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ABSTRACT

Rydberg atoms are the “giants” in the world of atomic physics. Their highly excited valence
electron gives them remarkable properties, such as a long lifetime, large dipole moments and
great sensitivity to external fields rendering them ideal tools for the study of quantum effects
and quantum technology applications. Quantum technologies promise to outperform their clas-
sical counterparts in terms of speed, security, accuracy and performance while presenting us with
new challenges. This thesis explores different applications of Rydberg atoms for quantum tech-
nologies from a quantum control perspective with a special focus on quantum measurements.

Many quantum technologies require the fast and accurate engineering of quantum states to
achieve peak performance and avoid decoherence. I tackle this requirement by employing quan-
tum optimal control theory (OCT) and demonstrate fast and accurate navigation in the high-
dimensional Stark manifold of rubidium Rydberg atoms. This is illustrated by means of two ex-
amples: the circularisation of Rydberg atoms and the preparation of a Schrödinger-cat-like state
which promises quantum sensing of electric fields at the fundamental limit using alkali atoms.

While Rydberg physics has focused for a long time on alkali atoms, it is worth to extend the
study to alkaline-earth atoms, as their second valence electron promises new opportunities for
quantum technology. However, modelling alkaline-earth atoms is challenging due to electronic
interactions. I therefore develop an improved single-active-electron model and optimise the pa-
rameters to maximise the agreement with spectroscopic data. This enables OCT applications of
strontium which require a precise model for the quantum system under consideration.

Fast protocols are an important tool to avoid decoherence. However, quantum technolo-
gies rely on accessing the system for information processing and read-out. The study of open
quantum systems is thus crucial for realising quantum technology in presence of decoherence. I
therefore propose a quantum simulator for open quantum systems which enables the systematic
study of dissipation, memory effects and their interplay for quantum control. The simulator is
based on frequent measurements of a system by a meter which can be realised, for instance, by a
photonic mode of a cavity and a Rydberg atom, respectively.

The strong interaction of composite systems involving Rydberg atoms lends itself not only for
quantum simulation but also for spectroscopy. Many standard detection methods for quantum
objects are based on their destruction, e.g. by absorption or ionisation. Förster resonance energy
transfer (FRET), on the other hand, is a popular spectroscopic tool and promising candidate for
the non-destructive detection of polar molecules. The large size of Rydberg atoms, however,
suggests a breakdown of the commonly employed dipole-dipole approximation. To enable the
study of FRET, I simulate the collision between a Rydberg atom and a polar molecule considering
dipole-dipole, -quadrupole and -octupole interactions. The computed scattering cross-sections
allow for studying of the multipolar character of FRET and its spectroscopic potential.
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ZUSAMMENFASSUNG

Rydberg-Atome sind die “Riesen” in der Welt der Atomphysik. Ihr hoch angeregtes Valenzelektron
verleiht ihnen bemerkenswerte Eigenschaften wie eine lange Lebensdauer, große Dipolmomente und eine
große Empfindlichkeit gegenüber äußeren Feldern, was sie zu idealen Werkzeugen für die Untersuchung
von Quanteneffekten und Quantentechnologie macht. Quantentechnologien versprechen ihre klassischen
Vorläufer in Bezug auf Geschwindigkeit, Sicherheit, Genauigkeit und Leistung zu übertreffen, stellen uns
aber auch vor neue Herausforderungen. In dieser Arbeit untersuche ich verschiedene Anwendungen von
Rydberg-Atomen für Quantentechnologien unter Verwendung von Quantenkontrolle, wobei ein beson-
derer Schwerpunkt auf dem quantenmechanischen Messprozess liegt.

Viele Quantentechnologien erfordern die schnelle und genaue Präparation von Quantenzuständen,
um beste Ergebnisse zu erzielen und Dekohärenz zu vermeiden. Ich bearbeite diese Anforderung mit Hilfe
der Theorie optimaler Quantenkontrolle (OCT) und demonstriere eine schnelle und genaue Navigation
in der hochdimensionalen Stark-Mannigfaltigkeit von Rubidium-Rydberg-Atomen. Dies wird anhand
von zwei Beispielen veranschaulicht: der Zirkularisierung von Rydberg-Atomen und der Präparation
eines Schrödinger-Katzen-Zustands, der Quantensensorik von elektrischen Feldern an der fundamentalen
Grenze unter Verwendung von Alkaliatomen verspricht.

Während sich die Rydberg-Physik lange Zeit auf Alkaliatome konzentriert hat, lohnt es sich, die
Forschung auf Erdalkaliatome auszudehnen, da deren zweites Valenzelektron neue Möglichkeiten für die
Quantentechnologie verspricht. Die Modellierung von Erdalkaliatomen ist jedoch aufgrund der elektron-
ischen Wechselwirkungen eine Herausforderung. Ich entwickle daher ein verbessertes effektives Einelek-
tronmodell und optimiere die Parameter, um die Übereinstimmung mit den spektroskopischen Daten zu
maximieren. Dies ermöglicht OCT-Anwendungen von Strontium, die ein präzises Modell für das betra-
chtete Quantensystem erfordern.

Schnelle Protokolle sind ein wichtiges Instrument zur Vermeidung von Dekohärenz. Quantentech-
nologien sind jedoch auf den Zugang zum System angewiesen, um Informationen zu verarbeiten und
auszulesen. Die Untersuchung offener Quantensysteme ist daher von entscheidender Bedeutung für
die Verwirklichung von Quantentechnologie in Gegenwart von Dekohärenz. Ich präsentiere daher einen
Quantensimulator für offene Quantensysteme, der die systematische Untersuchung von Dissipation, Ge-
dächtniseffekten und deren Zusammenspiel für die Quantenkontrolle ermöglicht. Der Simulator basiert
auf wiederholten Messungen eines Systems durch ein Mess-System, die z.B. als photonische Mode einer
Kavität bzw. ein Rydberg-Atom realisiert werden können.

Die starke Wechselwirkung von zusammengesetzten Systemen, die Rydberg-Atomen beinhalten, eig-
net sich nicht nur für die Quantensimulation, sondern auch für die Spektroskopie. Viele Standardnach-
weisverfahren für Quantenobjekte beruhen auf deren Zerstörung, z.B. durch Absorption oder Ionisation.
Der Förster-Resonanz-Energie-Transfer (FRET) hingegen ist ein beliebtes spektroskopisches Werkzeug
und ein vielversprechender Kandidat für den zerstörungsfreien Nachweis polarer Moleküle. Die große
Ausdehnung von Rydberg-Orbitalen lässt jedoch darauf schließen, dass die üblicherweise verwendete
Dipol-Dipol-Näherung nicht ausreichend ist. Um die Untersuchung von FRET zu ermöglichen, simuliere
ich den Zusammenstoß zwischen einem Rydberg-Atom mit einem polaren Molekül unter Berücksichtigung
von Dipol-Dipol-, Quadrupol- und Oktupol-Wechselwirkungen. Die berechneten Streuquerschnitte er-
möglichen die Untersuchung des multipolaren Charakters von FRET und seines spektroskopischen Poten-
zials.
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1
INTRODUCTION

In the circus, tamers make animals sit, jump, roll over, or act in other peculiar ways. In quantum
physics, we are doing the same with the smallest building blocks of nature. Since the dawn of
quantum physics, we have been fascinated – and not rarely puzzled – by the strange nature of the
quantum world. For decades, researchers were being limited to exploring nature in thought, as it
seemed impossible to observe or control single quanta. Today, we are able to make the quantum
world our own; tame molecules, atoms or even single particles of light, understand and predict
their behaviour and even exploit them for the development of cutting edge technology.

One famous example for the remarkable control of single quanta is the observation of the
birth and death of a single photon [6] which, amongst others, was awarded the Nobel prize in
2012 [7]. Key to this experiment was the strong interaction between light and highly excited
atoms, so-called Rydberg atoms [8, 9]. Other experiments showed that these atoms can be used
for observing the progressive decoherence of a superposition [10], measuring photons without
destroying them [11], making photons talk to each other [12], generating single photons [13], or
– in other words – watching quantum physics at work.

Leveraged by experimental advances in the last decades, the study of quantum physics has
passed the point of fundamental research. In fact, many established technologies, such as lasers,
MRI or microchips, rely in one way or another on the principles of quantum physics. But there
is more to come. High-level control of quantum systems, such as demonstrated by the ground-
breaking experiments listed above, enables new technologies which exploit the quantum nature
of their building blocks [14]. In the so-called second quantum revolution, we envision technolo-
gies that outperform their classical counterparts in terms of speed, security, accuracy, or per-
formance [15]. The idea of simulating physics with computers built of quantum particles was
first formulated by Richard Feynman [16] which is commonly considered the spark that ignited
the field of quantum technology. Today, quantum computing is just one of four main pillars of
quantum technology, next to quantum simulation, quantum communication and quantum sens-
ing/metrology.

1



2 CHAPTER 1. INTRODUCTION

Rydberg atoms have proven to be excellent tools for studying quantum effects and are thus
a natural choice for the construction of quantum technologies [17]; current research interests
revolve especially around quantum computing, quantum simulation, quantum optics and quan-
tum sensing [18]. Rydberg states are commonly prepared in alkali atoms by exciting their single
valence electron to a very high principal quantum number n [9]. This turns the atoms into huge
objects, as the size of the valence electron’s orbital scales as n2. For n ∼ 100, they measure a mi-
cron in diameter – about the size of a bacterium. As the electron is, on average, very distant from
the ionic core, it is only weakly bounded and thus very sensitive to external fields. Moreover, the
overlap of the electron’s wavefunction with low lying states is minimal, leading to a long lifetime
on the scale of 100µs. By exciting the angular momentum quantum number ` to maximal values,
i.e. ` = n − 1, the lifetime can even be increased to tens of milliseconds. The orbital of these
atoms is shaped like a hula hoop giving rise to the name circular Rydberg atoms [19]. In addi-
tion to their long lifetime, Rydberg atoms possess extremely large dipole moments which scale
as n2, rendering them ideal for usage in many-body or composite systems. For instance, Rydberg
atoms interact strongly with light, polar objects, or each other [20]. In the latter case, two Ryd-
berg atoms can not only interact via dipole-dipole but also via van-der-Waals interaction, thus
rendering their interaction tunable and Rydberg systems ideal for quantum simulation [21]. In
addition to that, their strong interaction with light allows for trapping the atoms in impressive,
essentially arbitrary geometries in space [22].

In this thesis, I contribute to the study of Rydberg atoms for quantum technologies. For this
reason, I provide a thorough introduction to Rydberg physics in Chapter 2. A special emphasis
of this thesis lies on the field of quantum metrology. The general idea of quantum metrology, or
often synonymously called quantum sensing, is to measure a physical quantity with enhanced
sensitivity beyond what is classically possible by means of quantum strategies [23]. In fact, the
measurement process itself is a central thread than runs through this thesis. According to the
Copenhagen interpretation of quantum mechanics, the quantum mechanical wave function does
not possess any reality but is only a means to the end of determining the outcome of a measure-
ment. In this sense, measurements are the crucial link that connects the abstract quantum world
with our tangible classical world; the translator from quantum to classical physics; the enabler
from concepts to technologies.

The high sensitivity of Rydberg atoms to electric or magnetic fields makes them ideal sensors
for their measurement. Quantum enhanced measurement protocols typically rely on preparing
the quantum sensors in entangled or other highly non-classical states which are highly sensitive
to the quantity that is to be measured [24, 25, 26]. The preparation of these intricate sensing states
is often challenging and the main obstacle for achieving accuracies at the fundamental limit. Our
approach to this problem is optimal control – another focus of this thesis. Quantum optimal
control theory (OCT) [27] is based on defining a figure of merit and treating it as a functional of
the external controls, such as electromagnetic pulses driving the system from one state to another.
The functional is then minimised using variational calculus under dynamical constraints. The
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control problem is often solved numerically, as an analytical treatment is rarely possible. While
originally envisioned for controlling molecular processes [28], OCT is an ideal tool whenever
high fidelities or fast protocols [29] are desired.

Fast protocols are useful when time is a decisive factor – i.e. when it is playing against you.
The high sensitivity of quantum systems to external fields is one of their major assets for quan-
tum technologies, but also their greatest weakness. They do not only react to deliberate controls
but also to undesired sources of noise which, over time, destroy coherence and erase informa-
tion. This process is called decoherence and a major adversary in engineering quantum tech-
nologies [30]. One approach to beat decoherence is to perform protocols faster than decoherence
can destroy them. In Chapter 3, I investigate on how OCT can help to speed-up and improve the
state preparation in Rydberg atoms at the example of circular and Schrödinger-cat-like states for
quantum metrology applications.

One premise for the application of OCT is the existence of an accurate model to describe
the quantum system that is to be controlled. If the employed model is inadequate, the optimised
controls will not be effective in experimental applications. Alkali Rydberg atoms are thus ideal for
this purpose, as they can be described by comparatively easy models with high accuracy due to
their similarity to the hydrogen atom. However, there are reasons to move forward and consider
Rydberg states in alkaline-earth atoms, which possess two valence electrons [31]. These atoms
promise to be true experts of multi-tasking: While one electron can be used for trapping, cooling
or imaging the atom, the other one is available for quantum technology applications. Modelling
alkaline-earth atoms is, however, a challenging task due to electronic interactions. The single-
active-electron (SAE) model [32] incorporates the influence of the inner, ground state electron on
the outer, Rydberg electron into an effective core potential. While showing qualitatively good
results in some areas of Hilbert space, the model fails to predict the outcome of experiments
in others. In Chapter 4, I take on the task of improving the SAE model by optimising newly
introduced model parameters on the basis of experimental data, thus paving the way for optimal
control of alkaline-earth atoms.

Unfortunately, it is not always possible to speed-up protocols with OCT sufficiently to over-
come decoherence. Moreover, perfect isolation of the quantum system is neither possible in real-
ity nor constructive, as quantum technologies rely on the system being accessible for processing
and read-out of information. The study of open quantum systems [33] is thus crucial for the
realisation of quantum technology in presence of decoherence [30]. In Chapter 5, I employ an
approach to studying open quantum systems that can be summarised as “To know your enemy,
you must become your enemy”1. Specifically, I employ quantum simulation [34] to study the
influence of an environment on the open system’s dynamics. The idea of quantum simulation
is to mimic the dynamics of a complex system in a simpler, controllable one. Here, I exploit this
idea and deliberately induce dissipation in a photonic mode of a cavity by performing repeated,
indirect measurements of the system’s state using Rydberg atoms. When tuning the parameters

1Sun Tzu, The Art of War
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of the measurement carefully, it is possible to mimic dissipation and memory effects, i.e. non-
Markovian dynamics [35], and study their role for the control of open quantum systems.

The key property of measurements for quantum simulation is that they destroy information –
similarly to the environment of an open quantum system. In many areas of physics, this property
is highly detrimental. In the worst case, a measurement destroys the quantum system of inter-
est, for instance when photons are measured via absorption. A viable route to circumvent this
problem is by measuring the system of interest indirectly using a meter [36]. For instance, the
detection of polar molecules [37, 38, 39] is still a challenging task, as existing methods often re-
quire specific properties of the molecule [40]. In Chapter 6 and 7, I study the interaction between
polar molecules and Rydberg atoms, which promises to serve as a new detection scheme for po-
lar molecules [40]. More specifically, I model the scattering process between polar molecules and
Rydberg atoms ab initio in Chapter 6 and provide predictions for the outcome of realistic experi-
ments. During the collision, the particles interact via Förster resonant energy transfer (FRET) [41],
a process which is typically described by means of the dipole-dipole interaction between them.
However, since Rydberg atoms can take macroscopic dimensions, approximating their charge
distribution as a dipole seems questionable. This is why in the presented model, I go beyond this
approximation and study the multipolar character of the interactions. In Chapter 7, I selectively
study the role of higher order multipole elements for FRET and formulate a condition for the
breakdown of the dipole approximation.

This thesis is structured in 8 chapters. Chapter 2 summarises the necessary foundations of
Rydberg physics. The following five chapters each present the results of one project as outlined
above. Each of these chapter (except for Chapter 7 which forms a unit with Chapter 6) starts with
one section on the theoretical concepts from literature required for the subsequent chapter, and
ends with an individual summary. The findings of the complete thesis are summarised and em-
bedded into the current state of research on quantum technology in Chapter 8. As emphasised
before, quantum technology is about more than abstract concepts. It is about real-life applica-
tions and the development of cutting edge technology. Experimental feasibility is therefore a
mandatory requirement for all research that aims to bring quantum technology forward. In this
thesis, I therefore put a special emphasis on realistic models for the proposed concepts. This per-
spective was enriched by fruitful experimental collaborations which contributed to Chapters 3,
4, 6 and 7. I thus provide in this thesis the full range from theoretical modelling, over numerical
simulations, to experimental predictions, reproduction of experimental data, and the successful
comparison of theory and experiment, in order to open up new areas of quantum technologies
with Rydberg atoms.



