ωk

f(r)dr =
N∑

j=0
fk(rj)wkj . (A.8)

This leads to

ak(vi, vj) ≈
~2

2µ

N∑

q=0
∇vki (rq)∇vkj (rq)wkq +

N∑

j=0
vki (rq)V (rq)vkj (rq)wkq (A.9a)

+ ~2

2µ
(
∇uk(rk0)δ0,i −∇uk(rkN)δN,i

)
.

Using Gauss-Lobatto sampling points, i.e., sampling points that include the boundary of
the domain Ωk, by definition vki (rk0) = δ0,i and vkj (rkN) = δN,i for k = 2, . . . ,M − 1, i.e., for
all domains except those containing rmin and rmax. Analogously, for Eq. (A.5c) we use
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the discrete inner product in Ωk which is given by

(vi, vj)Ωk
≈

N∑

q=0
uki (rq)vkj (rq)wkq = wki δi,j . (A.9b)

We employ Gaussian quadrature based on Legendre polynomials. Since Legendre
polynomials are defined on the interval Λ = [−1, 1], we need an affine transformation,

Φk : Λ −→ Ωk

ξi 7−→ ξi
(
rkN − rk0

)
/2 +

(
rkN + rk0

)
/2 (A.10a)

with Jacobian

Jk = (rkN − rk0)/2 (A.10b)

and ξi the standard Gauss-Lobatto-Legendre sampling points, cf. Eq. (A.31). Integration
in Ωk can then be directly connected to integration in Λ,

∫

Ωk

f(r)dr =
∫ +1

−1
f ◦ Φk(ξ)Jk dξ = Jk

N∑

j=0
f(rj)wΛ

j .

Comparing this to Eq. (A.8), we obtain

wkj = Jk wΛ
j (A.11)

with wΛ
j that standard Legendre quadrature weights, cf. Eq. (A.31).

Next, we evaluate the derivatives in Eq. (A.9a) in terms of derivatives of the cardinal
functions,

∂

∂r
fk(r) =

N∑

j=0
f(rj)

∂

∂r
δk(r − rj) . (A.12)

The first order differentiation matrix for Legendre cardinal functions reads [78]

∂

∂ξ
δ(Λ)(ξi − ξj) =





−N(N + 1)/4 if i = j = 0

N(N + 1)/4 if i = j = N

0 if 1 ≤ i = j ≤ N − 1
LN(ξi)

LN(ξj)(ξi − ξj)
if j 6= i .

(A.13)
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This can be easily checked using the properties of the Legendre polynomials and the
cardinal functions, cf. Appendix A.3. Together with the affine transformation (A.10),
Eq. (A.13) allows to determine the derivatives in Eq. (A.9a) with an error that is solely
due to the Gaussian quadrature approximation. Moreover, a useful expression to evaluate
the first term in Eq. (A.9a), i.e., to construct the matrix representation of the kinetic
operator, is given by

Skµ,ν =
∫

Ωk

∂

∂r
δk(r − rµ) ∂

∂r
δk(r − rν) drk

with µ, ν = 0, . . . , N . It is straightforward to show that

Skµ,ν = J −1
k SΛ

µ,ν ,

where

SΛ
µ,ν =

∫

Λ

∂

∂ξ
δΛ(ξ − ξµ) ∂

∂ξ
δΛ(ξ − ξν)dξ (A.14)

≈
N∑

j=0

∂

∂ξ
δΛ(ξj − ξµ) ∂

∂ξ
δΛ(ξj − ξν)wΛ

j

and the first order differentiation matrix elements, ∂

∂ξ
δΛ(ξi− ξj), are given in Eq. (A.13).

Recall that at the Gauss-Lobatto-Legendre points, the cardinal functions obey

δk(ri − rj) = δi,j ,

where δi,j stands for the Kronecker delta, cf. Eq. (A.34). This, together with Eq. (A.14),
yields the following algebraic expression for the weak form of the Schrödinger equation,
Eq. (A.7), within the interval Ωk,

N∑

j=0
ukj

(
~2

2µJ
−1
k SΛ

i,j + V (rj)δi,jwkj
)

+ ~2

2µ∇u(rk0)δ0,i −
~2

2µ∇u(rkN)δN,i (A.15)

= λ
N∑

i=0
uk(ri)wkj δi,j .

A.1.3 Global representation

An algebraic expression for the Schrödinger equation (A.1) in the complete spatial domain
and thus a matrix representation of the Hamiltonian is obtained by assembling all intervals
Ωk. Since Ω = ⋃M

k=1 Ωk, this can simply be done by adding the multi-domain bilinear forms
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defined in Eqs. (A.5),

a(u, v) =
M∑

k=1
ak(u, v) ,

λ(u, v) =
M∑

k=1
λ(u, v)Ωk

,

provided that the correct boundary conditions are ensured at the intersection of two
contiguous elements,

rkN = rk+1
0 , (A.16a)

uk(rkN) = uk+1(rk+1
0 ) , (A.16b)

∇uk(r)
∣∣∣
r=rk

N

= ∇uk+1(r)
∣∣∣
r=rk+1

0
. (A.16c)

Continuity and differentiability of the global solution need to be enforced since the global
cardinal basis, defined as vk(r − rkN) ∪ vk+1(r − rk+1

0 ), is not differentiable at the M − 1
interelement points. Consider the sum of ak(u, v) for two contiguous elements,

ak(uk, vk) + ak+1(uk+1, vk+1) = ~2

2µ

∫

Ωk

∇uk (r)∇vk (r) dr + bΩk∪Ωk+1 (A.17)

+ ~2

2µ

∫

Ωk+1
∇uk+1 (r)∇k+1v (r) dr

+ ~2

2µ
(
vk
(
rk0
)
∇uk

(
rk0
)
− vk+1

(
rk+1
N

)
∇uk+1

(
rk+1
N

))

+ ~2

2µ
(
vk+1

(
rk+1

0

)
∇uk+1

(
rk+1

0

)
− vk

(
rkN
)
∇uk

(
rkN
))

,

where we have defined

bΩk∪Ωk+1 = bk(uk, vk) + bk+1(uk+1, vk+1) with bk(uk, vk) =
∫

Ωk

uk(r)V (r)vk(r) dr .

For the bilinear form a(u, v), resulting from the integration by parts [89, 91], the condition
of differentiability implies that the last term in Eq. (A.18) vanishes. Thus, when adding
the bilinear forms for all intervals Ωk, the interelement boundary conditions cancel out,
as desired.

Analogously to Eq. (A.16) for the bilinear forms, we introduce the global interpolant
u(r) as

u(r) =
M∑

k=1
uk(r) =

M∑

k=1

N∑

j=0
uk(rkj )vkj (r) . (A.18)
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Then, just as the basis set expansion of uk(r), Eq. (A.6), has led to N + 1 algebraic
equations within the interval Ωk, Eq. (A.18) results in M × (N + 1) algebraic equations
for the total domain Ω,

M∑

k=1

M∑

k′=1

N∑

j=0
uk
′

j a
k(vk′j , v

q
i ) = λ

M∑

k=1

M∑

k′=1

N∑

j=0
uk
′

j (vk′j , v
q
i )Ωk

(A.19)

with i = 0, . . . , N , q = 1, . . .M . Note that the subscripts i, j run over the collocation
points whereas the superscripts k, k′, q indicate the intervals. Since the cardinal functions
δk(r − rj) are non-zero only within their own interval Ωk, we obtain

ak(vpj , v
q
i ) = ak(vkj , vki )δk,pδp,q (A.20)

and

(vpj , v
q
i )Ωk

= wki δk,pδp,qδi,j . (A.21)

Therefore, Eq. (A.19) takes the same form as Eq. (A.16) but with (N + 1) × (M − 1)
vanishing terms. In other words, the global representation, by construction, is equivalent
to writing the elemental equation (A.16) M × (N + 1) times, while accounting for the
boundary conditions (A.16). Specifically, when adding the two algebraic equations for
q = k, j = N and q = k + 1, j = 0, for k = 1,M − 1, in Eq. (A.19), the last (vanishing)
term in Eq. (A.18) is retrieved at the M − 1 connection points. We thus obtain a system
of M×(N+1)−(M−1) = N×M+1 algebraic equations, in accordance with the number
of collocation points in the global representation, i.e., without any repetition of points.
Solving the linear system of equations (A.19) with the boundary conditions (A.16) is then
equivalent to solving the generalized eigenvalue problem

Au = λM(w)u , (A.22)

where M(w) is a (N ×M + 1)× (N ×M + 1) diagonal matrix, referred to as the global
mass matrix. Its matrix elements are given in terms of the Gaussian quadrature weights
wkj , cf. Eq. (A.11),

Mi,i(w) = γkj (w), i = N(k − 1) + j + 1 , (A.23a)
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with j = 0, . . . , N , k = 1, . . . ,M , and

γkj (w) =





wkj if k < M and 0 < j < N ,

wkN + wk+1
0 if k ≤M and j = 0 ,

wk−1
N + wk0 if k < M and j = N ,

w1
0 if k = 1 and j = 0 ,

wMN if k = M and j = N .