2
RYDBERG ATOMS

As this work focuses on the usage of Rydberg atoms in quantum technologies, we dedicate a full
chapter on the theoretical foundations of these atoms. The term “Rydberg atom” relates to the
Rydberg formula [8]

∆E = RH

(
1

m2
− 1

n2

)
(2.1)

which was first formulated by Johannes Rydberg in 1890. It gives the energy difference between
the n-th and m-th level of hydrogen where the natural constant RH is known as the Rydberg
constant. Any system with a somewhat localised positively charged core and a more strongly
delocalised electron shows some degree of hydrogenic behaviour. This is particularly true for
systems with a highly-excited valence electron and therefore, atoms whose valence electron is in
a state with a high principal quantum number n are known as Rydberg atoms. Rydberg states can
also be found in molecules or semiconductors but due to the natural resemblance of alkali atoms
with hydrogen, these are a popular choice in the field of Rydberg physics [18]. In this chapter, we
consider both hydrogen-like atoms, which are constituted of a single electron and an arbitrary
number of protons and neutrons in the core; and alkali atoms, with one valence electron and an
ionic core which consists of the atomic core and multiple inner shell electrons.

We start by describing Rydberg atoms without external perturbations in Sec. 2.1 and show
that only small adjustments of the hydrogen-like model are necessary to adequately describe
also alkali atoms. Afterwards, in Sec. 2.2, we discuss the influence of a static electric field on
Rydberg atoms and the properties of the emerging Stark manifold. Finally, in Sec. 2.3, we describe
the dynamics in the Stark manifold when the atoms are under the influence of time-dependent
pulses.

5
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2.1 Field-free description

For the largest part of this thesis, we consider experiments with rubidium Rydberg atoms with a
special focus on circular states. However, alkali atoms in high-angular-momentum states, such as
the circular state, behave similar to hydrogen, as the overlap between the valence electron and the
ionic core is negligible. Therefore, we start by recapitulating the properties of free hydrogen-like
atoms in Sec. 2.1.1. Only for low-angular-momentum states does the valence electron dive into
the ionic core which slightly changes the properties of alkali atoms in comparison to hydrogen as
we discuss in Sec. 2.1.2. In order to describe interactions of Rydberg atoms with external field or
other particles, we present the matrix elements of the position operator in Sec. 2.1.3.

2.1.1 Hydrogen-like atoms

We consider an electron in the field of an atomic core with charge Ze, where e is the elementary
charge and Z an integer. In the centre of mass frame and atomic units, which will be employed
throughout the thesis, the Hamiltonian takes the form [8]

Ĥ0 = T̂ + V̂C(r̂) = − ∇
2

2mr
− Z

r̂
, (2.2)

where r is the distance between electron and core, and mr = memc
mc+me

is the reduced mass of
the electron with mass me and the core with mass mc. We neglect fine-structure contributions
due to spin-orbit coupling, as they are of the order of a few hundred hertz which is six orders
of magnitude smaller than the transition frequencies we consider in this work. The hyperfine
structure is a further three orders of magnitude smaller [9].

The potential V̂C(r̂) = −Z/r̂ is a central potential, as it only depends on the distance r between
the electron and the core. Therefore, the angular momentum L̂ = r̂ × p̂ of the electron is con-
served. By expressing the Laplace operator∇2 in spherical coordinates and introducing a product
ansatz for the wavefunction, ψ(r) = R(r)Y (ϑ, ϕ), the Schrödinger equation Ĥ0ψ(r) = Eψ(r) can
be separated into a radial and angular part [8]. The solution of the angular part is given by
spherical harmonics Y m

` (ϑ, ϕ) where ` can take non-negative integer values and m takes values
between −` and `. The spherical harmonics are eigenfunctions of the angular momentum opera-
tor, satisfying

L̂2Y m
` (ϑ, ϕ) = `(`+ 1)Y m

` (ϑ, ϕ), (2.3a)

L̂zY
m
` (ϑ, ϕ) = mY m

` (ϑ, ϕ). (2.3b)

` and m are called the angular momentum and magnetic quantum number, respectively.
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Introducing the substitution R(r) = ρ(r)/r yields the radial Schrödinger equation [8]

(
− 1

2mr

∂2

∂r2
+
`(`+ 1)

2mrr2
− Z

r

)
ρ(r) = E ρ(r). (2.4)

In the following, we restrict ourselves to bound solutions with E < 0. Eq. (2.4) can be solved
analytically and the radial wavefunctions, Rn`(r), which depend on n and `, can be expressed
using generalized Laguerre polynomials [42]. n is a positive, non-zero integer and called the
principal quantum number, and ` is the angular quantum number which can take values between
0 and n− 1. The resulting eigenvalues are

En = −mrZ
2

2n2
= −RZ

2

n2
, (2.5)

where R = mr/2 is the Rydberg constant. Note that the energy En only depends on n and not on
` or m. Each energy level is thus n2-fold degenerate as a result of the symmetry of the Coulomb
problem [43]. The state of the atom can be fully described by the complete set of commuting
observables {Ĥ0, L̂

2, L̂z} and their corresponding quantum numbers n, ` and m. In short, the
eigenstates of hydrogen-like atoms can be labelled by |n, `,m〉.

2.1.2 Alkali atoms

The crucial difference between hydrogen-like and alkali atoms is their ionic core. While the for-
mer have only one electron, heavier atoms possess several electrons constituting one or multiple
closed inner shells in addition to their single valence electron. If the valence electron of an alkali
atom is highly excited, the overlap of its orbital with the ionic core is negligible. In this case, the
electrons in the ionic core shield the charge of the atomic core and the valence electron effectively
only “feels” one positive charge in the centre [8]. High-angular-momentum Rydberg states can
thus be described equivalently to hydrogen atoms. As the ionic core has a finite size, however,
the probability of the valence electron to be located inside the ionic core becomes significantly
larger as the angular momentum decreases. The screening effect subsides and the valence elec-
tron starts to be affected by the inner structure of the ionic core. The positive charge inside the
ionic core deepens the effective core potential with respect to the hydrogenic one. As a result,
states with low angular momenta experience a tighter bonding which breaks the `-degeneracy of
the n-manifolds as shown in Fig. 2.1.

Beyond the lifted `-degeneracy, accurate Rydberg spectroscopy reveals a j-dependence of the
energy levels, where j is the quantum number corresponding to the total angular momentum
operator Ĵ = L̂+ Ŝ with Ŝ being the spin-operator [8]. In general, j ranges from |`− s| to `+ s.
For (effective) one electron systems with spin s = 1

2 , j takes only two values, ` ± 1
2 (except for

` = 0 where j = 1
2 ). The lifted degeneracy is due to spin-orbit coupling and can be incorporated
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Figure 2.1: Quantitative spectrum of rubidium around the n = 51-manifold. The numbers above
the levels denote their n value and states from the same n-manifold are depicted in the same
colour. The vertical dashed lines present the energy levels of hydrogen. States with ` > 4 coincide
with the dashed lines on this scale. The origin of the energy scale is set to the hydrogenic state
n = 51. The p-state (` = 1) splits up due to spin-orbit coupling; the upper state has j = 3

2 , the
lower one j = 1

2 . The spin-orbit coupling of the other states is not visible on this scale.

in the Rydberg formula of Eq. (2.5) by modifying the principal quantum number n as [8],

En`j = − mrZ
2

2(n− δn`j)2
= − RZ2

(n− δn`j)2
, (2.6)

where δn`j is called the quantum defect. Note that for alkali atoms, Z = 1, due to the shielding
effect. The quantum defect is often parametrised via a modified Rydberg-Ritz expression [8] as

δn`j = δ`j,0 +
δ`j,2

(n− δ`j,0)2
+ . . . , (2.7)

where the δlj,i on the right-hand side are empirical constants that describe the i-th order correc-
tion with i being an even number.

To calculate the wave function of the valence electron of an alkali atom, two modifications
have to be considered with respect to the Coulomb potential V̂C(r̂). Firstly, the spin-orbit coupling
is described by the additional term [43]

V̂so(r̂) =
α2

4r̂3

(
j(j + 1)− `(`+ 1)− s(s+ 1)

)
, (2.8)

whereα is the fine structure constant. Spin-orbit coupling also occurs for hydrogen and hydrogen-
like atoms but can usually be neglected. Secondly, the valence electron polarises the ionic core, a
process that can be described as [8]

V̂pol(r̂) = − α
2
c

2r̂4
, (2.9)

where αc is the static dipole polarisability. It can be shown [8] that the expectation value 〈r−4〉
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scales as n−3`−5. The effect of both the spin-orbit coupling and the polarisability can be included
in the quantum defect, as they are diagonal in the spherical basis and vanish as ` increases.
Nevertheless, the modified potential plays a role if the wave functions are to be calculated, for
instance for the calculation of matrix elements. Since the overall potential of the alkali atom,

V̂alkali(r̂) = V̂C(r̂) + V̂so(r̂) + V̂pol(r̂), (2.10)

is still spherically symmetric, the Schrödinger equation stays separable and the solution of the
angular part is unchanged. The radial wave function, however, differs from the hydrogenic case,
as the potential is no longer of Coulomb type. In this case, the radial Schrödinger equation
cannot be solved analytically. Instead, we solve it numerically using Numerov’s method [44] as
explained in more detail in Sec. 3.1.1.

2.1.3 Matrix elements

Atoms can couple to, for instance, external electric fields or polar particles via their dipole mo-
ment, d̂ = qr̂. In order to determine the interaction strength between Rydberg atoms and such
objects later, we require the matrix elements of the position operator r̂. Using the product ansatz
for the wave function, the matrix elements can be split into a spherical and a radial part,

〈
n`m

∣∣ r̂
∣∣n′`′m′

〉
=

〈
`m

∣∣∣∣
r̂

r

∣∣∣∣ `′m′
〉∫

dr r2Rn`(r) r Rn′`′(r), (2.11)

which can be computed separately. The radial integral is solved either by numerical integration
using the wavefunction previously obtained analytically for hydrogen-like atoms, or by using
Numerov’s method for alkali atoms as explained in Sec. 3.1.1. The angular term is identical
for hydrogen-like and alkali atoms and can be solved analytically. Instead of calculating the
matrix elements of each Cartesian components, x̂, ŷ and ẑ, directly, it is more convenient to move
to the spherical basis given by x̂ ± iŷ and ẑ. The matrix elements can be calculated using the
properties of Legendre polynomials. The only non-vanishing elements are [43] 〈`m|ẑ/r|`± 1,m〉,
〈`m|(x̂± iŷ)/r|`+ 1,m± 1〉, and 〈`m|(x̂± iŷ)/r|`− 1,m± 1〉, from which the well-known dipole
transition selection rules ∆` = ±1 and ∆m = 0,±1 can be derived. The analytic formulas for
these matrix elements are given in Appendix B.1.

Higher order matrix elements,

〈
n`m

∣∣∣∣∣
k∏

i

x̂i

∣∣∣∣∣n
′`′m′

〉
=

〈
`m

∣∣∣∣∣

∏k
i x̂i
rk

∣∣∣∣∣ `
′m′
〉∫

dr r2Rn`(r) r
k Rn′`′(r), (2.12)

can be calculated similarly. The radial part requires the evaluation of the radial integral of rk,
which can be done numerically. The angular part can be calculated using so-called spherical
tensors T (k)

q , where k is called the rank of the tensor and q = −k, . . . , k. Above, we have already



10 CHAPTER 2. RYDBERG ATOMS

used a spherical tensor of rank k = 1 with components defined as1 [45]

T
(1)
0 = z, (2.13a)

T
(1)
±1 = ∓ 1√

2
(x± iy). (2.13b)

Spherical tensors are proportional to spherical harmonics. For example, the rank-1 tensor
satisfies

T (1)
q =

√
4π

3
rY m

1 . (2.14)

As a result, spherical tensors of rank k transform like angular momentum eigenstates with ` =

k under rotations. They are called irreducible tensors as they cannot be decomposed further
without losing their transformation properties. Given two spherical tensors of rank k1 and k2,
tensors of rank k can be constructed as [45]

T (k)
q =

∑

q1

∑

q2

〈k1, k2; q1q2|k1k2; kq〉T (k2)
q1 T (k2)

q2 , (2.15)

where 〈k1, k2; q1q2|k1k2; kq〉 are Clebsch-Gordan coefficients. When setting k1 = k2 = 1 and
employing the tensors from Eq. (2.13), we obtain spherical tensors of rank 2 and 0 as shown
explicitly in Appendix B.2. In more general terms, every (reducible) rank-2 tensor (Tij)ij can
then be decomposed into three parts [45],

T = T (0) + T (1) + T (2), (2.16)

where T (0) is a rank-0 tensor (scalar) equal to the trace of the matrix; T (1) is an antisymmetric
rank-1 tensor; and T (2) is a symmetric, traceless rank-2 tensor. Each of these three tensors is
irreducible and has 2k + 1 components. When employing the spherical basis, T (1) is given by
Eq. (2.13) and the other two terms can be derived using Eq. (2.15). As an example, we consider
the next higher order of the multipole expansion, the quadrupole moment. While the dipole mo-
ment is a vector, the quadrupole moment takes the form of a 3 × 3 matrix, Q = (xixj)xi,xj=x,y,z .
However, not all of its elements are independent, as the matrix is symmetric, xixj = xjxi. This
reducible tensor can be expressed in terms of spherical tensors, namely rank-2 tensors and the
rank-0 tensor which gives the trace of the matrix. Since the matrix is symmetric, no rank-1 ten-
sor is involved. In Appendix B.2, we show explicitly the relations between the Cartesian and
spherical tensor of rank 2 following [46].

When using the proportionality between spherical tensors and spherical harmonics, we can
evaluate matrix elements of higher rank tensors easily. We exploit the well-known relation for

1The back transformation from spherical to Cartesian coordinates follows directly from inverting these equations
and is explicitly given in Appendix B.1.
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spherical harmonics [45]

∫ 2π

0

∫ π

0
Y m1
`1

Y m2
`2

Y m3
`3

sinϑ dϑ dϕ =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)

(2.17)

where the expressions in the brackets are Wigner 3j symbols [45]. Together with the property
Y m
` = (−1)mY −m` , we arrive at the expression

〈`m|Y q
k |`′m′〉 = (−1)m

√
(2`+ 1)(2q + 1)(2`′ + 1)

4π

(
` q `′

0 0 0

)(
` q `′

−m k m′

)
, (2.18)

for angular matrix elements into which we can insert Eq. (2.14) or tensors of higher rank.

The selection rules for the matrix elements follow from the properties of the Wigner 3j sym-
bols. From the condition m1 + m2 + m3 = 0 follows ∆m = m − m′ = k and from |`1 − `2| ≤
`3 ≤ `1 + `2 follows |`− q| ≤ `′ ≤ `+ q. In addition, `1 + `2 + `3 must be an even number which
means that for even (odd) q, ∆` = `− `′ must be even (odd). For instance, for the dipole moment
involving rank-1 tensors with k = 1 and q = 0,±1, we obtain the well-known selection rules
∆m = 0,±1 and ∆` = ±1. For the quadrupole moments, the selection rules are ∆m = 0,±1,±2

and ∆` = 0,±2. The above formalism can be generalised to higher order tensors using Eq. (2.15).
In Appendix B.3, we have derived the corresponding relations for the octupole moment with
k = 3. The selection rules for the octupole are ∆m = 0, . . . ,±3 and ∆` = ±1,±3.

2.2 Stark effect

In a free, hydrogen-like atom, no quantisation axis is preferred due to the spherical symmetry
of the Coulomb potential. As a result, each energy level has a n2-fold degeneracy. An external
electric field, however, can break the spherical symmetry and the total angular momentum is not
a constant of motion any more. In this work, the splitting of the energy levels resulting from a
coupling of the atom to an electric field, known as the Stark effect, plays a crucial role. We start by
describing the Stark effect in hydrogen-like atoms in Sec. 2.2.1, to later on discuss the differences
in alkali atoms in Sec. 2.2.2.