(A.23b)

Note that the weights defined at the interelement points, i.e., xkN and xk+1
0 , are defined

as wkN + wk+1
0 . This can be easily shown using the additivity theorem of integration

for continuous functions. The matrix A corresponds to the global representation of the
bilinear form a(u, v). Because of the compact support of the basis functions vkj (r), A is
characterized by a sparse structure, with matrix elements

Ai,j =





ak(vki′ , vkj′) if i′ 6= j′ 6= 0 or i′ 6= j′ 6= N ,

a1(v1
0, v

1
0) if k = 1 ,

aM(vMN , vMN ) if k = M ,

ak,k+1 if k < M and i′ = j′ = N ,

ak−1,k if k ≥ 2 and i′ = j′ = 0 ,

0 otherwise ,

(A.24a)

and global indices

i = N(k − 1) + i′ + 1 and j = N(k − 1) + j′ + 1 , (A.24b)

such that 1 ≤ i, j ≤ NM + 1 for i′, j′ = 0, . . . , N and

ak,k+1 = ak(vkN , vkN) + ak+1(vk+1
0 , vk+1

0 ) . (A.24c)

The elemental bilinear form ak(vki′ , vkj′), is given by

ak(vki′ , vkj′) = ~2

2µJ
−1
k SΛ

i′,j′ + V (ri′)δi′,j′wkj′ (A.24d)

+ ~2

2µ

(
∇u(rk0)δ0,j′ −∇u(rkN)δN,j′

)
,

where SΛ
i,j is defined in Eq. (A.14) and J −1

k refers to the inverse of the Jacobian (A.10b).
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Solution of Eq. (A.22) requires significantly less numerical effort, if M can be trans-
formed into identity. To this end, it suffices to renormalize the basis functions [89, 352],

ṽkj (r) = δk(r − rj)/
√
γkj ,

Then Eq. (A.6) takes the form

uk(r) =
N∑

j=0
ũj
k(r)ṽkj (x) , (A.25)

with ũkj = ukj
√
γkj . Using Eq. (A.25), the linear system of equations (A.19) becomes

M∑

k=1

M∑

k′=1

N∑

j=0
ũk
′

j a
k(ṽk′j , ṽ

q
i ) = λ

M∑

k=1

M∑

k′=1

N∑

j=0
ũk
′

j (ṽk′j , ṽ
q
i )Ωk

,

which corresponds to the eigenvalue problem

Ã ũ = λ ũ (A.26)

with matrix elements

Ãi,j = Ai,j√
γki′ γ

k
j′

,

and Ai,j given in Eq. (A.24a). The actual value of the eigenfunction at r = rkj is obtained
as ukj = ũkj/

√
γkj .

In order to explicitly state the global boundary conditions, it is convenient to rewrite
Eq. (A.26) in the following form,

H̃ ũ = λ ũ+ Ã(0) ũ , (A.27)

where Ã = H̃ − Ã(0) and Ã(0)ũ is the boundary condition vector,

(
Ã(0)ũ

)

i
= ~2

2µ

(
−∇u(rki′)δ0,i′δ1,k +∇u(rkN)δN,i′δM,k

)

= ~2

2µ

(
∇u(r1)δi,1 −∇u(r

NM+1)δ
i,NM+1

)

with i = i(i′, k) found in Eq. (A.24b). For bound states and eigenstates in a box, u1
0 =

uMN = 0, which can be ensured by the choice of basis functions, v1
0 = 0 and vMN = 0. A

simple implementation is achieved by taking j = 1, . . . , N for k = 1 and j = 0, . . . , N − 1
for k = M instead of j = 0, . . . , N . The matrix representation of the Hamiltonian is then
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given by

H̃i−1,j−1 = Ãi,j , i, j = 2, . . . , NM .

For Dirichlet boundary conditions, Eq. (A.27) takes thus the form

H̃ ũ = λ ũ .

Despite the dense structure of the matrix representation of the kinetic operator in each
interval Ωk, the local support of the basis functions vkj (r) translates into a global kinetic
energy matrix that is blockwise sparse except for the interelement points, cf. Eq. (7.4).

A.2 Choice of domain number and collocation order

The two parameters which are crucial for the analysis of accuracy and efficiency of the
multi-domain pseudospectral approach are the number of intervals, M , and the number of
collocation points within each interval N+1, or equivalently, the order of the interpolation
polynomial, N . If M and N are chosen optimally, the calculation will be highly accurate
while minimizing at the same the requirements on storage and CPU time. The role of M
and N in our approach is similar to the parameters h and p in finite element methods [78],
where the standard h-version, also referred to as h-refinement, consists in keeping the
degree of the interpolating polynomials, usually of low degree, p = 1, 2, unchanged while
modifying the size of each subdomain. Alternatively, the p-version, consists in keeping the
size of each element unchanged while increasing the order of the interpolating polynomials.
Finally, the h-p-version of the finite element method modifies the size of each element only
in regions where high resolution is needed [78].

As a first practical example, we consider the calculation of a weakly bound level of
the Ca2 B1Σ+

u electronically excited state. The overall spatial domain is chosen with
rmin = 4.5 a0, rmax = 50000 a0. For the mapped Fourier grid Hamiltonian, we take
the total number of grid points to be N = 20000 which corresponds to β = 0.029.
Choosing the eigenvalue labeled by vref = 229 with Eref = −2.2640249 × 10−10 Hartree,
we treat the result obtained with the mapped Fourier grid Hamiltonian and this very
large number of points as a reference to benchmark the accuracy of the multi-domain
spectral method for increasing the total number of collocation points, see Fig. A.1. We
find the calculation using the multi-domain spectral method to be converged to machine
precision (with an arbitrary choice of N and M) if the total number of points, N×M+1,
exceeds 3000. The overall precision in Fig. A.1 is determined by the eigenvalue with the
largest magnitude, which is the ground state of the Hamiltonian, with magnitude of the
order of 10−2 Hartree. Machine precision relative to this value amounts to 10−17 Hartree.
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Figure A.1: Accuracy of the eigenvalue of a weakly bound level, calculated with the multi-
domain pseudospectral method, referenced to the result obtained with the mapped Fourier
grid Hamiltonian using a large number of points, N = 20000. The reference eigenvalue
is Eref = −2.2640245 × 10−10 Hartree, compared to E0 ≈ −2.607 × 10−2 Hartree which
is the eigenvalue with largest magnitude. When the total number of collocation points is
sufficiently large, the accuracy of the multi-domain pseudospectral method is independent
of the choice of the number of domains M and the collocation order N .

The accuracy of the pseudospectral method saturates somewhere about 10−16 Hartree.
The missing digit is most likely due to different numerical routines for diagonalization in
the multi-domain spectral method (with a sparse Hamiltonian matrix) and the mapped
Fourier grid method (with a fully occupied Hamiltonian matrix). The ease with which
we find the semi-global representation to produce highly accurate results is in line with
an earlier analysis of the FE-DVR using Gauss-Lobatto Legendre collocation for studying
scattering wavefunctions [91].