2.2.1 Hydrogen-like atoms

We consider a homogeneous, static (DC) electric field pointing in z-direction. The problem then
becomes cylindrically symmetric, thus conserving the angular momentum along the z-axis and
m stays a “good” quantum number. Good, in this context, means that the quantum number
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Figure 2.2: Wavefunctions for four different parabolic states in the hydrogen atom without DC
field (from left to right): |n = 21,m = 16, µ = −4〉, |21, 16, 0〉, |21, 16, 4〉, |21, 20, 0〉. The red dot
marks the centre of mass. In the first row, the orbitals are shown in three dimensions with the
vertical axis being the quantisation axis (z) with units of the 1000a0. The surfaces show areas with
a probability density of 1.5 · 10−9a−3

0 . The second row shows the projection onto the zρ-plane.
The colour map ranges from 0 (blue) to 1.5 · 10−9a−3

0 (white). Figure taken from [47].

corresponds to a conserved observable. The potential of the DC field is given by

V̂DC = −d̂ · FDC = ẑFDC (2.19)

with the dipole operator d̂ = qr̂ and the amplitude of the DC field FDC. The influence of the
DC field on the eigenenergies of the hydrogen-like atoms can be calculated using perturbation
theory. The spherical basis, however, is not practical for this task, as the DC field breaks spherical
symmetry and ` is thus not a good quantum number any more. In the spherical basis, the matrix
elements of the dipole operator vanish [43],

〈n, `,m| qr̂ |n, `,m〉 = 0, (2.20)

and hence the first order correction to the energy eigenvalues using degenerate perturbation
theory vanish. Instead, another basis is utilised which reflects the symmetry of the problem more
accurately.

In general, any problem involving a central force, such as the field-free hydrogen atom,
can be separated in spherical coordinates. However, if the central force is of Coulomb type,
V (r) = −κ/r, the separation can also be carried out in parabolic coordinates which turns out to be
particularly useful for perturbation problems where one direction in space is distinguished [43],
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such as in our case by the DC field. This alternative approach is connected to the “accidental
degeneracy” of the Coulomb problem which can be understood more intuitively by comparing
the free hydrogen atom to the classical Kepler problem. During the motion of a planet in the
gravitational field of its star, three quantities are conserved: the energy, the angular momentum
and the Lenz-Runge vector. The latter lies in the plane of motion and points from the focus to
the perihelion, i.e. the nearest point of the orbit to its focus. It turns out [48] that its quantum
mechanical analogue, the Lenz-Runge operator,

Â =
1

2

(
p̂× L̂− L̂× p̂

)
−mrκ

r̂

r
, (2.21)

is a constant of motion in hydrogen-like atoms resulting in the accidental degeneracy of states
with the same n but different ` values. It can be shown [48] that its z-component commutes both
with Ĥ0 and L̂z. When normalised within each eigenspace of Ĥ0, â = 1√

−2mrEn
Â, it has the

same dimension as an angular momentum. The eigenstates of a hydrogen-like atom can then be
characterised by the complete set of commuting observables {Ĥ0, L̂z,−âz} and their eigenval-
ues, |n,m, µ〉. µ is the eigenvalue of the negative, normalised Lenz-Runge operator. It is called
the eccentricity quantum number because it determines the eccentricity of the electronic orbital
equivalently to the classical Lenz-Runge vector whose absolute value equals the eccentricity of
the Kepler orbit. The corresponding wave functions can be obtained from solving the field-free
Schrödinger equation in parabolic rather than spherical coordinates1. We accordingly refer to
the basis |n,m, µ〉 as the parabolic basis. Fig. 2.2 shows some exemplary orbitals. If µ < 0 (first
column), the electronic orbital is mainly located in the area with z < 0, and conversely for µ > 0

(third column). Due to the shape of the orbitals, states with large values of |µ| are also called el-
liptic states. If µ = 0, the orbital is symmetric with respect to the z = 0-plane (second and fourth
column). It is apparent that the parabolic wave functions are in general asymmetric with respect
to the z = 0 plane as opposed to the wave functions in the spherical basis. As a result, this basis
is more suitable when considering problems with cylindrical symmetry.

Different from spherical coordinates, the Schrödinger equation of hydrogen-like atoms re-
mains separable in the DC potential when using parabolic coordinates [8]. Although its solution
cannot be calculated analytically, the corrections of the energy eigenvalues can be determined to
arbitrary order using perturbation theory [50]. The first order correction is given by the diagonal
elements of the potential V̂DC in Eq. (2.19). While the matrix elements of the potential, and hence
the ẑ operator, vanish in the spherical basis (cf. Eq. (2.20)), they can be evaluated in the parabolic
basis as [49]

〈n,m, µ| ẑ |n,m, µ〉 = − 3n

2Z
〈n,m, µ| âz |n,m, µ〉 =

3n

2Z
µ. (2.22)

1Details on the solution of the hydrogenic Schrödinger equation using parabolic coordinates can be found for in-
stance in [8, 43, 49].
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Figure 2.3: First order Stark shift for the states of one n-manifold. The energy levels are separated
in ladders with constant values of m. The quantum number µ = m1 − m2 is denoted next to
each level. States with equal m1 (m2) quantum numbers are connected by red (blue) ellipses. The
operators Ĵ±1 (Ĵ±2 ), and hence σ+ (σ−)-polarised light, couple states within each blue (red) area.

From this, the first order energy correction can be calculated to [43]

E(1)
n =

3

2Z
FDCnµ, (2.23)

which gives rise to the linear Stark effect, as the energy correction is linear in the DC field strength.
For n = 50 and FDC = 1 V

cm , which is the parameter range we are interested in, the linear Stark
effect is of the order of 100 MHz. The spectrum of one particular n-manifold, called the Stark
manifold, is shown in Fig. 2.3. The energy shift does not depend on m and therefore, the degen-
eracy of one n-manifold is not entirely lifted. We can divide the manifold into vertical, harmonic
m-ladders with an energy spacing of 2ωstark where

ωstark =
3

2Z
FDCn, (2.24)

such that E(1)
n = ωstark µ. Each ladder has n − |m| steps and is symmetric with respect to the

energy of the unperturbed energy En. Diagonal ladders, where m changes by one, have an
energy spacing of ωstark. The energy shift E(1)

n is proportional to µ which can be understood
intuitively by considering the eccentricity of the orbital. As the DC field points in the z-direction,
states with a µ > 0 (µ < 0) have a higher probability density in areas with high (low) electric
potential which leads to an increase (decrease) in energy. Orbitals with µ = 0, on the other hand,
are symmetric with respect to the z-plane and their energy levels are unaffected by the DC field.

It can be shown that the second order correction, or the quadratic Stark effect, is given by [8]

E(2)
n = − 1

16

( n
Z

)4 (
17n2 − 3µ2 − 9m2 + 19

)
F 2

DC. (2.25)
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The energy shift is always negative and lifts the degeneracy between states with different |m| but
keeps the symmetry of states with opposite m values. The energy shift is a result of a mixing of
parabolic states with different principal quantum numbers. We refer to the atomic eigenstates
in presence of a DC field as the DC dressed eigenstates. For the considered field strengths, the
second order Stark effect is two orders smaller than the first and can usually be neglected.

We close this section with a remark on the basis |n,m, µ〉. Both L̂ and â have the unit of
angular momenta and commute with Ĥ0. However, â does not fulfil the commutation relations
of angular momenta, and L̂ and â do not commute with each other [49]. It is possible to recover
two three-dimensional, commuting angular momentum operators by defining [49, 51, 48]

Ĵ1 = 1
2

(
L̂− â

)
, (2.26a)

Ĵ2 = 1
2

(
L̂+ â

)
. (2.26b)

Each component of Ĵ1 commutes with each component of Ĵ2 and with Ĥ0 (and vice versa). We
can denote the eigenvalues of Ĵ2

α as jα(jα + 1) with α = 1, 2 and write

jα =
n− 1

2
≡ j (2.27)

from which follows that j is either an integer or half-integer. Ĵ1 and Ĵ2 define two independent
angular momenta with a fixed absolute value in a subspace of constant n. Within each subspace,
we can characterise the states by their projections Ĵαz on the z-axis; their eigenvalues mα take
the n integer values between ±j. Hence, the parabolic states can also be written as |n,m1,m2〉.
In fact, the two notations |n,m1,m2〉 and |n,m, µ〉 are equivalent: by construction (cf. Eq. (2.26)),
|n,m1,m2〉 are eigenstates of âz and L̂z ,

âz |n,m1,m2〉 = (m2 −m1) |n,m1,m2〉 , (2.28)

L̂z |n,m1,m2〉 = (m1 +m2) |n,m1,m2〉 . (2.29)

Since we denote the eigenvalues of L̂z and âz by m and −µ, it follows that m = m1 + m2 and
µ = m1 − m2. From this and the possible values of mi, we can conclude that for a fixed n and
m, µ can take the values between − (n− |m| − 1) and (n− |m| − 1) in steps of two. The red and
blue ellipses in Fig. 2.3 mark states with identical values of m1 and m2, respectively.

2.2.2 Alkali atoms

In alkali atoms, the n2-fold degeneracy of each energy level is partly lifted even in absence of an
external DC field due to the penetration of the valence electron into the ionic core. As a result, the
analytic calculations shown above strictly apply only to hydrogen-like atoms. However, as we
discuss in the following section, the hydrogenic model constitutes an excellent approximation for
alkali atoms under certain conditions.
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Figure 2.4: Stark map for the n = 51, m = 2-manifold for hydrogen (a) and rubidium (b). The
data was obtained by numerically diagonalising the full Hamiltonian. The states which have
` = 2 (d, red), 3 (f , blue) and 4 (g, green) at zero field are highlighted in different colours.

Without a DC field, states with small values of ` are displaced from the centre of each n-
manifold due to the penetration of the orbitals into the ionic core (cf. Fig. 2.1). The quantum defect
δn`j therefore determines the spectrum of alkali atoms as given by Eq. (2.6) in the absence of a
DC field, where the potential is spherically symmetric. As the quantum defect is `-dependent,
the spherical basis is the most suitable to label the energy levels. We use the notation |n`,m〉
to characterise quantum defect states with ` being represented by the standard spectroscopic
notations (s, p, d, f, . . . ; e.g. |51f, 2〉 for n = 51, ` = 3, m = 2).

Fig. 2.4 shows the Stark map, i.e. the energy of the DC dressed eigenstates as a function of
the DC field strength, of hydrogen and rubidium for n = 51 and m = 2 in comparison. Since
hydrogen, shown in Fig. 2.4 (a), does not have a quantum defect, the energy splitting increases
linearly with the DC field. For rubidium, shown in panel (b), low-angular-momentum states are
displaced from the manifold due to the quantum defect. As the DC field is gradually switched
on, the Stark effect eventually becomes larger than the energy shift by the quantum defect and
the previously displaced states join the Stark manifold. States with high angular momenta, ` > 4,
have such a weak quantum defect that they join the Stark manifold for very weak fields, FDC <

0.03 V
cm . The g-state (` = 4) joins around 0.08 V

cm , followed by the f -state (` = 3) at 0.3 V
cm . For the

states within the Stark manifold, the cylindrical potential induced by the DC field is dominating
and the parabolic basis is the most suitable to describe the states. The quantum defect of states
with ` < 3, on the other hand, is too big for the states to join their respective manifold. The d-state
(` = 2), for instance, is shifted down by∼ 70 GHz such that it is located below the adjacent n = 50

manifold (cf. Fig. 2.1). The n = 51 and 50 manifolds collide around 5.5 V
cm – before the 51d-state

could join its corresponding manifold. Instead, the 52d state join the n = 51 manifold around
4.4 V

cm .

The absence of some states from the Stark manifold modifies the energy splitting of the cor-
responding m-ladder as illustrated in Fig. 2.5 (a). For m = 0, 1 and 2, there are three (s, p and
d), two (p and d) and one (d) states missing from the vertical ladders, respectively. Ladders with
m ≥ 3, on the other hand, behave hydrogenically for fields higher than 0.3 V

cm (cf. Fig. 2.4 (b)).
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Figure 2.5: (a) Schematic Stark manifold for m ≥ 0 and n = 51 for hydrogen (solid blue) and
rubidium (dashed red) for a moderate DC field. The zero of energy was set to the field-free energy
of hydrogen. The states of rubidium with |m| ≤ 2 are significantly affected by the quantum
defect. (b) Numerically calculated detuning, δstark

m,m+1 = (Em+1−Em)−ωstark of the lowest diagonal
ladder (blue ellipse in a) of hydrogen and rubidium for n = 51 and FDC = 2.346 V

cm with respect
to ωstark = 229.64 MHz. Notice the different scaling of the y-axis above the black dashed line.

The modification affects most importantly the transition frequencies of the diagonal ladders, as
shown in Fig. 2.5 (b). The linear slope form > 4 is due to the second order Stark effect and occurs
also for hydrogen. The harmonicity of the diagonal ladder is broken significantly for m < 2 due
to the missing quantum defect states.

2.3 Dynamics in the generalised Bloch sphere

In the previous section, we have reviewed the time-independent problem of a Rydberg atom in
a static electric field. We now introduce time-dependent pulses which drive transitions between
the DC dressed eigenstates. The potential induced by a time-dependent electric field (the “drive”)
can be described similarly to a DC field (cf. Eq. (2.19)) as

V̂AC(t) = r̂ · FAC(t). (2.30)

If the driving field is linearly polarised in z-direction, i.e. FAC(t) = FAC(t)ez, it is called π-
polarised. Due to the selection rule of the ẑ-operator (cf. Eq. (B.5)), a π-polarised pulse drives
transitions with ∆m = 0 and ∆l = ±1. If the pulse is left or right circularly polarised with the
electric field vector rotating in the xy-plane, it is called σ±-polarised and it drives transitions
with |∆m| = 1 and |∆`| = 1 as we show in detail in Sec. 2.3.1. For n ∼ 50, transitions between
adjacent n-manifolds are of the order of 50 GHz and can be induced by microwave (MW) pulses.
The transition frequencies between states within the same Stark manifold are determined by the
Stark effect and are the ones we will be most interested in. For n ∼ 50 and moderate DC fields
around 1 V

cm , they are of the order of 100 MHz and hence in the radio frequency (RF) regime. In
Sec. 2.3.1, we thoroughly discuss the coupling of parabolic states by an RF pulse which gives rise
to n-level Rabi oscillation in the generalised Bloch sphere spanned by diagonal ladders within the
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Stark manifold. Afterwards, in Sec. 2.3.2, we present a special class of states, called spin coherent
states, which arise naturally when Rydberg atoms are driven by RF pulses. Note that a similarly
concise summary of the topic can be found in Refs. [52, 47, 1].

2.3.1 n-level Rabi oscillation and the generalised Bloch sphere

A σ±-polarised drive can be written as

F±RF(t) = 2FRF
(

cos(ωRFt+ φRF)ex ± sin(ωRFt+ φRF)ey
)

= FRF

(
e∓i(ωRFt+φRF)(ex + iey) + e±i(ωRFt+φRF)(ex − iey)

)
(2.31)

where FRF is the field strength, ωRF the frequency and φRF the phase of the driving field. The
potential in Eq. (2.30) then takes the form

V̂ ±AC(t) = FRF

(
e∓i(ωRFt+φRF)(x̂+ iŷ) + e±i(ωRFt+φRF)(x̂− iŷ)

)
. (2.32)

The operators x̂ ± iŷ couple the state |nm1m2〉 to |nm1 ± 1m2〉 and to |nm1m2 ± 1〉 (cf. matrix
elements of Eq. (B.6) in Appendix B.1). It is possible to decouple the two ladders m1 and m2 by
utilising the two angular momenta Ĵα with α = 1, 2 introduced in Eq. (2.26). To this end, the
corresponding ladder operators are introduced as

Ĵ±α = Ĵα,x ± iĴα,y (2.33)

with matrix elements

Ĵ±1 |n,m1,m2〉 =
√
j(j + 1)−m1(m1 ± 1) |n,m1 ± 1,m2〉 , (2.34a)

Ĵ±2 |n,m1,m2〉 =
√
j(j + 1)−m2(m2 ± 1) |n,m1,m2 ± 1〉 . (2.34b)

The Cartesian components can be recovered by the transformation

Ĵα,x =
1

2
(Ĵ+
α + Ĵ−α ), Ĵα,y =

1

2i
(Ĵ+
α − Ĵ−α ), Ĵα,z =

1

2
(Ĵ+
α Ĵ
−
α − Ĵ−α Ĵ+

α ). (2.35)

When comparing the matrix elements of the ladder operators in Eq. (2.34) with the matrix ele-
ments of x̂± iŷ, it is possible to deduce the relation,

x̂± iŷ =
3n

Z

(
Ĵ±1 ⊗ 1̂2 − 1̂1 ⊗ Ĵ±2

)
. (2.36)

Inserting this into the potential leads to

V̂ ±AC(t) = V
(
e∓i(ωRFt+φRF)

(
Ĵ+

1 ⊗ 1̂2 − 1̂1 ⊗ Ĵ+
2

)
+ e±i(ωRFt+φRF)

(
Ĵ−1 ⊗ 1̂2 − 1̂1 ⊗ Ĵ−2

))
, (2.37)
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Figure 2.6: (a) Axes of the generalised Bloch sphere and two exemplary rotation axes. The dots
display the thereby induced trajectories of the initial state |j, j〉. The red arrow depicts the rotation
axis of a resonant drive with ϕ = 0, the drive leading to the blue arrow is slightly detuned. (b-d)
Q-functions of four different states on the generalised Bloch sphere with n = 51 ⇒ j = 25. (b)
Parabolic state |j, j〉 or SCS |ϑ = 0, ϕ〉 with arbitrary ϕ. (c) Parabolic state |j,m1 = 23〉. (d) SCS
|ϑ = 0.4, ϕ = 0〉 with 〈Ĵ1,z〉 = 23 (cf. Eq. (2.44)). This state is the result of rotating state (b) by
ϑ = 0.4 around the red axis in (a).

where V = 3n
Z FRF is the coupling strength. This expression can be simplified by removing off-

resonant terms. When considering, for example, a σ+-polarised pulse, the first term in the sum
creates an excitation in m1 via the operator Ĵ+

1 , which increase the energy, while absorbing one
RF photon. The third term in the sum annihilates an excitation in m1 via the operator Ĵ−1 , which
decrease the energy, while emitting one RF photon. The remaining two terms, on the other hand,
are off-resonant and can thus be removed in the rotating wave approximation. The reasoning
is equivalent for σ−-polarised pulse when considering the m2 ladder, instead. In summary, the
potential of the two possible polarisations can be written as

V̂ +
RF(t) = V

[(
Ĵ+

1 ⊗ 1̂2

)
e−i(ωRFt+φRF) +

(
Ĵ−1 ⊗ 1̂2

)
e+i(ωRFt+φRF)

]
(2.38a)

V̂ −RF(t) = −V
[(
1̂1 ⊗ Ĵ−2

)
e−i(ωRFt+φRF) +

(
1̂1 ⊗ Ĵ+

2

)
e+i(ωRFt+φRF)

]
(2.38b)

Eq. (2.38a) shows that a σ+-polarised pulse induces transitions in Ĵ1 with ∆m1 = ±1 while
leaving Ĵ2 unchanged. It couples states within diagonal ladders, marked by the blue ellipses in
Fig. 2.3. From the figure we also see that, in other words, a σ+-polarised pulse drives transitions
between states with ∆m = +1 (−1) whilst increasing (decreasing) the energy. The opposite rules
apply for σ−-polarised pulses (red ellipses).

It is now possible to restrict the dynamics to one of the diagonal ladders within the Stark
manifold if a purely σ+ or σ−-polarised pulse is employed. In the following, we review how
these dynamics can be interpreted as rotations on a generalised, n-dimensional Bloch sphere. For
simplicity, we henceforth assume a σ+-polarised pulse which allows us to decompose the Hilbert
space into independent diagonal ladders with constant values of m2. If the initial state is located
on one of these ladders, i.e. it can be written as |Ψ(t = 0)〉 =

∑
m1
cm1 |n,m1,m2〉 with fixed n
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and m2, it is possible to reduce the Hilbert space to just one diagonal ladder1, i.e. any one blue
ellipse in Fig. 2.3. Each diagonal ladder can be interpreted as an n-level, or spin-j, system with
n = 2j+1 where n is the principal quantum number andm1 takes all the values from−j to j. We
therefore denote the basis states in the standard notation for angular momenta, |j,m1〉n,m2

. Up
to first order in the electric field and by using Eq. (2.38a), the Hamiltonian of the driven n-level
system, Ĥ+ = Ĥ0 + V̂DC + V̂ +

RF, of a hydrogen-like atom can be written as a tridiagonal matrix

Ĥ+ =




−jωstark V−je+i(ωRFt+φRF) 0 . . . 0

V−je−i(ωRFt+φRF) (−j + 1)ωstark V−j+1e
+i(ωRFt+φRF)

...
0 V−j+1e

−i(ωRFt+φRF) . . . 0
... . . . Vj−1e+i(ωRFt+φRF)

0 . . . 0 Vj−1e−i(ωRFt+φRF) jωstark



,

with ωstark as given in Eq. (2.24), and the matrix elements Vm1 = V
√
j(j + 1)−m1(m1 + 1).

By going to a frame of reference rotating with the driving field frequency ωRF, the Hamiltonian
becomes time-independent,

Ĥ+
RF =




−jδ V−jeiφRF 0 . . . 0

V−je−iφRF (−j + 1)δ V−j+1e
iφRF

...
0 V−j+1e

−iφRF . . . 0
... . . . Vj−1eiφRF

0 . . . 0 Vj−1e−iφRF jδ




with the detuning δ = ωstark − ωRF. Finally, by defining the Rabi frequency,

ΩRF = 2V = 6FRFn, (2.39)

and utilising the definition of the components of Ĵ1 in Eq. (2.35), the Hamiltonian can be written
in the simple form

Ĥ+
RF = Ω · Ĵ1, with Ω = (ΩRF cosφRF, ΩRF sinφRF, δ) , (2.40)

with the generalised Rabi frequency Ω = |Ω| =
√

Ω2
RF + δ2. Since the Hamiltonian is time-

independent, the solution of the Schrödinger equation is simply given by

|Ψ(t)〉 = e−iΩ·Ĵ1t |Ψ(t = 0)〉 . (2.41)

The dynamics can be interpreted as the rotation of a Bloch vector on a generalised Bloch sphere.
The coordinates (X,Y, Z) on this sphere are defined as the expectation values of the three angular
momenta 〈Ĵ1,xi〉Ψ(t) with xi = x, y, z. The Z component is equal to the expectation value of m1,

1The following discussion can be generalised to σ−-polarised pulses or mixtures, and arbitrary initial states straight-
forwardly by linear combination
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i.e. 〈Ĵ1,z〉Ψ(t) = 〈m1〉Ψ(t). Fig. 2.6 (a) depicts two exemplary trajectories on the Bloch sphere. The
dotted lines indicate the precession of the state’s Bloch vector around the rotation axis Ω (red or
blue arrow) with the angular frequency Ω. In resonance, δ = 0 (red), the Bloch vector rotates
between the north and south pole of the sphere. In the presence of a detuning, the direction of
the rotation axis changes such that the Bloch vector does not reach the south pole any more.

Before discussing some special states on the generalised Bloch sphere, some limits to this
representation shall be pointed out. Firstly, the n-level system was assumed to be harmonic.
As shown in Fig. 2.5 (b), even hydrogen-like atoms are slightly anharmonic due to the second
order Stark effect. Alkali atoms show an even stronger anharmonicity towards small |m| due
to the quantum defect. To account for this, we have to consider a state-dependent detuning
δRF
m1,m1+1 = (Em1+1 − Em1) − ωRF with respect to the frequency ωRF of the driving field. Hereby,

the Z-component of the generalised Rabi frequency (i.e. replacing δ in Eq. (2.40) by δRF
m1,m1+1) be-

comes state-dependent. This results in a state-dependent rotation around the Z-axis and thus an
azimuthal drift of the Bloch vector. Secondly, the Hilbert space has been restricted to one diago-
nal ladder with a fixed value of m2. However, even if the initial state is perfectly located on one
m2 ladder, some population might get excited to states with m′2 = m2 ± 1, i.e. one of the adjacent
blue ellipses in Fig. 2.3. This might happen due to two reasons. On the one hand, impurely po-
larised light in a realistic experiment with fractions of σ−-polarisation induces transitions in m2

with constant m1 values (i.e. drive the population along the red ellipses in Fig. 2.3). On the other
hand, higher order Stark effects induce mixing of the parabolic states which allows previously
forbidden transitions. Since this mixing is weak and the transitions highly off-resonant with a
frequency of 3ωstark, they only play a role if the drive is very strong. However, if these assump-
tions do not hold, it is not possible to reduce the Hilbert space to just one diagonal ladder. The
picture of the generalised Bloch sphere is thus no longer sufficient, as the system is not an n-level
system any more.

2.3.2 Spin coherent states

In Eq. (2.41), we have written the dynamics in the generalised Bloch sphere in form of a rotation
of the angular momentum Ĵ1 around the axis defined by Ω. Even though the generalised Bloch
sphere describes a large spin-j system, we show in the following that for a particular class of
states, two coordinates are sufficient for a complete characterisation. We set ϕ = φRF − π/2 such
that ϕ describes the angle between the rotation axis and the Y -axis. For simplicity, we further
assume a resonant drive, δ = 0, while the following results can also be generalised to the off-
resonant case. In resonance, Ω lies in the XY -plane of the Bloch sphere (see e.g. red arrow in
Fig. 2.6 (a)) and the time evolution operator can be written as,

R(ϑ, ϕ) = e−iϑ(J1,x sinϕ−J1,y cosϕ), (2.42)
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Figure 2.7: (a) Overlap of four different SCS with the parabolic states of one diagonal ladder for
n = 51. The overlap is independent of ϕ and m2. The m-values on top refer to the case where
m2 = j, i.e. the lowest diagonal ladder of the Stark manifold. (b) Orbital of the circular state,
|j, j〉n=51,m2=j = |ϑ = 0, ϕ〉. The red dot in the centre depicts the ionic core.

with the Rabi angle ϑ = ΩRFt. The angles ϑ and ϕ can be interpreted as the canonical angles of the
spherical coordinates1. By applying R(ϑ, ϕ) to the state |j,m1 = j〉n,m2

, which is the highest of
the diagonal ladder, we can generate a so-called spin coherent state (SCS). The explicit expression
of a SCS in the parabolic basis is given by [53]

|ϑ, ϕ〉 = R(ϑ, ϕ) |j, j〉n,m2
=

j∑

m1=−j

(
2j

j +m1

)1/2(
cos

ϑ

2

)j+m1
(

sin
ϑ

2

)j−m1

ei(j−m1)ϕ |j,m1〉n,m2
.

(2.43)

As shown in Fig. 2.7 (a), the overlap of a SCS with the parabolic states follows a binomial distri-
bution while being independent of ϕ, n and m2. For ϑ = 0 (π), which corresponds to the north
(south) pole of the sphere, the sine (cosine) term becomes zero except for m1 = j (−j). This en-
tails the special cases |ϑ = 0, ϕ〉 = |j, j〉n,m2

(by construction) and |ϑ = π, ϕ〉 ∝ |j,−j〉n,m2
. For

ϑ ∼ π
2 , on the other hand, the distribution is very similar to a Gaussian and spreads across many

parabolic states. The angle ϑ is connected to the Z-component of the Bloch vector of a SCS via

cosϑ =
〈m1〉
j

=
〈Ĵ1,z〉
j

. (2.44)

SCS are the analogue to coherent states |α〉 in harmonic oscillators which are prominently em-
ployed in quantum optics [9]. In particular, it can be shown [53] that SCS are minimum-uncertainty
states and thus as close an approach to classical localisation as is possible.

1Note thatϕ denotes the angle betweenX axis and the projection of the Bloch vector on theXY plane, thus justifying
this interpretation. For φ = 0, the state rotates in the XZ plane such that the angle between the Bloch vector and the
X axis is 0. The rotation vector Ω, on the other hand, is orthogonal to this plane and thus points in Y direction.
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SCS are the only states which can be characterised completely by a single point (ϑ, ϕ) on the
generalised Bloch sphere. For all other states, this is not sufficient, as the system is n-dimensional.
The only exception is the two-level system with n = 2 and j = 1

2 . In this case, the SCS of Eq. (2.43)
can be brought to the well-known form

|ϑ, ϕ〉 = cos

(
ϑ

2

) ∣∣∣∣
1

2
,−1

2

〉
+ sin

(
ϑ

2

)
eiϕ
∣∣∣∣
1

2
,
1

2

〉
, (2.45)

which is the most general form of a pure state in a two-level system. Larger spin systems, n > 2,
can be visualised more appropriately using the Husimi Q representation [54, 55],

QΨ(ϑ, ϕ) =
2j + 1

4π
|〈ϑ, ϕ|Ψ〉|2, (2.46)

which is proportional to the overlap of a general state |Ψ〉 with the SCS |ϑ, ϕ〉. The Q-function
is normalised to 1 and allows for the reconstruction of the system’s state. Some exemplary Q-
functions are shown in Fig. 2.6.

Particularly relevant SCS are the so-called circular states [9]. Circular states are the Rydberg
states in which the angular momentum takes its extremal value of |m| = ` = n − 1. They are
located at the outermost “tips” of the Stark manifold; one example being the north-pole of the
Bloch sphere of the lowest diagonal ladder on the right-hand side (m ≥ 0) of the Stark manifold.
Circular states can decay via only one channel, namely from |n, `〉 to |n− 1, `− 1〉, giving rise
to an increased lifetime proportional to n5 corresponding to tens of milliseconds. Their name
derives from the toroidal shape of their orbital, which is shown in Fig. 2.7 (b). The electron
is confined to a narrow ring around the ionic core while being completely delocalised in the
azimuthal direction. This results in almost Bohr-like orbits in which the electron describes a
concise orbit around the ionic core. The ring has a radius rn = n2 and a relative dispersion of
only ∆rn/rn ≈ 1/

√
2n [9]. For n = 51, the orbit has a radius of 2601 Bohr radii which is 300

times larger than the radius of the ground state atom, while the torus itself has a width of only
around 260 Bohr radii. Their high magnetic quantum number renders them highly sensitive to
magnetic fields. Since the eccentricity quantum number µ vanishes, on the other hand, they are
in first order insensitive to electric fields. Both properties make them most useful candidates for
quantum sensing applications.
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Circular Rydberg atoms are an ideal tool for applications in quantum technology due to their par-
ticularly long lifetime. For example, they were a key component in microwave cavity quantum
electrodynamics (CQED) experiments of Serge Haroche and co-workers [9, 56], which ultimately
led to the award of the Nobel prize in 2012. In recent years, circular Rydberg atoms attracted
attention as quantum sensors [23] for the Rydberg constant [57], magnetic [58] and electric fields
[59]. For the measurement of classical fields with high accuracy, the key properties of Rydberg
atoms are their large magnetic and eccentricity quantum numbers, m and µ, in the circular and
low-angular-momentum states, respectively. To measure, for example, a magnetic field with
quantum-enhanced sensitivity, the atom can be brought into a superposition of two opposite
circular states with opposite magnetic quantum numbers, i.e. m = n−1 and m = −n+1. Figura-
tively speaking, a magnetic field would then “pull” the two parts of the superposition in opposite
directions rendering the overall state highly sensitive to the magnetic field strength.

Electric fields, on the other hand, can be measured using a superposition of two states with
different eccentricity quantum numbers µ to which the Stark shift is proportional (cf. Eq. (2.23)).
Ref. [59] presents the preparation of a superposition of a circular state with a low-angular-mo-
mentum state. While the former is insensitive to the electric field, the latter shows the strongest
Stark shift proportional to n2. This state can be visualised as the superposition of two coherent
states at the north and the south pole of the generalised Bloch sphere. Since coherent states have
the highest resemblance to classical states, this superposition can be understood as a cat state, in
analogy to the famous Schrödinger cat thought experiment.

The sensitivity of the measurement protocol is mostly limited by its repetition rate and the
fidelity of the state preparation. A fast protocol is particularly important, as the coherence of
the sensor state decays over time. The high sensitivity of Rydberg atoms to external fields is a
curse and a blessing at once, as the sensor reacts not only to the field we aim to measure but
also to interfering stray fields. This results in fast decoherence which significantly decreases the
sensitivity of the quantum sensor.