An important question concerns the best choice of the parameters M and N . The
same total number of points, N ×M + 1, can be realized by two different choices of M
and N . Accuracy, storage requirement and spectral radius are, however, not the same
between one configuration and the other. It is known from finite-element methods, that
the p-refinement shows better convergence than the h-version [78]. In particular when just
a small number of points is used, the accuracy may be improved by choosing N > M [78].
Nevertheless, the imbalance between N > M and N < M is removed when the overall
number of points becomes sufficiently large, as shown in Fig. A.1. Remarkably, the
accuracy reaches a stationary value and remains independent of the choice of M and N .
The corresponding flexibility in the choice of N and M is crucial for choosing optimal
values for time propagation. On one hand, choosing larger N , i.e., a higher degree of
the interpolation polynomial, and smaller M considerably reduces the total number of
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Figure A.2: Number of non-zero matrix elements of the Hamiltonian that need to be
stored in memory. The mapped Fourier grid leads to a full kinetic energy matrix, whereas
the Hamiltonian is sparse in the multi-domain pseudospectral representation. Note the
log-log scale.

grid points, N , for a given accuracy. Smaller N decreases the spectral radius. On the
other hand, our numerical tests show that the decrease of the spectral radius is actually
even faster for the case of larger M and smaller N (with a correspondingly larger total
number of points N ). We therefore focus on this second option and see in what follows
that choosing a larger total number of points N (with smaller N and larger M) does
not compromise the efficiency of the Chebychev propagation nor increase the storage
requirements for the Hamiltonian matrix.

The corresponding number of non-zero matrix elements of the Hamiltonian, i.e., the
storage requirement, is shown in Fig. A.2 as a function of the total number of points.
Again, N and M have been chosen arbitrarily. Due to the sparsity of the Hamiltonian,
the multi-domain pseudospectral representation requires significantly less storage than
the mapped Fourier grid Hamiltonian. Given the fact, that the accuracy of both methods
is the same for N > 3000, the multi-domain pseudospectral representation allows for a
dramatic reduction in the memory required to calculate the spectrum without compro-
mising accuracy. This opens new perspectives for obtaining highly accurate weakly bound
states as well as scattering states for long-range potentials, for example in coupled chan-
nels calculations, where the memory required for storing the mapped Fourier Hamiltonian
quickly becomes a limiting issue [166, 167].

While different choices of N and M correspond to different storage requirements, this
does not show up on the scale of Fig. A.2. The sparsity of the Hamiltonian is therefore
further analyzed in Fig. A.3 by comparing the cases N > M and N < M for a fixed
number of points allowing, this time, N and M to be significantly different. As can be
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Figure A.3: Number of non-zero matrix elements of the Hamiltonian that need to be
stored in memory for specific choices of N and M .

seen from Eq. (7.6), for a fixed number of points N ×M + 1, the case N > M leads to
a less sparse representation of the Hamiltonian matrix. However, both cases, N > M

and N < M , lead to a significant improvement in terms of storage, requiring only a few
percent of the memory needed for the full matrix obtained with the mapped Fourier grid
method.

Finally, we compare the spectral radius, ∆E, obtained with the mapped Fourier grid
Hamiltonian and the adaptive multi-domain pseudospectral approach in Fig. A.4. This is
important because the spectral radius determines the number of terms in the Chebychev
expansion of the time evolution operator, cf. Section 4.2.1, i.e., the number of times the
Hamiltonian is applied to a wavefunction. As a rule of thumb, the spectral radius of
the mapped Fourier grid Hamiltonian is smaller than that obtained with the adaptive
multi-domain pseudospectral approach for the same number of points. Moreover, we find
that for the same total number of points N , the spectral radius for N > M is larger than
that for N < M . This is somewhat unfortunate since for a given total number of points
better accuracy is obtained with N > M . However, since, for sufficiently large N , the
accuracy is independent of the choice of N and M , cf. Fig. A.1, and time propagation will
be most efficient for ∆E as small as possible, it is convenient to choose a relatively large
total number of points with a low order N of the interpolation polynomial. This allows
to reduce the numerical effort of the multi-domain pseudospectral method compared to
the mapped Fourier grid Hamiltonian while keeping the level of accuracy, even though
the total number of grid points required for the multi-domain pseudospectral approach is
larger than that required for the mapped Fourier grid.

To summarize, it is optimal to (i) choose a low order of the interpolation polynomial
or, equivalently, number of collocation points per element, e.g. N = 3, 4, 5, since it
results in a small spectral radius, (ii) increase the total number of points such that the
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Figure A.4: Spectral radius as a function of the total number of points. The spectral
radius determines the number of the times the Hamiltonian needs to be applied for time
evolution with the Chebychev propagator.

desired accuracy is obtained and (iii) define the number of intervals M according to
N = N ×M + 1.

Note that for a low order of the interpolation polynomials, e.g. N = 3, the sparse band-
like structure of the kinetic energy matrix is quite similar to what is obtained using second
and fourth order finite differences. We therefore compare the accuracy obtained with the
multi-domain pseudospectral approach for low order of the interpolation polynomials to
that of the second and fourth order finite differences. As shown in Fig. A.5, the multi-
domain pseudospectral representation yields a significantly better accuracy than finite
differences. This reflects the global approximation of the derivatives within each interval
and emphasizes the superiority of pseudo-spectral approaches over methods based on the
Taylor expansion.

A.3 Collocation with Legendre polynomials

For completeness, we recall the basic properties of Legendre collocation. The Legendre
polynomials [78, 353] are the solutions of the second order differential equation

(
(1− ξ2)L′n(ξ)

)′
+ n(n+ 1)Ln(ξ) = 0 , (A.28)

where ′ denotes the first derivative with respect to the argument of Ln(·). In the interval
Λ = [−1, 1], the Legendre polynomials are orthogonal with respect to the L2 inner product
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Figure A.5: Accuracy of the
multi-domain pseudospectral
approach for a low collocation
order (N = 3) compared to
second and fourth orders fi-
nite differences for the levels
ν = 100 (a) and ν = 300 (b) of
the Morse potential with eigen-
values E100 = −112.1253125 a.u.
and E300 = −12.3753125 a.u.,
respectively. Despite the similar
structure of the Hamiltonian
matrix, the pseudospectral
approach is significantly more
accurate.

and they obey the three-term recurrence relation

(n+ 1)Ln+1(ξ) = (2n+ 1)ξLn(ξ)− nLn−1(ξ), n ≥ 1 ,

(A.29)

with L0 = 1, L1 = ξ, where ξ ∈ Λ. Another useful recurrence relation reads [353]

(2n+ 1)Ln(ξ) = L′n(ξ)− L′n−1(ξ), n ≥ 1 . (A.30)

In the interval Λ = [−1, 1], the set {ξj, ωΛ
j } is defined as the set of Gauss-Lobatto-

Legendre nodes ξj and Gaussian quadrature weights wΛ
j . It is given by [78]





{ξj}0≤j≤N = zeros of ζ(ξ) = (1− ξ2)L′N(ξ)

ωΛ
j = 2

N (N − 1)(LN(ξj))2 .

(A.31)

For moderate order collocation, the N − 1 interior points of the Gauss-Lobatto-Legendre
grid in Λ = [−1, 1] can be generated with the help of the Golub-Welsh algorithm [354].
In detail, Eqs. (A.29)-(A.31) yield the recursion relation

βnL
′
n+1(ξ) + αnL

′
n−1(ξ)− ξL′n(ξ) = 0 , (A.32a)
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where the recursion coefficients αn and βn are given by

αn = n+ 1
2n+ 1 and βn = n

2n+ 1 . (A.32b)

Taking into account Eq. (A.31), i.e., L′N(ξj) = 0 for all j = 1, . . . , N − 1, the tridiagonal
Jacobian matrix reads




0 β1 0 0 . . . 0
α2 0 β2 0 . . . 0
... . . . 0 . . . 0
0 . . . αn 0 βn 0
... 0 . . .

. . . . . . 0
0 . . . . . . 0 αN−1 0







L′1(ξj)
L′2(ξj)

...
L′n(ξj)

...
L′N−1(ξj)




= ξj




L′1(ξj)
L′2(ξj)

...
L′n(ξj)

...
L′N−1(ξj)




,

(A.32c)

where the eigenvalues correspond to the N − 1 roots of  L′N(ξj) which define, according
to Eq. (A.31), the interior points of the Gauss-Lobatto grid. The extrema are given by
ξ0 = −1 and ξN = 1. Alternatively, in particular for a high-order quadrature, it is suitable
to use a Newton-root-finding iterative method in order to avoid round-off errors that may
occur during the diagonalization of the Jacobian matrix.

A first order Taylor expansion of ζ(ξ), defined in Eq. (A.31), around the jth Gauss-
Lobatto-Legendre point, i.e., the jth root of ζ(ξ), gives

ζ(ξ) ' ζ(ξj) + ζ ′(ξj)(ξ − ξj) +O(|ξ − ξj|)2

= ζ ′(ξj)(ξ − ξj) ,
(A.33)

since, by definition, ζ(ξ) vanishes at the Gauss-Lobatto-Legendre points, ζ(ξj) = 0. Equa-
tions (A.31) and (A.33) yield an explicit expression of the Legendre cardinal function
δΛ(ξ − ξj),

δ(Λ)(ξ − ξj) = ζ(ξ)
ζ ′(ξj)(ξ − ξj)

= L′N(ξ)(1− ξ2)
(L′j(ξ)(1− ξ2))′

1
(ξ − ξj)

,

where ζ(ξ) is defined in Eq. (A.31) and Lj denotes the jth Legendre polynomial. Together
with Eq. (A.28), this yields

δ(Λ)(ξ − ξj) ≡ −
L′N(ξ)(1− ξ2)
N(N + 1)LN(ξj)

1
ξ − ξj

(A.34)
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Moreover, we have δ(Λ)(ξi − ξj) = δij at each ξj by construction which results in the first
order differentiation matrix for Legendre cardinal functions, cf. Eq. (A.13).



A.3 An efficient mapped pseudospectral method for solving the time-dependent
Schrödinger equation 264



B

Ap
pe

nd
ix

Quantum optimal control of
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Frequency and Amplitude Restriction

In the following, we present the derivation of Krotov’s update equation for the control,
Eq. (8.14a) using the approximation for s(t) previously described. This allows for a more
compact expression for Krotov’s equation for the specific constraints on the field used
in this work. It is obtained following Ref. [106]: We seek to minimize the complete
functional, Eq. (8.7). In order to evaluate the extremum condition, we start by evaluating
the functional derivative of the penalty functional with respect to the changes in the
control field A(t) in Eq. (8.11),

δCa[A]
δA(t) = 2λas−1(t) (A(t)−Aref(t)) . (B.1)

Next, we evaluate the functional derivative of Eq. (8.12). Abbreviating ω2γ̃(ω) by h̃(ω)
in Eq. (8.12), the functional derivative reads

δCω[A]
δA(t) = λω

∫
A?(ω)δÃ(ω)

δA(t) h̃(ω) dω

+λω
∫

Ã(ω)δÃ
?(ω)

δA(t) h̃(ω) dω . (B.2)

Using the fact that Ã(ω) is the Fourier transform of A(t),

Ã(ω) =
∫

A(t)e−iωt dt ,

the functional derivative becomes,

δÃ(ω)
δA(t′) = e−iωt

′
,
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such that

δCω[A]
δA(t) = λω

∫
Ã?(ω)e−iωth̃(ω) dω

+λω
∫

Ã(ω)e+iωth̃(ω) dω .

This can be rewritten as

δCω[A]
δA(t) = λω

∫
Ã?(−ω)e+iωth̃(−ω) dω

+λω
∫

Ã(ω)e+iωth̃(ω) dω . (B.3)

Since the control A(t) is a real function of time, Ã?(−ω) = Ã(ω). Moreover, by construc-
tion h̃(ω) = h̃(−ω). Therefore, Eq. (B.3) becomes

δCω[A]
δA(t) = 2λω

∫
Ã(ω)e+iωth̃(ω) dω (B.4)

= 2λω
∫

Ã(ω)eiωtdω
∫
h(τ)e−iωτ dτ

= 2λω
∫
h(τ)dτ

∫
Ã(ω)e+iω(t−τ)dω

= 2λ̃ω
∫
h(τ)A(t− τ)dτ = 2λ̃ωA ? h(t) ,

with λ̃ω =
√

2πλω, and h(t) =
∫
h̃(ω) exp (+iωt) dω/

√
2π and where f ? g(t) refers to the

convolution product of f and g.

We now calculate the functional derivative of the constraint penalizing large values
of Ȧ(t), Eq. (8.14). Assuming vanishing boundary conditions for A(t), we find, upon
integration by parts,

δCe[A]
δA(t) = −2λes−1(t)Ä(t) . (B.5)

Using Eqs. (B.1), (B.4) and (B.5), the extremum condition with respect to a variation in
the control becomes

0 = λa s
−1(t) (A(t)−Aref (t))− λe s−1(t)Ä(t)

+λ̃ω A ? h(t)− Im

{〈
χ(t)

∣∣∣∣∣
∂Ĥ

A

∣∣∣∣∣Ψ(t)
〉}

.

where the last term has been previously introduced in Eq. (8.14). It can be straightfor-
wardly derived from variational principles, ie. Euler-Lagrange Lagrange equation, or in
the context of Pontriagin’s maximum/minimum principle or in the context of Krotov’s
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optimization method, cf. Refs. [106, 234]. It stresses the dynamics to which the forward
propagated state is subject to. Solving for A(t) gives us the update rule for the optimized
pulse,

A(t) = Aref (t) + s(t)
λa

Im

{〈
χ(t)

∣∣∣∣∣
∂Ĥ

A

∣∣∣∣∣Ψ(t)
〉}

− λ̃ω
λa
s(t)A ? h(t) + λe

λ a
Ä(t) , (B.6)

i.e., we retrieve Eq. (8.14a). Using the property

∫
Ä(t) e−iω t dt = −ω2 Ã(ω) ,

together with Eq. (8.17) for s(t), it is straighforward to write Krotov’s equation in fre-
quency domain. To this end, we merely take the Fourier transform of Eq. (B.6) and utilize
the well-known property that the Fourier transform of a convolution of two functions in
time domain is the product of the functions in frequency domain. We thus find

Ã(k+1)(ω) ≈ Ã(k)(ω) + Ĩ(k+1)(ω) (B.7)

− λ̃ω
λa

Ã(k+1)(ω)h̃(ω)− ω2λe
λa

Ã(k+1)(ω) ,

which yields Eq. (8.18a).
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Theoretical description of
photoelectron circular
dichroism of randomly
oriented chiral molecules
C.1 Useful properties

In the following, for completeness we summarize the properties of the continuum wavefunc-
tions, rotation matrices and complex spherical harmonics in Secs. C.1.1, C.1.3 and C.1.4.

Furthermore, we provide details of the derivation of the one-photon transition rate,
two-photon absorption tensor and the photoionization cross section in Secs. C.2.1 to C.2.3
as well as the behavior of the Legendre coefficients under change of helicity in the one-
photon photoionization and two-photon absorption processes in Secs. C.2.4 to C.2.6.

C.1.1 Radial continuum wavefunctions of the hydrogen atom

An explicit expression of the radial continuum wavefunctions is given in terms of the
Kummer confluent hypergeometric functions [287],

Gk,`(r) = CE,` (2kr)` e−ikrF1(`+ 1 + i/k, 2`+ 2, 2ikr) . (C.1)

The factor

CE,` ≡
√

2µk
π~2
|Γ(`+ 1− i/k)|

(2`+ 1)! eπ/2k ,

where Γ(·) refers to the Euler Gamma function, ensures proper normalization such that

∫ ∞

0
GE,`(r)GE′,`(r)r2dr = δ(E − E ′) .
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In order to avoid numerical instabilities when generating the radial continuum wavefunc-
tions, Eq. (C.1) may be written in integral form [355],

Gk,`(r) =
√

2µk
π~2 |Γ(`+ 1− i/k)|−1 eπ/2k (2kr)` e−ikr (C.2)

×
∫ 1

0
s`+i/k(1− s)`−i/k e2ikrs ds .