25
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In this chapter, we tackle both increased fidelity and speed-up of the electrometer protocol by
using optimal control theory. We start by giving an overview of the numerical methods required
for propagating and optimising the dynamics in the Stark manifold in Sec. 3.1. Afterwards, we
present a protocol for fast and accurate circularisation in Sec. 3.2, and for the preparation of a cat-
like state for quantum-enabled electrometry in Sec. 3.3. The results presented in this chapter are
the continuation of the work presented in [1] and have already been published in [60] and [61].
The latter is a joint publication with experimentalists from Laboratoire Kastler Brossel (LKB)
at Collège de France, Paris, showing the successful experimental realisation of the theoretical
proposal.

3.1 Methods for quantum dynamics and control

In this section, we present the general methods used for simulating and optimising quantum
dynamics and discuss the particular case of the dynamics in the Stark manifold. The code is im-
plemented in Fortran 95. Moreover, we made extensive use of, and contributed to, the QDYN
library [62], which provides methods for the simulation of quantum dynamics and optimal con-
trol. We start by summarising the implementation of the Hamiltonian of rubidium in Sec. 3.1.1,
and continue by presenting the numerical methods for time-propagation and optimisation of
quantum dynamics in Sec. 3.1.2 and Sec. 3.1.3, respectively.

3.1.1 Implementation of the rubidium Hamiltonian

In order to implement the matrix elements of the rubidium atom we utilise the spherical basis.
The full Hamiltonian,

Ĥ(t) = Ĥ0 + FDC ẑ︸ ︷︷ ︸
Ĥdrift

+F±RF(t) (x̂+ iŷ) + (F±RF(t))∗ (x̂− iŷ) , (3.1)

consists of several parts. The field-free eigenenergies of Ĥ0, i.e. the diagonal elements of Ĥ ,
are given by the modified, hydrogenic eigenenergies including the quantum defects as shown
in Eq. (2.6). In our simulations, we consider quantum defects up to second order for ` ≤ 3

and up to first order for 4 < ` ≤ 7; higher orders are not provided in literature and lead to
insignificant energy shifts. The detailed values, corresponding to rubidium 85 for n ≥ 20, are
given in Appendix A.1. In principle, the quantum defects, δn`j , depend on the total angular
momentum j. Throughout this chapter, we neglect spin-orbit coupling and set δn` ≈ δn`,j=`+ 1

2
,

resulting in a Hilbert space dimension of n2 per n-manifold instead of 2n2 when including spin-
orbit coupling.

The second term describes the interaction of the Rydberg atom with a DC field requiring us to
evaluate the matrix elements of ẑ. The matrix elements can be split into an angular and a radial
part as explained in Sec. 2.1.3. The angular part is given by the matrix elements in Eq. (B.5). The
radial part of an alkali atom, however, can no longer be calculated analytically. The potential of
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an alkali atom, V̂alkali(r̂) (cf. Eq. (2.10)), is spherically symmetric but not the Coulomb potential.
It is deeper and pulls the nodes of the radial wavefunction closer to the origin. Far from the
ionic core, however, the potential approximates the Coulomb potential. In this regime, the radial
Schrödinger equation can be solved numerically by modelling the initial pull as a phase shift
between the hydrogen-like and alkali radial wave functions. To this end, we use Numerov’s
method [44, 8], that can be applied to solve differential equations of the form

d2X

dx2
= g(x)X(x). (3.2)

If the coordinate x is discretised into a equidistant grid with step size ∆x, the value of X(x+ ∆x)

can be calculated recursively from two previous points via

(
1− T (x+ ∆x)

)
X(x+ ∆x) =

(
2 + 10T (x)

)
X(x)−

(
1− T (x−∆x)

)
X(x−∆x) (3.3)

with T (x) = ∆x2g(x)/12. The error of the method is of the order ∆x6. To bring the radial
Schrödinger equation in Eq. (2.4) to the desired form, we make the substitutions [63]

x =
√
r, Xn`(x) = r3/4Rn`(r) (3.4)

with Rn`(r) being the radial wave function, leading to

g(x) = 8mr

(
Valkali(r)− E

)
x2 +

(
2`+ 1

2

) (
2`+ 3

2

)

x2
. (3.5)

To avoid divergence and unphysical results at short range, the integration is performed inwards
starting from the outer radius ro = 2n(n + 15), which is much larger than the classical turning
point, to an inner radius of ri = α

1/3
c , where αc is the static dipole polarisability, with a step size

∆x = 0.01 [64]. We find an absolute error of the order 10−8 when comparing the radial wave-
functions of hydrogen, known analytically, to the solutions obtained using our implementation of
Numerov’s method. Using the radial wavefunctions, Xn`(xi), we can evaluate the radial overlap
of the matrix elements in Eq. (2.11) by numerical integration,

∫
dr rk+2Rn`(r)Rn′`′(r) =

∫
dx 2x2k+2Xn`(x)Xn′`′(x)→

∑

i

2 (xi+1 − xi)x2k+2
i Xn`(xi)Xn′`′(xi),

with k = 1 for the z-operator, as it is a rank-1 tensor.

With this, we have all ingredients needed to obtain the matrix elements of the z-operator in
the spherical basis and the DC field potential. The time-independent part of the Hamiltonian, also
called the drift Ĥdrift, is then numerically diagonalised giving us the eigenvalues and eigenstates
of the atom in a DC field. We refer to this as the DC-dressed basis. Note that the parabolic
basis is an approximation to this numerically exact result for small values of the DC field and no
quantum defects. All subsequent simulations are performed in the DC-dressed basis.
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The last two terms of the full Hamiltonian in Eq. (3.1) are related to the RF field which drives
dynamics in the Stark manifold as discussed in Sec. 2.3. As denoted in Eq. (3.1), the pulse couples
to the x̂± iŷ operators whose angular matrix elements are given in Eq. (B.5) while the radial part
can be calculated using Numerov’s method as explained above. In general, the amplitude F±RF(t)

of the drive depends on time and can be divided into an oscillation with the central frequency
ωRF and a time-dependent, complex envelope SRF(t) as

F±RF(t) = SRF(t)e∓i(ωRFt+φRF) (3.6a)

=
(
Re {SRF(t)}+ i Im {SRF(t)}

)(
cos(ωRFt+ φRF)∓ i sin(ωRFt+ φRF)

)
(3.6b)

= Re {SRF(t)} cos(ωRFt+ φRF)± Im {SRF(t)} sin(ωRFt+ φRF)︸ ︷︷ ︸
Re{F±RF(t)}

+i
(
Im {SRF(t)} cos(ωRFt+ φRF)∓ Re {SRF(t)} sin(ωRFt+ φRF)

)
︸ ︷︷ ︸

Im{F±RF(t)}
. (3.6c)

Equation (3.6a) corresponds to the way the pulse was implemented in the code. The full expres-
sion of the RF field follows as1

F±RF(t) = F±RF(t)(ex + iey) + (F±RF(t))∗(ex − iey) (3.7a)

= 2 Re
{
F±RF(t)

}
ex + 2i Im

{
F±RF(t)

}
ey (3.7b)

= 2 Re {SRF(t)}
(

cos(ωRFt+ φRF)ex ± sin(ωRFt+ φRF)ey
)

+2 Im {SRF(t)}
(

cos(ωRFt+ φRF + π
2 )ex ± sin(ωRFt+ φRF + π

2 )ey
)
. (3.7c)

Equation (3.7c) reveals the physical interpretation of the complex envelope SRF(t). If SRF(t) ∈ Re,
the expression simplifies to one circularly polarised field which we call the first quadrature of
the field. If we considered the field strength to be constant, SRF(t) = FRF, we would obtain
the drive from Eq. (2.31). Using this quadrature and assuming for simplicity φRF = 0, we can
rotate the Bloch vector around the X-axis of the generalised Bloch sphere (cf. Eq. (2.40)). If,
on the other hand, SRF(t) ∈ Im, the first quadrature vanishes and only the so-called second
quadrature survives, which is phase shifted by π/2 with respect to the first one. For φRF = 0, the
second quadratures induces rotations around the Y -axis of the generalised Bloch sphere. When
combining both quadratures, i.e. by choosing a complex envelope SRF(t) ∈ C, we can rotate
the Bloch vector in arbitrary directions. φRF can be tuned to rotate the rotation axes of the two
quadratures in the XY -plane. As discussed before, σ+ (σ−)-polarised light induces excitations in
Ĵ1 (Ĵ2).

1Eq. (3.7c) can be compared to Eq. (10) in [60]. They differ by a factor of 2 because the RF field strength FRF was
defined differently. In Eq. (2.31), we defined F±RF(t) = 2FRF

(
cos(ωRFt+ φRF)ex ± sin(ωRFt+ φRF)ey

)
while in [60], we

set F±RF(t) = FRF
(

cos(ωRFt+ φRF)ex ± sin(ωRFt+ φRF)ey
)
. With the convention used in this thesis, the x-component of

the drive is equal to 2Re
{
F±RF(t)

}
while in the publication, it is equal to Re

{
F±RF(t)

}
, and accordingly for y.
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The full Hilbert space of a Rydberg atom is, strictly speaking, infinitely dimensional, as n
can take arbitrary positive integer values. It is therefore necessary to truncate the Hilbert space
in order to perform numerics. Since we are interested in the dynamics within one Stark mani-
fold, and we only employ RF pulses, it would be sufficient to consider only the states of a single
n-manifold. However, the DC field couples states of neighbouring Stark manifolds and the quan-
tum defect might bring low-angular-momentum states of higher manifolds closer to the central
n-manifold. To calculate the DC-dressed eigenvalues with high precision, we therefore have to
include states in neighbouring manifolds when diagonalising the drift Hamiltonian.

In our simulations, we take all the states with n ±∆n with ∆n = 4 into account. For n ∼ 50,
this leads to an accuracy of 10−6 in the energy levels and transition matrix elements of the central
n-manifold [61]. In a second step, we remove states from the Hilbert space which are unlikely
to be populated during a propagation due to a large detuning or vanishing matrix elements.
Since RF pulses only couple states within diagonal ladders (cf. Sec. 2.3.1), we can luckily neglect
a large part of the Stark manifold. As discussed in more detail in Sec. 3.2, we are interested
in the dynamics on the lowest diagonal ladder of the Stark manifold with m ≥ 0. To increase
the precision, we take the lowest two diagonal ladders into account during propagations and
optimisations. In summary, we have reduced the size of the Hilbert space from around 2500

(= n2) states in the full Stark manifold to only 100 (= 2n−1). All calculations were cross-checked
by comparing them to calculations with a Hamiltonian defined on a larger Hilbert space that
contains all states of the central n-manifold. From this, we find that the truncation allows to find
the same final state population within a precision of 5 · 10−5 [61]. The code for the description
and manipulation of the Hamiltonian of the Rydberg atoms was implemented by myself based
on previous work by Dr. Daniel Reich while using the data structures provided by the QDYN
library [62].

3.1.2 Propagation

To determine the response of a quantum state to an external drive, we have to propagate the
state in time. The temporal evolution of a quantum state is fully determined by time-dependent
Schrödinger equation,

i
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (3.8)

For a time-independent Hamiltonian, Ĥ(t) = Ĥ , the solution of the Schrödinger equation can be
found by integration, leading to

|Ψ(t)〉 = Û(t) |Ψ(0)〉 = e−iĤt |Ψ(0)〉 , (3.9)

with the time-evolution operator Û(t) and where we have set the initial time t0 = 0 and ~ =

1. If En and |n〉 are the eigenvalues and eigenstates of the Hamiltonian, respectively, the time-
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propagated state can be calculated via

|Ψ(t)〉 =
∑

n

e−iEn 〈n|Ψ(0)〉 |n〉 . (3.10)

If the eigenstates and -values of the Hamiltonian are not known, the Hamiltonian needs to be
diagonalised. As the diagonalisation scales as N3 with the dimension N of the Hilbert space, this
exact propagation method quickly becomes numerically infeasible [65].

In general, it is sufficient to know the result of a propagation with a certain accuracy. For
instance, it is sufficient to calculate the population of a target state with a fidelity that is consistent
with the measurement accuracy in a real experiment. We can therefore expand the time-evolution
operator in a polynomial series. However, the expansion of the exponential according to its
definition,

Û(t) = e−iĤt =

∞∑

n=0

1

n!

(
−iĤt

)n
, (3.11)

converges rather slowly and is numerically unstable [66]. Instead, the exponential can be ex-
panded in any polynomial series,

e−iĤt ≈
Nc∑

n=0

anPn

(
−iĤt

)
, (3.12)

where Pn(x) is a polynomial of degree n and an are the expansion coefficients up to a finite
order Nc. If Nc → ∞, the expansion becomes exact. It can be shown that the fastest converging
polynomials are the Chebychev polynomials [66, 67, 68]. As Chebychev polynomials are only
defined in the interval [−i, i], the Hamiltonian is normalised using its spectral radius which can
be obtained using the Arnoldi method [69]. An alternative approach to propagation is given
by Newton’s method [70, 71]. It has the advantage of also being able to solve the Liouville-von
Neumann equation with a dissipative term, or the Schrödinger equation with non-Hermitian
Hamiltonians. In this chapter, we used the implementation of the Chebychev propagator as
provided by the QDYN library [62].

To solve the dynamics of a time-dependent problem, we use the piecewise-constant approxi-
mation, see Fig. 3.1. The amplitude of the driving field can be approximated on a time grid with
the step size ∆t by the pulse value in the centre of the time interval. If the time grid for the pro-
pagation of the state has nt steps, the pulse is discretised in nt − 1 steps. The state is propagated
from the first time step to the second using the approximated pulse value inbetween. Then, the
overall time-evolution operator is the product of the time-evolution operators at each time step.
To control the error introduced by the piecewise-constant approximation of the Hamiltonian the
step size must be chosen sufficiently small [65].
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ε1 ε2 . . . εnt−1

ψ (t1) ψ (t2) ψ (t3) ψ (tnt−1) ψ (T )

Figure 3.1: Sketch of the piecewise-constant approximation (red) of an exemplary drive (blue).
The ψ’s on top indicate the time grid of the states, while the ε’s at the bottom indicate the time
grid of the pulses.

3.1.3 Optimisation

Since the time evolution of a quantum system depends on the Hamiltonian, we can steer the
dynamics by choosing the control fields carefully. We consider the Hamiltonian to be of bilinear
form [72],

Ĥ(t) = Ĥdrift −
∑

k

Ĥkεk(t), (3.13)

for which the resulting time-depending Schrödinger equation is linear with respect to the states
and the control pulses εk. The drift Ĥdrift contains the time independent part of the full Hamilto-
nian while the (time-independent) drive Hamiltonians Ĥk are coupled to control fields εk(t). If
the aim is to perform a specific operation on a quantum system, two questions arise. The first one
is: Can the task be performed at all? This question can be answered by controllability analysis,
which determines whether a quantum system can be brought from any arbitrary initial to any
desired target state [27]. If the answer is positive, the ensuing question is: How do we reach
the optimisation goal? One tool to answer this is optimal control theory (OCT) [27] which aims
to derive pulse shapes that accomplish the desired task in the best way possible, e.g. with the
highest possible fidelity. An example of one such task is the so-called state-to-state optimisation
where the goal is to find the field which drives the initial state |Ψ(0)〉 towards a desired target
state |Ψt〉. The success of this process can be quantified by the cost functional [73],

JT = 1− |〈Ψ(T )|Ψt〉|2, (3.14)

where |Ψ(T )〉 is the state at the final time T . The functional depends implicitly on the driving
fields εk and it is zero if and only if the optimisation target has been reached. The cost functional
in Eq. (3.14) is only one specific example for the state-to-state optimisation. In more general terms,
cost functionals J can cover a set ofN initial and target states, {|ψj(0)〉} and {|ψt,j〉}, respectively,
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and arbitrary final time functionals JT
[
{|ψj(T )〉}

]
. Moreover, we can impose constraints ga

[
{εk}

]

to the fields and gb
[
{|ψj(t)〉}

]
to the states at intermediate times leading to the general form [74]

J
[
{|ψj〉}, {εk}

]
= JT

[
{|ψj(T )〉}

]
+

∫ T

0
dt
(
ga
[
{εk}

]
+ gb

[
{|ψj(t)〉}

])
. (3.15)

In numerical optimal control, a guess pulse is optimised in an iterative manner to successively
decrease the value of the functional. In general, there are two basic categories of optimisation
algorithms. The gradient-free methods employ only evaluations of the functional. They are often
based on having a set of guess pulses whose performance is compared and the ones with the
weakest performance are replaced. They are easy to implement but converge generally rather
slowly. In matters of experimental application, gradient-free methods allow for closed-loop con-
trol where a real measurement determines the figure of merit and the adjustment of the control
parameters can be performed in real time. Prominent examples are the downhill-simplex (or
Nelder-Mead) method [75], CRAB [76] or genetic algorithms [77].