C.1.2 Bound state wavefunctions of the hydrogen atom

As for the radial part of bound states for hydrogenic wavefunctions, Rno
`o

(r), cf. Eq. (10.2),
they can also be expressed in terms of the Kummer confluent hypergeometric func-
tions [355],

Rno
`o

(r) =
(

4k3
no

(no + `o − 1)!
[(no + `o)!]3

)1/2

(2knor)
l (C.3a)

×F1(`o + 1− no, 2`o + 1, 2knor) e−knor ,

with

kno ≡
1

1 + me

Mn

1
no ao

≈ 1
no ao

(C.3b)

where me, Mn and ao refer to the masses of the electron and that of the nucleus and the
Bohr’s radius, respectively.

C.1.3 Rotation matrices

We summarize here some useful properties that are utilized in the derivation of the pho-
toionization cross section, following the standard angular momentum algebra as found in
Refs. [143–146, 287]. Any irreducible tensor field fkmk

of rank k is transformed from the
molecular frame to the laboratory frame as follows [145, 146]:

fkmk
(r′) = D(αβγ)fkmk

(r) ≡
+k∑

m′
k
=−k

fkm′
k
(r)D(k)

m′
k
,mk

(αβγ) , (C.4)

where D(j)
m′j ,mj

(αβγ) = 〈j,m′|D(αβγ)|j,m〉 refers to the Wigner rotation matrix of rank j,
and the subscripts mk and m′k stand for the projection of the total angular momentum k

onto the z axis in the molecular, respectively laboratory, frame. Conversely, the inverse
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of the transformation (C.4) is given by

fkmk
(r) = D−1(αβγ)fkmk

(r′) ≡
+k∑

m′
k
=−k

fkm′
k
(r′)D†,(k)

m′
k
,mk

(αβγ) . (C.5)

We express all vector quantities in spherical coordinates,

r′ =
√

4π
3 r

∑

µ=0,±1
(−1)µY 1

µ (Ωr′)ε′−µ , (C.6)

where ε′−µ refers to the spherical unit vector in the laboratory frame, and µ = 0,±1
denotes linear, left and right unit components, respectively. The correspondence between
the components of a arbitrary vector operator V in spherical and cartesian basis is given
by [145, 146, 353],

V−1 = 1√
2

(Vx − iVy)

V0 = Vz
V+1 = − 1√

2
(Vx + iVy)

(C.7)

The standard ab initio calculations [294] were performed in the Cartesian basis Tα,β, with
α, β = x, y, z. However, in order to render the analytical expressions more manageable,
the use of spherical basis is suitable. Transforming the spherical components rq, with
q = ±1, 0 in to the Cartesian basis using Eq. (C.7), we find the two-photon absoption
tensor in the spherical basis,

T−1,−1 = 1
2 (Txx − 2iTxy − Tyy)

T−1,0 = 1√
2

(Txz − iTyz)

T−1,+1 = −1
2 (Txx + Tyy)

T0,0 = Tzz

T0,+1 = − 1√
2

(Tzx + iTzy)

T+1,+1 = 1
2 (Txx + 2iTxy − Tyy)

(C.8)

Because Tα,β = Tβ,α, cf. Ref. [294], it can be straightforwardly shown, using Eq. (C.7),
that Tq1,q2 = Tq2,q1 .

In the derivations we make heavily use of the product rule for two Wigner rotations
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matrices of ranks k and k′,

D(k)
µ,ν(ω)D(k′)

µ′,ν′(ω) =
k+k′∑

J=|k−k′|
(2J + 1)D∗(J)

−µ−µ′,−ν−ν′(ω)



k k′ J

µ µ′ −µ− µ′






k k′ J

ν ν ′ −ν − ν ′


,

(C.9a)

together with the following symmetry property,

D(k)
µ,ν = (−1)µ−νD∗(k)

−µ,−ν(ω) , (C.9b)

where (∗) denotes the complex conjugate.

C.1.4 Conversion to complex spherical harmonics

The standard complex spherical harmonics Y `
m(Ω) are related to the real spherical har-

monics Υ`,|m|(Ω) by

Y `
m(Ω) =





1√
2

(
Υ`,|m|(Ω)− iΥ`,−|m|(Ω)

)
if m ≤ 0 ,

Υ`,0(Ω) if m = 0 ,
(−1)`
√

2

(
Υ`,|m|(Ω) + iΥ`,−|m|(Ω)

)
if m ≥ 0 .

Therefore the excited state expansion coefficients a`omo
(n), defined in Eq. (10.2), are con-

nected to the coefficients in the basis of real spherical harmonics by

a`omo
(n) =





1√
2

(
ã`omo

(n) + iã`omo
(n)

)
if m ≤ 0 ,

ã`o0 (n) if m = 0 ,
(−1)`o
√

2

(
ã`omo

(n)− iã`omo
(n)

)
if m ≥ 0 .

C.2 Derivations

C.2.1 One-photon transition rate

This section is devoted to deriving the rate for the photoionization transition from the
intermediate electronically excited state to the continuum, driven by an electric field with
polarization ε′%2 . The starting point is the doubly differential cross section in the molecular
frame given in Eq. (10.7). It contains the laboratory-frame product ε′%2 · r′, which, using
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Eq. (C.6), becomes

ε′%2 · r′ =
√

4π
3 r Y 1

%2(Ωr′) ≡ r′%2 . (C.11)

This is rotated into the molecular frame, employing Eq. (C.4), resulting in

ε′%2 · r′ =
√

4π
3 r

∑

q=0,±1
D(1)
q,%2(ω)Y 1

q (Ωr) . (C.12)

Inserting Eq. (C.12) into Eq. (10.7) yields the photoionization cross section in the molec-
ular frame as a function of the Euler angles ω ≡ (α, β, γ), cf. Eq. (10.8). Evaluating
Eq. (10.8) requires evaluation of the product 〈Ψk|rq|Ψo〉〈Ψk|rq′ |Ψo〉∗. Inserting Eqs. (10.4)
and (10.7) yields, for a fixed polarization direction q,

〈Ψk|rq|Ψo〉 =
∑

`,m
no,`o,mo

(−i)`eiδ`Ino
k (`, `o)S`,m`o,mo

(q)a`omo
(no)Y `

m(Ωk)

with Ino
k (`, `o) and S`,m`o,mo

(q) defined in Eqs. (10.10a) and (10.10b) such that Eq. (10.8)
comprises the product Y `

m(Ωk)Y ∗`′m′ (Ωk). Using the symmetry properties of the spherical
harmonics, we can write

Y `
m(Ωk)Y ∗`′m′ (Ωk) = (−1)m′Y `

m(Ωk)Y `′

−m′(Ωk) (C.13a)

= (−1)−m
`+`′∑

L=|`−`′|
γ̃(`, `′,L)



` `′ L

m −m′ m′ −m






` `′ L

0 0 0


Y

L
m−m′(Ωk)

with

γ̃(`, `′,L) =
√

(2`+ 1)(2`′ + 1)(2L+ 1)/4π (C.13b)

and Ωk = (ϑk, φk) refering to polar and azimuthal angles of the momentum vector in
the molecular frame of reference. In order to express the photoionization direction in the
laboratory frame, we need to apply the inverse transformation (C.5) to Y Lm−m′(Ωk′), i.e.,

Y Lm−m′(Ωk) = D−1(ω)Y Lm−m′(Ωk′) =
L∑

µ=−L
D†(L)
µ,m−m′(ω)Y Lµ (Ωk′) (C.14a)

=
L∑

µ=−L
(−1)m′−m−µD(L)

m′−m,−µ(ω)Y Lµ (Ωk′)
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which can be expressed in terms of the Generalized Legendre polynomials P µ
L (cosϑ′k),

Y Lm−m′(Ωk) =
L∑

µ=−L

√√√√(2L+ 1)
4π

(L − µ)!
(L+ µ)! (−1)m′−m

×D(L)
m′−m,−µ(ω)P µ

L (cosϑ′k) eiµϕ
′
k (C.14b)

It follows that, using Eq. (C.14b), Eq. (C.13b) then becomes,

Y `
m(Ωk)Y ∗`′m′ (Ωk) = (−1)m′

`+`′∑

L=|`−`′|
(2L+ 1) ςµL(`, `′)



` `′ L

m −m′ m′ −m






` `′ L

0 0 0




×
L∑

µ=−L
D(L)
m′−m,−µ(ω)P µ

L (cosϑ′k) eiµϕ
′
k (C.14c)

with

ςµL(`, `′) =

√√√√(2`+ 1)(2`′ + 1)
16π2

(L − µ)!
(L+ µ)! (C.15)

In Eq.(C.14), we have used the equality between spherical harmonics and associate Leg-
endre polynomials, including the Condon-Shortley phase convention [146, 287, 353],

Y Lµ (ϑ′k, ϕ′k) = (−1)µ
√√√√(2L+ 1)

4π
(L − µ)!
(L+ µ)! P

µ
L (cosϑ′k) eiµϕ′k .