The Nelder-Mead method is one of the most prominent and popular optimisation algorithms
due to its simple implementation and intuitive interpretation. The general idea is to construct a
N +1 dimensional simplex for a N -dimensional parameter space. In two dimensions, this would
be a triangle. The algorithm then replaces the point with the worst performance by a new one, for
instance by reflecting it through the centre of the simplex. Depending on the performance of the
new point, it is further expanded or contracted. By repeating this procedure, the simplex “walks
downhill” towards the minimum of the optimisation landscape. This method is particularly
effective if the number of optimisation parameters is small. Moreover, no additional knowledge
about the model has to be known, as it only requires the evaluation of the functional making it
very versatile. In particular, the final time T can be one optimisation parameter itself.

The other category are gradient-based algorithms providing in general a faster convergence.
As indicated by their name, these algorithms require to calculate the gradient of the functional.
However, the analytical expression of the gradient is not always available. Gradient-based meth-
ods can be further divided into concurrent and sequential schemes. The former update the con-
trol parameters individually, like e.g. the GRAPE algorithm [78]. The latter optimise the param-
eters subsequently. For instance, Krotov’s method [79] and its adaption to quantum dynamics
[80, 81, 73, 74] is a prominent example of a sequential, gradient-based algorithm which is the
method of choice in the following. Gradient-based algorithms are usually used in an open-loop
control scheme where the pulses are first optimised numerically and afterwards implemented in
a real experiment. We follow the same approach in this work.

The most crucial advantage of Krotov’s method is the assured monotonic convergence of the
functional [74],

J
[{
|ψj〉

}
,
{
ε
(i+1)
k

}]
≤ J

[{
|ψj〉

}
,
{
ε
(i)
k

}]
. (3.16)
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For simplicity, we consider only one control field ε(t) in the following. Moreover, we consider no
state-dependent constraints and write the constraints in Eq. (3.15) as [74]

ga
[
ε(t)
]

=
λa
S(t)

(
ε(t)− εref(t)

)2
, gb

[
{|ψj(t)〉}

]
= 0 (3.17)

with a shape-function S(t) ∈ [0, 1] and a weight λa of the of the pulse-dependent constraint. The
function ga penalises a change in the field intensity with respect to some reference pulse εref(t)

which is usually chosen to be the pulse from the previous iteration. This can be used to avoid
strong changes in the pulse amplitude and to ensure a smooth switching on and off of the pulse
by choosing a shape function that goes to zero at the beginning and end of the time interval.

The update formula for Krotov’s method can be derived using variational calculus and is
given by [74]

∆ε(t) =
S(t)

λa
Im





N∑

j=1

〈
χ

(i)
j (t)

∣∣∣∣∣∣
∂Ĥ[ε(t)]

∂ε

∣∣∣∣∣
ε(i+1)(t)

∣∣∣∣∣∣
ψ

(i+1)
j (t)

〉
 (3.18)

with ∆ε(t) = ε(i+1)(t)− ε(i)(t) and the co-states |χ(i)〉 which are the result of a backwards propa-
gation under the old pulse

∂

∂t

∣∣∣χ(i)
j (t)

〉
= −iĤ†(i)

∣∣∣χ(i)
j (t)

〉
. (3.19)

The states |ψ(i+1)
j 〉, on the other hand, are forward-propagated under the new pulse,

∂

∂t

∣∣∣ψ(i+1)
j (t)

〉
= −iĤ(i+1)

∣∣∣ψ(i+1)
j (t)

〉
. (3.20)

They are connected via the boundary condition,

∣∣∣χ(i)
j (T )

〉
= − ∂JT

∂ 〈ψj |

∣∣∣∣
ψ
(i)
j (T )

. (3.21)

On first sight, it seems contradictory that new pulse ε(i+1)(t) is necessary to calculate the pulse
update ∆ε(t). Indeed, at this point the sequential nature of the algorithm comes into play.

The first step is to choose a guess pulse ε(0)(t) and use it to propagate the initial state |ψj(0)〉
forward in time. Now the co-state can be calculated using Eq. (3.21) giving |χ(0)

j (T )〉. Afterwards,

the actual algorithm starts as depicted in Fig. 3.2. The co-state |χ(0)
j (T )〉 is backwards-propagated

with the old pulse (cf. Eq. (3.19)). Afterwards, the pulse update at the first point in time is cal-
culated using the initial state |ψj(0)〉 (cf. Eq. (3.18)). Then, this state is forward-propagated by
one time step using the updated pulse value (cf. Eq. (3.20)). This is repeated until the final state
|ψ(1)
j (T )〉 is reached and the first iteration is completed. The algorithm thus takes updates of
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Figure 3.2: Visualisation of the sequential update scheme in Krotov’s method on a time grid. The
scheme starts on the upper right corner with the co-state χj(T ).

earlier times into account when updating the pulse at subsequent time points, hence the name
sequential algorithm. The whole sequence can be repeated until the desired fidelity or conver-
gence is reached. Strictly speaking, monotonic convergence is only guaranteed in the continuous
case. However, if the pulse update of one iteration is small enough, which can be ensured by the
function ga in Eq. (3.17), monotonic convergence is also preserved in the discretised version. In
this work, we used the implementation of Krotov’s method provided by the QDYN library [62].

3.2 Fast and accurate circularisation

The process of exciting a Rydberg atom from a low-angular-momentum to the circular state with
` = n− 1 is called circularisation. The former, i.e. the ‘initial’ state of the circularisation, has to be
prepared beforehand from a ground state atom, in our case rubidium in the state 5S1/2 [59, 82].
First, the rubidium atoms are optically excited using three laser fields in the presence of a weak
DC field. The target state of the optical excitation, |nf,m = 2〉, can be accurately addressed due
to its quantum defect (cf. Fig. 2.1, the f -state is separated from the rest of the n-manifold such
that it can be addressed selectively via a resonant driving pulse). Second, the DC field is slowly
increased to its final value. This enlarges the spacing of the states in the Stark manifold, and the
state |nf, 2〉 becomes adiabatically the lowest lying state of the m = 2-ladder (cf. Fig. 2.4 (b)) from
which we start the circularisation.

There are two very different approach to the circularisation. One is based on a rapid adia-
batic passage [19, 83], which relies on the slow transformation of instantaneous eigenstates using
chirped RF pulses or slow variations of the DC field. Here, fidelities close to 100% are achiev-
able but, as is typical for adiabatic methods, the time required for the circularisation is very long,
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namely several microseconds. This poses a problem for protocols where the population is split
into two parts which move rather independently in the Hilbert space, like quantum sensing. The
two parts of the superposition accumulate large dynamic phases which are error-prone due to
imperfections in the control. The resulting dephasing renders the states useless for applications
in quantum-enhanced sensing and metrology, such that adiabatic passage does not provide a
viable route. Another method is the fast coherent transfer of population by coupling to a radio
frequency (RF) field with a well-defined polarisation [82]. A (near-)resonant RF drive induces
Rabi oscillation between a low-angular-momentum state and the circular one. As discussed in
Sec. 2.3, the circularisation can be interpreted as the rotation of a SCS from the south to the north
pole of the generalised Bloch sphere. Rabi oscillation allows the circularisation to proceed in
about 200 ns. However, the transfer rate was limited to about 80%.

While the two preparation methods provide either fast or accurate circularisation, the com-
bination of the two remained an open challenge. In the following, we show how to improve the
circularisation in terms of fidelity and speed by using OCT. We start by discussing the unopti-
mised dynamics using π-pulses in Sec. 3.2.1. Afterwards, we choose an improved guess pulse
as a starting point for Krotov’s method and present the optimised pulse shape in Sec. 3.2.2. We
further discuss its robustness and quantum speed limit in Sec. 3.2.3 and Sec. 3.2.4, respectively.
Finally, we present the main results of the experiment in Sec. 3.2.5. The theoretical results pre-
sented in the sections Sec. 3.2.1 to Sec. 3.2.4 mainly stem from [60] while the experimental results
in Sec. 3.2.5 were published in [61].

3.2.1 Circularisation using π-pulses

As a first guess for the optimisation, we choose an RF π-pulse driving σ+-transitions within the
lowest diagonal ladder with m ≥ 0 of the manifold (i.e. the right-hand side in Fig. 2.3). Note
that the results can be generalised easily to m ≤ 0 by changing the polarisation of the RF pulse.
This pulse represents the state of the art in the experiment before we have started the project [82].
Due to the quantum defect, the pulse is near-resonant with transitions to the right side of the
initial state, whereas it is detuned from the transition to the left side (cf. Fig. 2.5). We thus expect
population to be driven to higher-angular-momentum states only. Because only states in the
lowest diagonal ladder play a significant role during the circularisation, we denote these states
by |m〉 for the sake of simplicity. The initial state becomes |2〉 and the target circular state |n− 1〉.

Following Ref. [52], we choose the n = 51-manifold and FDC = 2.346 V
cm . The quasi-resonant

frequency of the ladder is ωstark = 229.6 MHz, which has been calculated using the first-order
Stark splitting of hydrogen (cf. Eq. (2.23)). The chosen guess pulse is a σ+-polarised RF pulse
with central frequency ωRF = 230 MHz and amplitude FRF = 18 mV

cm . Using Eq. (2.39), the Rabi
frequency of this pulse is ΩRF/2π = 3.52 MHz. From this, the time to perform a π-pulse can
be calculated to be tπ = π/ΩRF = 142 ns. The pulse has a flat-top shape with sine-squared
edges lasting 10 ns each. The total duration of the pulse, tstop = 138 ns, has been adjusted to
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Figure 3.3: Top: RF π-pulse shapes (grey) and their real and imaginary parts (red and blue lines,
respectively) for (a) FRF = 18 mV

cm , tstop = 138 ns, (b) FRF = 45 mV
cm , tstop = 66.9 ns. Bottom: Cor-

responding distribution of the population over the lowest diagonal ladder. Note the logarith-
mic scale in the colour bar. The expectation value E[m] and the standard deviation σ[m] are
indicated by the solid and dashed lines, respectively. The inset displays a snapshot of the pop-
ulation distribution (red) and the distribution of the closest SCS (a) ϑ = 0.62π, ϕ = 0.49π, (b)
ϑ = 0.60π, ϕ = 0.50π (grey line).

match a π-pulse. The pulse and its real and imaginary part as defined in Eq. (3.6c) are shown in
Fig. 3.3 (a) (top). The small deviation between tstop and tπ stems from the shape of the pulse and
the deviations of the Hilbert space of rubidium from the idealised, hydrogenic one which was
used to calculate tπ and ΩRF. Most importantly, the initial state, |2〉, does not coincide with the
South pole of the Bloch sphere. Instead, it corresponds to a ring on the Bloch sphere around the
Z-axis with Z ≈ −0.9 (the radius of the sphere being normalised to 1).

The final population in the circular state is 81% with an expectation value of m equal to 46.
This indicates that the population is spread over several ladder states, as can be seen in Fig. 3.3 (a)
(bottom). A large fraction of the missing population (6% of the total population) can be found
in the state |1〉. This effect can be attributed to an insufficient detuning of the RF pulse from the
|2〉 → |1〉 transition. The detuning δRF

m,m+1 = (Em+1 − Em) − ωRF with respect to the frequency
ωRF of the driving field are (compare to Fig. 2.5 (b))

δRF
0,1 = −159.64 MHz, (3.22a)

δRF
1,2 = −47.05 MHz, (3.22b)

δRF
2,3 = −2.54 MHz. (3.22c)

The quantum defect barely affects the m = 2-ladder and δRF
2,3 is nearly resonant with the RF

pulse, while the detuning from δRF
0,1 is large enough to prevent a significant population of state

|0〉. However, the rather small detuning from δRF
1,2 allows for an off-resonant drive towards state
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|1〉. While some of this population remains trapped in state |1〉, another part is reflected from the
lower bound of the ladder and follows the main packet towards the circular state with a small
delay. This can be seen from the light grey streak slightly below the main red path, the strong
deviation of the expectation value of m from the centre of the population distribution and the
large standard deviation.

Moreover, the inset in Fig. 3.3 (a) displays the population distribution at the intermediate time,
t = 50 ns, together with the closest SCS |ψ(ϑ=0.62π,ϕ=0.49π)

SCS 〉. The coordinates of the latter where
calculated from the expectation values of the three spatial components of the angular momentum
vector for the system state |ψ(t = 50 ns)〉. Apparently, the upper peak of |ψ(t = 50 ns)〉 is more
narrow than a SCS and the residual population in the low-m states affects the position of |ψ(ϑ,ϕ)

SCS 〉
on the m-axis significantly. Morover, the second order Stark effect introduces an anharmonicity
to the ladder which leads to an azimuthal drift of the state on the Bloch sphere. Thus, the overlap
of |ψ(ϑ=0.62π,ϕ=0.49π)

SCS 〉 and |ψ(t = 50 ns)〉 is only 65%. As explained in Sec. 2.3, a SCS can be rotated
into the target circular state in a very natural way. However, due to the deviation from a perfect
SCS, part of the population at the final time is spread over several states neighbouring the target.

To summarise our observations from Fig. 3.3 (a), the fidelity obtained with a π-pulse is lim-
ited by (i) loss to |1〉, (ii) delay due to reflection from the lower end of the ladder, and (iii) an
imperfectly-shaped SCS. These effects together result in an infidelity of about 19% at the final
time. It would now be possible to use the π-pulse directly as a guess field to start the optimisa-
tion, which provides an optimised pulse leading to a fidelity of 99%. However, such a brute force
approach comes at the expense of rather complex optimised fields with an undesirably large
spectral bandwidth and a high field strength. Having the experimental feasibility of the opti-
mised pulse in mind, it is much more advantageous to first exploit the available physical insight
and construct an improved guess pulse before starting the optimisation.

3.2.2 Optimisation of an improved guess pulse

We now utilise our findings to construct an improved guess pulse which is subsequently opti-
mised using OCT. We start by estimating the maximal speed up of the circularisation that can
be expected. As with any dynamics on the Bloch sphere, the fastest rotation is obtained when
the highest possible field amplitude is employed. Here, we choose FRF = 45 mV

cm leading to
ΩRF
2π = 8.8 MHz. As shown in Fig. 3.3 (b), we find that with this amplitude, a π-pulse can be

performed in 61.2 ns. This is again slightly faster than the analytical prediction for a π-pulse,
which is 66.9 ns. While this amplified π-pulse is more than twice as fast as the one in the previous
section, its fidelity is decreased to 63%. Obviously, for larger field strengths, the non-resonant
run-off of population becomes more significant. We can conclude, as suggested by our findings
in the previous section, that the accurate preparation of the SCS itself needs some time in addi-
tion to the 61.2 ns for the mere rotation of a SCS. Our approach is thus to split the circularisation
into the preparation of a SCS and a subsequent rotation of the SCS into the circular state.
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Figure 3.4: Same as Fig. 3.3 but for the two-step amplitude pulse (a) and the optimised pulse
leading to a fidelity of 99% (b). The grey lines in the inset show the population distribution of the
closest SCS (a) ϑ = 0.65π, ϕ = 0.50π, (b) ϑ = 0.69π, ϕ = 0.54π.

We therefore change the shape of the guess pulse in order to avoid population running off to
the state |1〉 and allowing sufficient time for the preparation of the SCS. To this end, the initial
amplitude of the pulse is decreased for some nanoseconds before the amplitude is ramped up
to the maximum value, 45 mV

cm (see an example in Fig. 3.4 (a)). The total length of the pulse,
referred to as two-step amplitude pulse, is then adjusted to match a π-pulse. The lower the initial
amplitude and the longer the initial plateau, the longer the pulse.