(C.16)

Inserting Eq. (C.14) into Eq. (10.9), we obtain the differential one-photon cross section in
the laboratory frame of reference for a fixed molecular orientation defined in Eq. (10.11).

C.2.2 Two-photon absorption tensor

The probability of two-photon absorption, Eq. (10.13a), of a molecule that is oriented
with angles ω = (α, β, γ) with respect to the laboratory frame of reference contains the
product

D(1)
q1,%1(ω)D(1)

q2,%1(ω)D∗(1)
q3,%1(ω)D∗(1)

q4,%1(ω)
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. Using Eqs. (C.9), we obtain

D(1)
q1,%1(ω)D(1)

q2,%1(ω) = (−1)q1+q2
2∑

Q=0
(2Q+ 1)D(Q)

q1+q2,2σ1(ω) (C.17a)

×




1 1 Q

q1 q2 −q1 − q2







1 1 Q

%1 %1 −2%1


 ,

and analogously for D∗(1)
q3,%1(ω)D∗(1)

q4,%1(ω),

D∗(1)
q3,%1(ω)D∗(1)

q4,%1(ω) =
2∑

Q′=0
(2Q′ + 1)D(Q′)

−q3−q4,−2%1(ω) (C.17b)

×




1 1 Q′

q3 q4 −q3 − q4







1 1 Q

%1 %1 −2%1


 .

Inserting Eqs. (C.17) into (10.13a) and using

D(Q)
q1+q2,2%1(ω)D(Q′)

−q3−q4,−2%1(ω) =
4∑

K=0
(2K + 1)D∗(K)

s,0 (ω)

×




Q Q′ K

q1 + q2 −q3 − q4 −s






Q Q′ K

2%1 −2%1 0


 ,

with s = q1 + q2− q3− q4, the orientation-dependent probability of two-photon absorption
becomes,

ρ2P(ω) =
∑

q1,q2

Tq1,q2

∑

q3,q4

T ∗q3,q4(−1)q3+q4
2∑

Q=0
(2Q+ 1)




1 1 Q

q1 q2 −q1 − q2







1 1 Q

%1 %1 −2%1




×
2∑

Q′=0
(2Q′ + 1)




1 1 Q′

q3 q4 −q3 − q4







1 1 Q′

%1 %1 −2%1




×
4∑

K=0
(2K + 1)




Q Q′ K

q1 + q2 −q3 − q4 −s






Q Q′ K

2%1 −2%1 0


D

(K)
s,0 (ω)

≡
∑

q1,q2

Tq1,q2

∑

q3,q4

(−1)q3+q4 T ∗q3,q4

4∑

K=0
g(K)
q1,q2,q3,q4D

(K)
s,0 (ω) , (C.18)
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cf. Eq. (10.17). Two useful properties of the Wigner 3j symbols utilized throughout this
work, involve odd permutations of two columns [143],



j j′ J

m m′ M


 = (−1)j+j′+J



j′ j J

m′ m M


 , (C.19)

as well as the unitary condition for the Wigner rotation matrices [143],

J∑

M=−J
D(J)
M,M′(ω)D∗(J)

M,M̃′(ω) = δM ′,M̃′ . (C.20)

C.2.3 Cross section for (2 + 1) photoionization

In order to simplify the expression of the cross section for the (2+1) REMPI process, we
utilize the properties defined in Eq. (C.9), to the product involving the first and second
Wigner 3j symbols in Eq. (10.11),

D(1)
q,%2(ω)D(1)

−q′,−%2
(ω) = (−1)q′−q

2∑

ν=0
(2ν + 1)D(ν)

q−q′,0(ω)




1 1 ν

q −q′ q′ − q







1 1 ν

%2 −%2 0


 .

(C.21)

The rhs of Eq. (C.21) will allow for exploiting, while integrating over the Euler angles, the
well-known properties for integrating over a product of three Wigner 3j symbols. With
Eq. (C.21), Eq. (10.11) takes the following form,

d2σ1P

dωdΩk′
= co

∑

`,m
`o,mo

∑

`′,m′

`′o,m
′
o

∑

q,q′
(−i)`−`′ei(δ`−δ`′ ) a`omo

a
`′o
m′o
I

k
(`, `o) Ik

(`′, `′o)S`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′)

×
`+`′∑

L=|`−`′|
(2L+ 1)



` `′ L

0 0 0






` `′ L

m −m′ −(m−m′)


 (−1)m′−q−%2

×
2∑

ν=0
(2ν + 1)




1 1 ν

q q′ q′ − q







1 1 ν

%2 −%2 0


 (C.22)

×
L∑

µ=−L
ςµL(`, `′)D(ν)

q−q′,0(ω)D(L)
m′−m,−µ(ω)P µ

L (cosϑ′k) eiµϕ′k .
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Inserting Eq. (C.18) and Eq. (C.23) into Eq. (10.18), the PAD measured in the laboratory
frame, resulting from a fixed molecular orientation ω reads,

d2σ2+1

dωdΩk′
= N0co

∑

`,m
`o,mo

∑

`′,m′

`′o,m
′
o

∑

q,q′
(−i)`−`′ei(δ`−δ`′ ) a`omo

a
∗`′o
m′o
I

k
(`, `o) Ik

(`′, `′o)S`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′)

×
`+`′∑

L=|`−`′|
(2L+ 1)



` `′ L

0 0 0






` `′ L

m −m′ −(m−m′)




×
2∑

ν=0
(2ν + 1)




1 1 ν

q q′ q′ − q







1 1 ν

%2 −%2 0


 (C.23)

×
L∑

µ=−L
ςµL(`, `′)(−1)m′−q−%2 P µ

L (cosϑ′k) eiµϕ′k

×
∑

q1,q2

Tq1,q2

∑

q3,q4

(−1)q3+q4 T ∗q3,q4

4∑

K=0
g(K)
q1,q2,q3,q4D

(K)
s,0 (ω)D(ν)

q−q′,0(ω)D(L)
m′−m,−µ(ω) ,

with s = q1 + q2 − q3 − q4. Equation (C.23) may be written in the more compact form of
Eqs. (10.20), namely,

d2σ2+1

dωdΩk′
= N0co

∞∑

L=0

+L∑

µ=−L
bµL(ω)P µ

L (cosϑ′k) eiµφ
′
k , (C.24a)

In Eq. (C.24a), the only orientation-dependent quantity, bµL(ω), is given by

bµL(ω) =
∑

λ

κ(λ) DKs,0(ω)Dνq−q′,0(ω)DLm′−m,−µ(ω) . (C.24b)

with κµL(λ) defined as

κµL(λ) = (−i)`−`′ei(δ`−δ`′ ) a`omo
a
`′o
m′o
I

k
(`, `o) Ik

(`′, `′o)S`,m`o,mo
(q)S`′,m′`′o,m

′
o
(q′) ςµL(`, `′)

×Tq1,q2(−1)q3+q4 T ∗q3,q4g
(K)
q1,q2,q3,q4(2ν + 1)(2L+ 1)(−1)m′−q−%2

×



` `′ L

0 0 0






` `′ L

m −m′ −(m−m′)







1 1 ν

q q′ q′ − q







1 1 ν

%2 −%2 0




(C.25)

where λ comprises all summation indices, except for L and µ, as described in Sec. C.2.3.
Next, according to Eq. (10.19), we need to average over all initial orientations, i.e., in-
tegrate the doubly differential cross section over the Euler angles. To this end, we uti-
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lize the following integration property involving the product of three Wigner 3j sym-
bols [143, 145, 146],

∫
D(K)
s,0 (ω)D(ν)

q−q′,0(ω)D(L)
m′−m,−µ(ω) d3ω =



K ν L

s q − q′ m′ −m






K ν L

0 0 −µ




(C.26)

with d3ω ≡ d3(α, β, γ) = dα d(cos(β)) dγ/8π2. Finally, following Eq. (10.19), integration
of Eq. (C.23) over the Euler angles ω ≡ (α, β, γ), using Eq. (C.26), gives the expression
of the laboratory frame PAD resulting from a randomly ensemble of molecules in the
context of a (2 + 1) REMPI process, defined in Eq. (10.21). In particular, due to the
second Wigner 3j symbol in Eq. (C.26), it is clear that the integral vanishes if µ 6= 0. As
a consequence, this requirement translates into cylindrical symmetry of the PAD measured
in the laboratory frame, as µ also appears in the azimuthal angle dependent term eiµϕ′k

in Eq. (C.23). Thus, we retrieve the expression defined in Eq. (10.21).

C.2.4 Non-zero Legendre coefficients for two-photon absorption with circularly
polarized light and ionization with linear polarization

In this section, we show that a (2 + 1) REMPI process for which the two-photon absorp-
tion process is driven by circular polarized light, followed by linearly polarized light for
the radiative process, lead within the electric dipole approximation exclusively to even
Legendre coefficients. To this end, we exploit the symmetry as well as invariance proper-
ties of Eq. (10.21b), by making a change of variables for q1, q2, q3 and q4 in Eq. (10.21b)
that preserves cL(%1, %2) unchanged and also keeps s = q1 + q2− q3− q4 invariant (in order
to keep the fifth Wigner 3j symbol in Eq. (10.21b) unchanged). A change of variables
fulfilling this property reads,




q′1

q′2

q′3

q′4




=




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0







q1

q2

q3

q4



, (C.27)

i.e., it interchanges q1 
 −q3 and q2 
 −q4.

For simplicity, we define the quantity,

Λθ(%1) =
∑

K

∑

q1,q2

∑

q3,q4

(−1)q3+q4gKq1,q2,q3,q4(%1)Tq1,q2T
∗
q3,q4Wθ(s) (C.28a)
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with

Wθ(s) =



K ν L

s q − q′ m′ −m


 (C.28b)

Eqs. (C.28) appear in Eq. (10.21b). In Eq. (C.28), s = q1 + q2 − q3 − q4 and θ stands
for the indices (θ ≡ K, ν,m,m′, q, q′,L). Analogously, Λ′θ(%1) is defined using the primed
dummy variables q′k, for k = 1, . . . , 4 with the symmetry property Λθ(%1) = Λ′θ(%1). Of
course, we have

cL(%1, 0) = c′L(%1, 0) (C.29)

Using Eq. (C.27), the tensor elements appearing in Eq. (10.21b) then transform according
to

Tq′1,q′2 = T−q3,−q4 = (−1)q3+q4T ∗q3,q4 (C.30a)

and

T ∗q′3,q′4 = T ∗−q1,−q2 = (−1)q1+q2Tq1,q2 , (C.30b)

Using Eq. (C.30), Eq. (C.28) reads, upon transformation,

Λ′θ(%1) =
∑

q1,q2

∑

q3,q4

(−1)q3+q4 gK−q3,−q4,−q1,−q2(%1)Tq1,q2 T
∗
q3,q4 Wθ(s) , (C.31)

with Λθ(%1) = Λ′θ(%1). Next, evaluation of the quantity gK−q3,−q4,−q1,−q2(%1) present in
Eq. (C.31) using Eq. (10.17b), gives

g
(K)
−q3,−q4,−q1,−q2(%1) =

2∑

Q′=0




1 1 Q′

−q3 −q4 q3 + q4







1 1 Q′

%1 %1 −2%1


 (C.32)

×
2∑

Q=0




1 1 Q

−q1 −q2 q1 + q2







1 1 Q

%1 %1 −2%1




×
Q+Q′∑

K=|Q−Q′|




Q′ Q K

−q3 − q4 q1 + q2 s






Q′ Q K

2%1 −2%1 0


 γ

(K)
Q,Q′ ,

where we have interchanged the dummy indices Q and Q′. Application of Eq. (10.25) to
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the first and third Wigner 3j symbol in Eq. (C.32) gives,




1 1 Q′

−q3 −q4 q3 + q4


 = (−1)Q′




1 1 Q′

q3 q4 −q3 − q4


 (C.33a)

and



1 1 Q

−q1 −q2 q1 + q2


 = (−1)Q




1 1 Q

q1 q2 −q1 − q2


 , (C.33b)

respectively. Next, we permute the first and second column in the fifth Wigner 3j symbol
in Eq. (C.32), following Eq. (C.19), which yields




Q′ Q K

−q3 − q4 q1 + q2 s


 =




Q Q′ K

q1 + q2 −q3 − q4 s


 (−1)Q+Q′+K (C.33c)

Finally, inserting Eqs. (C.33) into Eq. (C.32) together with the property Λθ(%1) = Λ′θ(%),
we find

∑

K

∑

q1,q2

∑

q3,q4

(−1)q3+q4gKq1,q2,q3,q4(%1)Tq1,q2 T
∗
q3,q4Wθ(s) (C.34)

=
∑

K

∑

q1,q2

∑

q3,q4

(−1)q3+q4gKq1,q2,q3,q4(%1) (−1)K Tq1,q2 T
∗
q3,q4Wθ(s)

with Wθ(s) invariant as s invariant, and where gKq1,q2,q3,q4(%1) is defined in Eq. (10.17b).
Equation (C.34) means that the summations over K and qk is invariant under the trans-
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formation gK → (−1)KgK . Using Eq. (C.34), we find for %1 = ±1 and %2 = 0,

c′L(%1, 0) = N0c̃o
∑

`,m
no,`o,mo

∑

`′,m′

n′o`
′
o,m
′
o

∑

q,q′

∑

q1,q2
q3,q4

2∑

ν=0

4∑

K=0
(−1)q3+q4 (2ν + 1)(2L+ 1)

×a`omo
(no) a∗`

′
o

m′o
(n′o)Tq1,q2T

∗
q3,q4S

`,m
`o,mo

(q)S`′,m′`′o,m
′
o
(q′) ς̂(`, `′)

×(−i)`−`′ (−1)m′−q−%2 ei(δ`−δ`′ ) g(K)
q1,q2,q3,q4(%1) Ino

k
(`, `o) In

′
o

k
(`′, `′o)

×



` `′ L

m −m′ m′ −m






` `′ L

0 0 0







1 1 ν

q −q′ q′ − q







1 1 ν

0 0 0




×



K ν L

s q − q′ m′ −m






K ν L

0 0 0


 (−1)K (−1)K+ν+L

= (−1)LcL(%1, 0) . (C.35)

In Eq. (C.35), the factors (−1)K and (−1)ν+K+L arise from Eqs. (C.34) and from applica-
tion of the property defined in Eq. (10.25) to the sixth Wigner 3j symbol in Eq. (C.35),
respectively. Furthermore, we used the property that ν is even, i.e. only even ν con-
tribute to the summation, due to the triple zeros in the second row of the fourth Wigner
3j symbol. Finally, using Eq. (C.29), it follows that for %2 = 0,

cL(%1, 0) = (−1)L cL(%1, 0). (C.36)

Because no assumptions have been made on the polarization direction %1, Eq. (C.36) shows
that only even Legendre coefficients are present in the PAD if the radiative photoabsorp-
tion is driven by linearly polarized light, i.e. %2 = 0, independently of the polarization
direction, %1, driving the non-resonant two-photon absorption process. As a consequence,
only even Legendre orders contribute to the PAD if %1 = ±1, 0 and %2 = 0, translating
into a vanishing PECD.