The approach to obtain high fidelity with the shortest possible duration is to increase the pulse
duration gradually (by decreasing the amplitude of the initial plateau) until the desired fidelity
can be reached under given constraints. Note that higher fidelities could easily be realised in
the calculations. However, this is not meaningful in view of application in an experiment where
detector efficiency, DC electric field inhomogeneities, electric field noise and other experimental
imperfections [59] intrinsically limit the measurable fidelity. We seek to increase the fidelity of
the two-step amplitude pulse by employing Krotov’s method (cf. Sec. 3.1.3). The optimisation is
performed until the functional crosses the threshold JT = 10−2, which corresponds to a fidelity
of 99%. The considered shape function S(t) in the pulse constraints ga (cf. Eq. (3.17)) is the previ-
ously described sine-squared function. To ensure experimental feasibility, the absolute value of
the amplitude is constrained to values smaller than 46 mV

cm . Spectral components driving either
σ−-polarised transitions, or σ+-polarised transitions above 460 MHz are suppressed in view of
experimental feasibility. This is most simply achieved by cutting the amplitude and spectrum
of the pulse to the allowed range after each iteration. While such a procedure typically results
in loss of monotonic convergence of the optimisation [84, 85, 86], in our case JT does converge
monotonically due to the high quality of the guess pulse.
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It turns out that the shortest possible pulse that allows for a successful optimisation has a
duration of 65 ns, see Fig. 3.4 (a). Its initial amplitude has been decreased to 30 mV

cm . After 10 ns

the amplitude is increased to the maximum value, 45 mV
cm . This increase takes another 10 ns and

uses a sine-squared shape. The edges of the pulse are unchanged. The new guess pulse leads
to a fidelity of 74%, which is already a significant gain compared to the simple 61.2 ns π-pulse.
Notably, the final population in state |1〉 under the new guess pulse is decreased to only 6× 10−6.
The optimised pulse reaches the target with 99% fidelity. All in all, 1390 iterations were needed
to cross the threshold. One iteration requires a computation time of ∼ 50 s on a standard work-
station for the considered part of the manifold (i.e. the two lowest diagonal ladders with m ≥ 0).

Comparison of the guess and optimised pulse, cf. top panel of Fig. 3.4, reveals that the pulse is
mainly changed in the low-amplitude step while it is left nearly unaltered in the high-amplitude
step except for a shortening of the edge time. The shorter edge times and the stronger time de-
pendence in the beginning of the pulse lead to a broadening of the spectrum but no conspicuous
resonances appear in the spectrum other than the near-resonant transitions at 230 MHz (data not
shown).

Inspection of the population dynamics under the optimised pulse in Fig. 3.4, reveals that
the population is focused onto a few states with a small standard deviation and without any
significant population remaining in the low-m states. Moreover, it confirms the already predicted
evolution: In the beginning, a SCS is generated, which is then driven towards the target state
easily. As can be seen in the inset, the state at t = 25 ns is very close to an SCS. Indeed, its overlap
with the closest SCS |ψ(ϑ=0.69π,ϕ=0.54π)

SCS 〉 indicated by the grey line is 98.9%.

A deeper understanding of the dynamics is most easily gained when the process is considered
in a frame rotating with ωRF. This removes fast oscillations with ωRF and reveals the complex
shape function SRF(t) (cf. Eq. (3.7c)) which allows for conclusions about the dynamics on the
generalised Bloch sphere. As explained Sec. 3.1.1, its real and imaginary part correspond to the
envelopes of the two quadratures of the field. For φRF = 0, which is what we assumed for the
guess pulse, the first quadrature induces a rotation around the X-axis of the generalised Bloch
sphere, while the second quadrature induces a rotation around the Y -axis. To obtain SRF(t), we
demodulate the optimised pulse with the carrier frequency ωRF; the result is shown in Fig. 3.5 (a).
It can be seen that the first quadrature is the dominating one, as the red curve coincides with the
envelope of the pulse for most of the time.

The role of the two quadratures becomes evident when considering the evolution of the state
on the Bloch sphere as shown in Fig. 3.5. It is constructive to consider the evolution driven by the
guess pulse first (dashed lines in bottom panel in (a) and Bloch spheres in (b)). The guess pulse
consists of the unoptimised first quadrature only, which induces a rotation around the X-axis.
Since the initial state corresponds to a ring around the Z-axis on the Bloch sphere, population
with positive Y -components is rotated to higher Z-values whereas population with negative Y -
components is rotated towards |1〉. This off-resonant transition needs 1/(2δRF

1,2) = 10.6 ns, which
is additionally accompanied by a rotation around the Z-axis (cf. Z-component of ~Ω in Eq. (2.40)).
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Figure 3.5: (a) Shown on top is the complex shape function SRF(t) of the optimised pulse. The
pulse is separated in its real and imaginary part while the envelope is represented by the grey
shade in the background. The bottom shows the temporal evolution of the Bloch vector coordi-
nates X , Y and Z in a frame rotating with ωRF and of the overlap of the propagated state with
the closest SCS. Shown are the dynamics driven by the guess pulse (dashed lines) and optimised
pulse (solid lines). The vertical lines show the time scale of the detuned |2〉 → |1〉 transition. (b-c)
Snapshots of the Q-function of the population on the generalised Bloch sphere in a frame rotating
with ωRF as driven by the guess pulse (b) and the optimised pulse (c) at t = 0, 10, 21, and 65 ns
(from left to right). The first three panels show the south pole of the Bloch sphere, the right-most
ones show the north pole.

Because the rotation only affects part of the state, the cylindrical symmetry of the initial state is
broken. This can be seen from the dip in the X-component at 10.6 ns. The accumulated pop-
ulation in |1〉 then oscillates back towards |2〉 at 1/δRF

1,2 = 21.2 ns. Afterwards, the shape of the
state does not change anymore (as can be seen from the constant overlap with a SCS) and the
X-component is increasing only a little due to the second-order Stark shift. While, at the final
time, the values of X , Y and Z are close to the target, the inaccurate shape of the state due to the
dynamics in the first approximately 20 ns is the main cause of the insufficient final fidelity.

Thus, the main task of the optimised pulse is to improve the shape of the state. It is evident
from Fig. 3.5 that the first 21 ns of the pulse are designated to generate the required high-fidelity
SCS. When the initial state splits in the very beginning, as explained above, both quadratures
contribute to a clear separation of the two parts. This can be seen in Fig. 3.4 (b) from the par-
titioning of the population into two distinct branches around 10 ns. In particular, the part with
m > 2 is brought to a SCS-like shape much earlier, at 8 ns, than for the guess pulse (cf. peak in the
overlap of the state with a SCS in Fig. 3.5). The X-value goes to zero here because the SCS-like
state is located exactly opposite of the remaining population in |1〉. When the population that has
been driven to |1〉 joins the SCS-like state, the overlap decreases a bit before reaching its maximal
value of 99% after 21.2 ns, in agreement with the time scale of the off-resonant oscillation to |1〉.
Note that the remaining inaccuracy is retained until the end and is the main cause of the final
error of 1%.
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The polar angle of the closest SCS |ψ(ϑ,ϕ)
SCS 〉 amounts to ϑ = 0.75π. The time that is required

to rotate this state towards the North pole with the maximally allowed field strength is given by
T = ϑ/ΩRF = 42 ns. This rotation is visible in Fig. 3.5 by the smoothly increasing Z-component
and the flat shape of the first quadrature. At the same time, the second quadrature helps to adjust
theX-component of the state to compensate for the drift due to the second-order Stark effect. The
peak of the second quadrature at 62.5 ns induces a final adjustment of theX-component and kicks
the SCS to the circular state. Finally, by adding a small overhead due to the edges of the pulse,
the calculated time scales are in full agreement with the duration of the numerically determined
time-optimal pulse.

To corroborate our finding on “time-optimality”, we have tested several values for initial and
final pulse amplitude, duration and start of the amplitude ramp. It turns out that the crucial
parameter for the success of the optimisation under the given constraints is the pulse duration.
This confirms the discussion of the previous paragraph. In fact, several different guess pulses
with the same duration lead to almost the same optimised pulse. Pulses which are longer than
65 ns can also be optimised to the desired fidelity within a similar number of iterations (of the
order of 2000). On the other hand, no shorter pulse (such as the 61.2 ns pulse described above)
can be optimised to the desired fidelity under the given constraints within at least 104 iterations.

3.2.3 Robustness analysis

In our simulations, we have assumed perfect conditions, such as a stable DC field and perfect
modulation of the optimised pulses. To estimate the performance of our theoretical predictions
under experimental conditions, we investigate the stability of the optimised pulse with respect
to different sources of noise: coarse graining of the driving field and fluctuating DC and RF field
strengths.

In an experiment, the optimised pulse is realised by an arbitrary waveform generator (AWG),
which samples the pulse at discrete points in time. The AWG is limited to a frequency bandwidth
of 480 MHz for two channels. This constraint is fulfilled by the optimised pulse due to the band-
width restriction during the optimisation. In addition, the maximum sampling rate of 1.2 GS/s

leads to a temporal step size of 0.83 ns. The step size is depicted as the vertical, dashed lines in
the background of all the RF pulses shown above. This limitation might have a severe impact on
the fidelity.

To examine the influence of the limited resolution, we perform a coarse graining of the opti-
mised pulse; in between two time steps, the pulse shape is interpolated linearly, see Fig. 3.6 (a)
(top). This is a reasonable approximation of the real behaviour of the pulse between two time
steps. A piecewise-constant approach has also been tested and leads to almost the same results.
In particular, at the maxima and minima of the pulse, there is a significant difference between the
original and the coarse-grained pulse. As a result, the increase in the m expectation value is too
slow, which results in a final fidelity of only 22% while the most populated state is |49〉. Note that
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Figure 3.6: (a) Same as Fig. 3.3 but for the coarse grained optimised pulse. The light red/blue
lines indicate the original, unmodified pulse. The grey lines in the inset show the population
distribution of the closest SCS with ϑ = 0.71π. (b) Fidelity of the optimised pulse as a function
of noise strength, fnoise. Shown are the averaged values from 1000 repetitions with randomly
generated noise. The error bars indicate the standard deviation σ. The line serves as a guide for
the eye.

the evolution of the population in Fig. 3.6 (a) (bottom) looks very similar to the original one but it
is not steep enough. The maximum at the right-most edge is not located at |50〉 but |49〉. It might
thus be possible to attenuate the effect of coarse graining by increasing the amplitude carefully.

A more elegant way to solve this problem consists in shaping directly the two quadratures.
This corresponds to an optimisation in the rotating frame and is shown in Fig. 3.5 (top). It essen-
tially circumvents the issue of limited time resolution altogether since the time dependence of the
complex shape function SRF(t) is sufficiently slow to be almost insensitive to the coarse graining.
Thus, the fidelity decreases by only 0.06% compared to the original pulse without coarse grain-
ing. This is a striking improvement compared to the brute force approach and highlights once
more the importance of choosing the proper frame of reference.

The second most important source of noise are fluctuations in the DC and RF fields. In theory,
the DC field is assumed to be perfectly static, which is not the case in a real experiment. DC field
fluctuations lead to an uncertainty in the position of the energy levels in the Stark manifold. To
check the stability of the pulse with respect to this noise, we have calculated the Hamiltonian for
DC field amplitudes of FDC±∆FDC/2 with ∆FDC = 50µV/cm and 150µV/cm, corresponding to
the best and worst case scenarios in a real experiment, respectively. Then, we have propagated
the initial state under the action of each of these Hamiltonians and of the optimised two-step
amplitude pulse. It turns out that, in both cases, the loss of fidelity with respect to the original
DC field amplitude is of the order of 10−4 only. The robustness of our optimised pulse can be
understood as follows. An offset in the DC field leads to the accumulation of an erroneous phase.
This phase is proportional to the DC field offset and the pulse duration. The high stability of the
optimised pulse is thus a direct result of its short duration.
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Next, we consider amplitude noise in the RF pulse. To investigate its influence, we simu-
late fluctuations by adding a white-noise stochastic contribution. The noisy amplitude F̃RF(t) is
realised as

F̃RF(t) = (1 +R · fnoise)FRF(t) , (3.23)

where R ∈ [−1, 1] is a random number and fnoise ∈ [0, 1] is the noise strength. Note that the
range of fnoise implies amplitude fluctuations of at most up to a factor of two with respect to
the original pulse. To avoid discontinuities, the random number R is fixed for a half-period, i.e.
between two zeros of the pulse. In other words, we assume the fluctuations to occur on a time
scale slower than half a period of the RF pulse (∼ 2 ns). Moreover, the x- and y-component are
modified independently such that we also account for polarisation noise in the simulation.

The impact of the RF amplitude noise on the fidelity of the target state is evaluated by repeat-
ing the propagation 1000 times, each with a different realisation of Eq. (3.23), for noise strengths
between 0.5% and 20%. As can be seen from Fig. 3.6 (b), the fidelity decreases for higher noise
strengths and the spread becomes larger. For example, a fidelity of 95.9% is expected on av-
erage for a noise level of 10%. This roughly corresponds to the present estimate of amplitude
fluctuations in the experiment [52, 82], a value that could be reduced with simple experimental
improvements. Even at a level of 10% amplitude noise, the optimised pulse leads to significantly
faster and more accurate circularisation than achieved with e.g. a π-pulse [52, 82].

3.2.4 Quantum speed limit

Quantum mechanics itself sets a natural lower bound on the minimal time that is needed to
realise a certain dynamics [87]. In the following, we investigate the quantum speed limit for
the circularisation beyond (present) experimental constraints using optimal control theory. The
speed limit has been investigated for multi-partite systems such as entangling gates between
atomic qubits [88] or transport in a spin chain [29]. In these cases, it is the interaction strength
between the subsystems that sets the speed limit. Here, such a limit is absent. To the best of our
knowledge, this is the first time that the speed limit for unary (i.e. single) system dynamics in a
realistic model is considered.

To speed up the circularisation, we gradually increase the field strength of the guess pulse.
We first discuss the QSL for our model and then examine the implications for the actual atom.
No constraints on the optimised pulse are included except for Eq. (3.17). The optimisation is
performed until the functional crosses the threshold JT = 10−2. For each value of tstop, we
have tested several guess pulses with different edge times and field strengths. In Fig. 3.7, we
have plotted the number of iterations required to reach the desired fidelity for the best guess,
i.e. the pulse that needs the least number of iterations. It is evident from the figure that the
number of iterations increases as the pulse becomes shorter. The fluctuations in the data points
can be credited to the high sensitivity of the optimisation to the guess pulse. In principle, Fig. 3.7
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Figure 3.7: Number of required iterations Niter to reach a fidelity of JT = 10−2 together with the
required maximal field strength Fmax

RF = maxt|FRF(t)| and bandwidth ∆ωRF of the correspond-
ing optimised pulse for different pulse lengths tstop. The two field strengths where the adjacent
manifolds start to mix with the central n-manifold and where the atom is ionised are marked by
horizontal dashed lines. The grey background indicates the region where the model ceases to be
predictive. The red lines serve as a guide for the eye.

suggests that it is possible to circularise the atom within less than 1 ns. However, when the field
strength of the optimised pulse increases dramatically, our model ceases to be predictive for the
actual atomic system since we account for a small part of the Hilbert space (i.e. the lowest two
diagonal ladders) only.

The first approximation to break down is the neglect of higher diagonal ladders in the n = 51-
manifold. For strong amplitudes of the driving field, off-resonant transitions and transitions to
higher diagonal ladders (which are only allowed due to a mixing of parabolic states by higher
order Stark effects and thus only play a role for strong fields) are no longer suppressed. How-
ever, since those transitions are more strongly detuned and have smaller dipole elements than the
transitions on the lowest diagonal ladder, the latter dominate the dynamics and a re-optimisation
is possible to reach the desired fidelity under strong drives in principle. The optimised fields cer-
tainly look different but the possibility of reaching the target state is not affected. Nevertheless,
the numerical calculations become rather demanding. One iteration of a pulse with tstop = 7 ns

needs a computation time of about 6 s in our model (involving 101 states). In contrast, when all
states of the central n-manifold are considered (∼ 2500 states), one iteration of the optimisation
requires approximately ten minutes. The total computation time is given by that estimate mul-
tiplied by the number of iterations, which is of the order of 104 for tstop = 7 ns. The number of
iterations further increases when decreasing tstop.
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The next approximation that breaks down is omission of adjacent Stark manifolds. As the
driving RF field becomes stronger, the states in the Stark manifold get increasingly dressed and
the energy spacing increases. Once the dressing is strong enough to induce a crossing of adja-
cent manifolds, the instantaneous eigenenergies of our model significantly differ from the ones
obtained when considering the full atomic system. As a result, our model does not describe the
actual atom any more. In the following, we derive an approximation for the critical RF field
strength where the Stark splitting of two adjacent Stark manifolds becomes larger than their sep-
aration, or in other words, the field strength where two neighbouring Stark manifolds touch.