C.2.5 Behavior of Legendre coefficients when changing the helicity of the one-
photon photoionization

The easiest way to prove Eq. (10.35) consists of making the change of variables defined
in Eq. (C.27), and evaluate c′L(%1,−%%), using the property

cL(%1,−%2) = c′L(%1,−%2), (C.37)
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where the unprimed (primed) quantities in Eq. (C.37) refer to the Legendre coefficients
before (after) the change of variables, respectively. Keeping ε%1 fixed while changing
the polarization direction %2 transforms the fourth Wigner 3j symbol in Eq. (10.21b)
according to,




1 1 ν

−%2 %2 0


 = (−1)ν




1 1 ν

%2 %2 0


 , (C.38)

where we have used Eq. (10.25). Inserting Eqs. (C.34) and (C.38) to Eq. (10.21b), for
c′L(%1,−%2) gives

c′L(%1,−%2) = N0c̃o
∑

`,m
no,`o,mo

∑

`′,m′

n′o`
′
o,m
′
o

∑

q,q′

∑

q1,q2
q3,q4

2∑

ν=0

4∑

K=0
(−1)q3+q4 (2ν + 1)(2L+ 1)

× a`omo
(no) a∗`

′
o

m′o
(n′o)Tq1,q2T

∗
q3,q4 S

`,m
`o,mo

(q)S`′,m′`′o,m
′
o
(q′) ς̂(`, `′)

×(−i)`−`′ (−1)m′−q−%2 ei(δ`−δ`′ ) g(K)
q1,q2,q3,q4(%1) Ino

k
(`, `o) In

′
o

k
(`′, `′o)

×



` `′ L

m −m′ m′ −m






` `′ L

0 0 0







1 1 ν

q −q′ q′ − q







1 1 ν

%2 −%2 0




×



K ν L

s q − q′ m′ −m






K ν L

0 0 0


 (−1)K (−1)ν (−1)K+ν+L

= (−1)L cL(%1,+%2) . (C.39)

In Eq. (C.39), the factors (−1)K and (−1)ν arise from the invariance property defined in
Eq. (C.34) for the transformation defined in Eq. (C.27), and (C.38), respectively. Appli-
cation of the property defined in Eq. (10.25) to the sixth Wigner 3j symbol in Eq. (C.39)
gives rise to the factor (−1)K+ν+L. The terms in K and ν compensates, giving rise to the
factor in (−1)L alone. Finally, using (C.37) and comparing Eq. (10.21b) for %1 and %2

and Eq. (C.39) for %1 and −%2, determines the proof for Eq. (10.35), i.e.,

cL(%1,−%2) = (−1)L cL(%1,+%2) (C.40)
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C.2.6 Behavior of Legendre coefficients when changing the helicity of the two-
photon absorption process

In this section, we present the proof of Eq. (10.36). To verify that it is the polarization
direction of the ionizing field alone which imposes the sign for all odd Legendre coefficients,
whereas the polarization direction of the two-photon absorption plays no role, we define
the following transformation




q′1

q′2

q′3

q′4




=




0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0







q1

q2

q3

q4




(C.41)

which interchanges the indices q1 
 −q4 and q2 
 −q3 while keeping Eq. (10.21b)
unchanged and s invariant. In particular, the tensor elements appearing in Eq. (10.21b)
then transform according to,

Tq′1,q′2 = T−q4,−q3 = (−1)q3+q4T ∗q4,q3

= (−1)q3+q4T ∗q3,q4 (C.42a)

and

T ∗q′3,q′4 = T ∗−q2,−q1 = (−1)q1+q2Tq2,q1

= (−1)q1+q2Tq1,q2 , (C.42b)

where we have made use of the correspondence between the components of a vector
operator in spherical and cartesian basis, defined in Eq. (C.7) in Appendix C.1.3, in
Tqk,qk′

, for qk, qk′ = ±1, 0, together with the fact that the two-photon absorption tensor is
symmetric in cartesian coordinates, i.e., Ti,j = Tj,i for i, j = (x, y, z).

We define Λθ(%1), according Eq. (C.28) and we study the symmetry properties of
Λ′θ(%1) upon transformation defined in Eq. (C.41). In particular, because the quantity
given by

(−1)q′1+q′3Tq′1,q′2Tq′3,q′4Wθ(s′) (C.43)

is (as for the earlier transformation defined in Eq. (C.27)) invariant under transformation
defined in Eq. (C.41), we may neglect it in the following, avoiding cumbersome notations.
We outline, however, that a full notation was used in Section C.2.4. Therefore, given
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such invariance properties, we may consider the behavior of gK under exchange %1 → −%1

alone, and neglect the extra terms depending on K, q1, . . . , q4 in the expression for Λ′θ(s).
Because %1 is changed to −%1 while %2 is kept fixed, we consider gK(−%1) which becomes,
upon transformation defined in Eq. (C.41),

g
(K)
q′1,q
′
2,q
′
3,q
′
4
(−%1) =

2∑

Q=0

2∑

Q′=0




1 1 Q′

−q4 −q3 q4 + q3







1 1 Q′

−%1 −%1 +2%1







1 1 Q

−q2 −q1 q2 + q1




×
Q+Q′∑

K=|Q−Q′|




1 1 Q

−%1 −%1 +2%1







Q′ Q K

−q4 − q3 q3 + q2 s







Q′ Q K

−2%1 +2%1 0


γ

(K)
Q,Q′ ,

(C.44)

where we have interchanged the indexes Q and Q′. Next we apply the symmetry property
given in Eq. (10.25), followed by an odd permutation of the first and second columns,
according to Eq. (C.19), to the first Wigner 3j symbol in Eq. (C.44). We find




1 1 Q′

−q4 −q3 q4 + q3


 =




1 1 Q′

q3 q4 −q3 − q4


 . (C.45a)

The same procedure is applied to the third symbol in Eq. (C.44), i.e.,




1 1 Q

−q2 −q1 q2 + q1


 =




1 1 Q

q1 q2 −q1 − q2


 . (C.45b)

Next, odd permutation of the first and second columns in the fifth Wigner 3j symbol
gives,




Q′ Q K

−q4 − q3 q2 + q1 s


 =




Q Q′ K

q1 + q2 −q4 − q3 s


 (−1)Q+Q′+K . (C.45c)

Application of Eq. (10.25), followed by permutation of the first two rows leaves the sign
of the second Wigner 3j symbol unchanged for all Q′, namely




1 1 Q′

−%1 −%1 −2%1


 =




1 1 Q′

+%1 +%1 +2%1


 (C.45d)

and analogously for the fourth Wigner symbol involving Q. It is to note that, the left side
of Eq. (C.45d) is related to gK(−%1) while the right side is related to gK(+%1). Permuting
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the first two rows of the fifth Wigner symbol in Eq. (C.44) gives




Q′ Q K

−2%1 +2%1 0


 = (−1)Q+Q′+K



Q Q′ K

2%1 −2%1 0


 .

(C.45e)

Inserting the symmetry transformations (C.45) into Eq. (C.44), leads to a compensation
of the terms (−1)Q+Q′+K in Eqs. (C.45c) and (C.45e). Finally, comparing Eq. (C.44) and
Eq. (10.17b) gives the following property,

∑

K

∑

q1,q2
q3,q4

gKq1,q2,q3,q4(−%1) =
∑

K

∑

q1,q2
q3,q4

gKq1,q2,q3,q4(+%1) ,

(C.46)

which implies cL(−%1, %2) = cL(%1, %2) according to Eq. (10.21b), cf. Eq. (10.36).
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[167] A. Crubellier, R. González-Férez, C. P. Koch, and E. Luc-Koenig, New J. Phys.
17, 045020 (2015).

[168] “Weak formulation of elliptic problems,” in Elliptic Equations: An Introductory
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[347] J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, Optics express
19, 11638 (2011).



BIBLIOGRAPHY 308

[348] B. M. Patterson, J. F. Sell, T. Ehrenreich, M. A. Gearba, G. M. Brooke, J. Scoville,
and R. J. Knize, Phys. Rev. A 91, 012506 (2015).
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