For reasons of simplicity we neglect the quantum defect here and assume a resonant driving
RF pulse. Because the position of the centre of a manifold scales as 1/(2n2) (cf. Rydberg formula
in Eq. (2.5)), the central n-manifold crosses the upper (n+ 1)-manifold before crossing the lower
(n − 1)-manifold. In presence of a DC field, both Stark manifolds, n and n′ = n + 1, experience
a Stark shift and become broader in energy. The Stark shift is proportional to the eccentricity
quantum number µ which takes its maximal possible absolute value, |µ| = n − 1, at the top and
the bottom of the m = 0-ladder (cf. Eq. (2.23) and Fig. 2.3). In addition, the energy levels get
dressed by the RF field. The eigenstates of a perfect spin-J system coupled to a field mode are
separated in energy by the Rabi frequency Ω = |~Ω| (cf. Eq. (2.40)) [52]. When each pair of states
acquires an additional energy splitting of Ω, the top and bottom of the diagonal spin ladder are
shifted by Ω(n − 1)/2 with respect to the middle of the ladder. Adding up all three terms, the
position of states at the top (+) or bottom (−) of the m = 0-ladder is given by

E±n = − 1

2n2
± 3

2
(n− 1)nFDC ± 3nFRF

n− 1

2
. (3.24)

Solving E+
51 = E−52 (as the top of the n = 51 manifold touches the bottom of the n′ = n + 1 =

52 manifold) for FRF with FDC = 2.346 V
cm results in a critical field strength of 2.5 V

cm for the
driving field. This value is in agreement with the numerical calculation of the instantaneous
eigenenergies of the n = 50 to 52 manifolds for different RF field strengths when taking the
quantum defect into account.

As a result, our model ceases to be predictive for RF field strengths above this value, which,
according to Fig. 3.7, concerns all pulses that are shorter than approximately 7 ns. For these RF
fields strengths, our model provides no longer an appropriate description of the Rydberg atom
and it is not possible to draw any definite conclusion about the possibility to circularise the atom
with sufficient confidence. While it may still be possible to reach the target circular state under
these very strong and broad pulses, the numerical effort to check the hypothesis poses a serious
obstacle. When considering the extended Hilbert space containing all states with n = 51± 1 and
m ≥ 0 (∼ 4000 states), the computation time of one iteration increases to one hour. Thus, the
optimisation becomes numerically infeasible because more than 104 iterations are necessary to
provide the desired fidelity.
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Eventually, when the field strength of the RF field is increased even further, a hard physical
bound is reached when the fields are strong enough to ionise the atom. For states on the lowest
diagonal ladder, the order of magnitude of the necessary field strength is given by the static field
ionisation threshold, E = 1/(9n4) [8], which is 83 V

cm for n = 51.
In summary, we find the speed limit to be determined by the internal structure of the atom. In

other words, the speed limit is defined in terms of the spectrum of the field-free Hamiltonian [87]
but for real physical systems, this Hamiltonian is typically an idealisation. For very strong exter-
nal control fields, this idealisation ceases to be valid. It is thus important to keep the assumptions
on which the Hamiltonian is based in mind when determining the quantum speed limit.

3.2.5 Experimental implementation

The last and final step is the implementation of optimised RF pulse shapes for fast circularisation
in the experiment at the Laboratoire Kastler Brossel (LKB) at Collège de France. The experiment
is performed on a thermal beam of 85Rb atoms effusing from on oven. The beam crosses the expe-
rimental structure constructed of two plane-parallel electrodes, which produce the static electric
field, FDC = FDCez , and four ring electrodes for the RF field generation. At the centre of the
structure, three laser beams cross in the horizontal plane to excite the ground state atoms to the
Rydberg regime at time t = 0 ns. By carefully tuning the laser beams, the atoms are selectively
excited to |nf,m = 2〉 within the Stark manifold. At this point, the actual experiment, e.g. the
fast circularisation, can be performed. Afterwards, when the atoms have left the structure, they
are detected via state selective field ionisation which allows for resolving energy levels of dif-
ferent n-manifolds and of different m-levels within in the same manifold. Further details on the
experimental setup and the experimental aspects of the following protocol can be found in [61, 3].

In order to provide pulse shapes which are optimised for the experimental setup at the time,
we repeat the optimisation while taking new experimental insights into account. We now assume
the n = 52-manifold and a DC field of FDC = 2.5 V

cm . The quasi-resonant frequency of the ladder
is ωstark = 249.5 MHz, which has been calculated using the first-order Stark effect. Accordingly,
the central frequency of the σ+-polarised RF pulse in the experiment, and hence the frequency of
the theoretical guess pulse, was chosen to be ωRF = 250 MHz. The critical low-m states show a
detuning of

δRF
0,1 = −178.4 MHz, (3.25a)

δRF
1,2 = −59.2 MHz, (3.25b)

δRF
2,3 = −4.7 MHz. (3.25c)

with respect to the RF pulse and are slightly larger than for n = 51 (cf. Eq. (3.22)). As in the
previous section, we consider in the simulations the lowest two diagonal ladders of the Stark
manifold with m ≥ 0 leading to a total Hilbert space size of 103.
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Figure 3.8: (a) Circularisation with a square pulse. Top: Shape of an RF π-pulse (grey) and its real
and imaginary part for FRF = 23.65 mV

cm and tstop = 114 ns. Bottom: Evolution of the population of
six different |m〉 levels as a function of the duration t of the RF pulse. The points are experimental
with statistical error bars. The shaded areas shows the error range which are increased for levels
m = 1 and 3 due to the calibration uncertainty [3]. The solid lines correspond to the numerical
simulation of the experiment. (b) Circularisation with the 99%-optimised pulse under the cur-
rent experimental constraints. Same as Fig. 3.3. The grey lines in the inset show the population
distribution of the closest SCS with ϑ = 0.68π, ϕ = 0.49π.

Without prior optimisation, the circularisation can be performed within 96 ns and has a fi-
delity of 79(1)% in the experiment, see Fig. 3.8 (a). The solid lines show the numerical simulation
using a plain RF pulse with a central frequency of ωRF = 250 MHz, a flat-top shape with 6 ns edges
and a fixed amplitude of FRF = 22.8 mV

cm . The agreement between the experimental points and
the simulations is excellent. Only for the low-m state do we see a small deviation between the
two. This can be attributed to different methods the populations are recorded in the simulations
and the experiment. In the experiment, an RF pulse which has been truncated to the duration τ
is applied to the atom for each time step τ , i.e. by setting the amplitude to zero for t > τ . Due to
the response of the RF circuit and the presence of the cryostat, the pulse that is seen by the atoms
is not identical to the one that has been programmed. Most importantly, the signal does not end
at time τ sharp but decays over a short period of time. For high-m, the diagonal ladder is nearly
harmonic and the ringdown simply rotates the state a bit further on the Bloch sphere. For low-m,
on the other hand, the ladder is strongly anharmonic and the ringdown has a significant effect
on the state, as can be seen in Fig. 3.8 (a).

We now optimise the circularisation to higher fidelities and constrain the pulse during the nu-
merical optimisation in order to ensure experimental feasibility. As described before, we consider
a flat-top shape function S(t) with sine-squared edges lasting 10 ns each to account for the finite
time it takes to switch the pulse on and off in the experiment. The field strength of the RF pulse
is limited to |FRF| = 25 mV

cm . Even though higher fields are in principle feasible, the response of
the electrodes becomes highly non-linear beyond this point. We therefore suppress higher fields
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to produce pulses which are more stable with respect to amplitude noise. Note that, while we
optimise the field strengths of the x- and y-component of the RF pulse directly, the experimental
control knobs are two time-dependent voltages, Vr(t) and Vi(t), generated by two outputs of an
AWG. The voltages control RF mixers which modulate the amplitudes Fr(t) and Fi(t) of the two
quadratures of the σ+-polarized RF field as given in Eq. (3.7c) with φRF = 0, i.e.

F+
RF(t) = Fr(t)

(
cos(ωRFt)ex + sin(ωRFt)ey

)
+ Fi(t)

(
− sin(ωRFt)ex + cos(ωRFt)ey

)
(3.26)

with Fr(t) = 2Re {SRF(t)} and Fi(t) = 2Im {SRF(t)}. The dependency between the signal Vr,i(t)
delivered by AWG and the field amplitudes Fr,i(t) which the atoms feel inside the cryostat is
non-trivial and has been measured beforehand.

Similarly, also the frequency range that can be generated in the experiment is limited. The
capabilities to generate very high frequencies are limited by the step size of the AWG (1 ns).
Moreover, the noise increases beyond a window of about 140 and 360 MHz due to the response of
the RF circuit and the influence of the cryostat. Even though lower and higher frequencies are in
principle attainable to a certain degree in the experiment, limiting the pulse to this frequency
window produces pulses with a higher stability in the experiment. The frequency was thus
limited to this window by truncating the spectrum of the optimised pulse after each iteration
using a flat-top shape function with sine-squared edges of 20 MHz. Incidentally, our choice of
the n-manifold and the value of the DC field were motivated by matching the sweet spot of the
frequency window around 250 MHz with the first order Stark splitting of the Stark manifold.

The guess pulse is chosen to have a flat-top shape and a fixed amplitude FRF. In order to
find the pulse which circularises the atoms with a high fidelity in the shortest possible time, we
perform the optimisation using Krotov’s method several times using guess pulses with different
lengths. We start by setting the field strength of the guess pulse to the maximal value of 25 mV

cm

and adjusted the duration of the pulse to match a π-pulse, i.e. 100 ns. Then, we tried to optimise
the pulse to a fidelity of 99% while restricting the amplitude and the bandwidth as described
before. While the population of the initial state |m = 2〉 is driven towards the circular state with
80% fidelity using this guess pulse, it can only be optimised towards a fidelity of 95% within the
experimental constraints. Thus, we successively decreased the amplitude of the guess pulse and
extended its length until the optimisation converged and the target fidelity was reached. The
optimisation first succeeded for a guess pulse with FRF = 22 mV

cm leading to a total duration of
tstop = 113 ns within 410 iterations of Krotov’s method. Note that no two-step amplitude ap-
proach was employed here. As mentioned above, this is not strictly necessary and the important
factor is the length of the pulse being long enough to perform the circularisation.

The optimised pulse shape and the resulting dynamics are shown in Fig. 3.8 (b). The opti-
mised pulse is qualitatively very similar to the one discussed in the previous sections and can be
separated into two parts: the formation of a SCS during the first 40 ns (cf. inset in lower panel)
and its subsequent rotation towards the north pole during the flat sequence of 73 ns length.
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Figure 3.9: (a) First circularisation attempt using the quadratures of the 99%-optimised pulse
under the current experimental constraints. Same as Fig. 3.8 (a) but with the complex shape
function of the optimised pulse on top. (b) Circularisation using the modified quadratures (solid
lines). The dashed lines in the upper plot show the unmodified quadratures as a reference.

As discussed in Sec. 3.2.3, implementing the RF signal in the AWG directly would lead to a
significantly decreased fidelity, as the step size of the AWG is not sufficient to resolve the fast
oscillation of the pulse. Instead, we demodulate the pulse with the central frequency of the
RF, 250 MHz, and a phase of π/4. As shown in the upper panel in1 Fig. 3.9 (a), the resulting
quadratures are much flatter which simplifies their generation using the AWG. Beyond this, first
tests in the experiments have shown that near-zero amplitudes and zero crossings might cause
stronger amplitude noise. Demodulating the pulse with a phase of π/4 has the benefit of resulting
in two quadratures of roughly the same amplitude.

In Fig. 3.9 (a) (lower panel), we present the evolution of the population of six different states
on the diagonal ladder as measured in the experiment and simulated numerically. In the ex-
periment, a circular state population of about 88% can be reached. While this is already an
improvement compared to the unoptimised π-pulse, we notice deviations between theory and
experiment. The RF pulse seems to be slightly stronger in the experiment as the population in
the circular state rises several nanoseconds earlier than in the simulations. This hints to a cali-
bration problem of the RF field strength in the experiment, or to a loss of RF amplitude due to
the coarse graining in the AWG (as discussed in Sec. 3.2.3). Moreover, the population of |m = 2〉
spikes to unexpectedly high values of about 70% at 20 ns. The other two low angular momentum
states |m = 1〉 and |m = 3〉, on the other hand, stay close to the simulated value. When present-
ing the unoptimised π-pulse, we have already discussed that the hard cut of the RF pulse in the
experimental implementation, which is required to detect populations at intermediate times, can
have a significant effect on the recorded signal. As the optimised pulses are more involved and
strongly modulated, this effect is likely to be aggravated when considering optimised pulses.

1Note that the field strength FRF differs by a factor of 2 between Fig. 3.9 and [61], e.g. Fig. 4, because of the aforemen-
tioned relations Fr(t) = 2Re {SRF(t)} and Fi(t) = 2Im {SRF(t)}. While in this thesis, we show the real and imaginary
parts of the complex shape function SRF(t), the paper shows Fr,i(t).
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We can use our knowledge on the underlying dynamics to improve the fidelity in the experi-
ment and the agreement with the theory. First, we can compensate for RF amplitude calibration
uncertainty to first order by scaling the first 40 ns of both quadratures by a factor λ close to one.
As we suspect the RF power being too high in the experiment, we expect λ < 1. Secondly, we
know that for t > 40 ns, the state has the shape of a SCS and the optimised pulse merely has to ro-
tate it towards the north pole of the Bloch sphere. The oscillations in the optimised pulse shapes
after 40 ns therefore seem unnecessary. Upon closer examination, it turns out that they are caused
by the frequency filtering. The frequency filter is approximately of rectangular shape and has a
width of ∆ω = 220 MHz. The corresponding Fourier transformed signal is proportional to a sinc
function, sinc(x) = sin(x)/(x), with x = ∆ωt/2. The resulting oscillation in the time domain has
a period of about 14 ns which matches the oscillation in Fig. 3.9. This observation corroborates
our suspicion that the oscillations after 40 ns are indeed not essential for the success of the optimi-
sation. Consequently, we flatten the amplitudes of the two quadratures, i.e. set them to constant
values Fr,i(t) = F cr,i, for t > 40 ns in order to simplify their sampling in the AWG. Moreover, this
new pulse shape allows for performing a “closed loop” optimisation directly on the experimental
signal: we optimise the amplitudes F cr and F ci independently in order to maximise the measured
circular state population in the experiment. The ratio between the quadratures determines the
direction of the rotation axis while the area under the quadratures determines the Rabi angle of
the rotation. Only if the ratio between the two quadratures is well-adjusted do we hit the north
pole of the Bloch sphere accurately.

We perform the adjustment of the optimised quadratures in two steps. We first set a scal-
ing factor λ, and afterwards the two constant amplitudes F cr,i of the quadratures for t > 40 ns

were adjusted to maximize the circular state population. It was found that a value of λ = 0.95

leads to the highest value of circular state population with the lowest population of the second
highest states of the diagonal ladder. Around this value, the dependency of the transfer fidelity
on λ is very flat, indicating that the optimised pulse is stable with respect to small amplitudes
fluctuations.

In Fig. 3.9 (b), we present the flattened pulse shapes and the final dynamics in the experiment
and the theoretical simulation. We reach the circular state with a fidelity of 96.2(3)% in 113 ns

in the experiment. While this is slightly lower than the theoretically predicted 99%, it has to
be compared to the previous experimental fidelity using other circularisation methods. While
the adiabatic circularisation allows for a high fidelity of 99.5%, it is very slow and takes a few
microseconds. The time needed for circularisation using an unoptimised π-pulse, on the other
hand, is comparable to our protocol but only allows for fidelities of 79(1)%. We provide both fast
and accurate circularisation using optimised pulse shapes. The circular state is reached within
merely about 25 oscillations of the RF field. The transition speed is ultimately limited by the
RF power available to the experiment. With stronger RF sources, the time for the circularisation
can be reduced even further (cf. the discussion on the quantum speed limit in Sec. 3.2.4). The
agreement between the experimental points and the theory predictions are remarkable at the
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upper end of the ladder (i.e. for t > 80 ns). However, there are significant deviations for the
low-m states at the beginning of the sequence. These already occurred for the unoptimised π-
pulse and were discussed above. The agreement could be improved by performing a thorough
analysis of the experimental filter functions and modify the input signal accordingly. Distortions
of the signal can mostly be attributed to the response of the electronics, such as the RF circuit,
and the cryostat. However, such an analysis is tedious and complicated. Most importantly, the
experiment does not possess a sensor inside the cryostat which could measure the signal directly
at the level of the atoms. We have started analysing the response but did not achieve a real
improvement given the limited data we had at hand. As the final fidelity of the circular state
preparation is our main target and sufficient for our purpose, we did not investigate on it further.

It shall finally be mentioned that the preservation of coherence in the experiment under the
optimised pulse has been tested by checking that the protocol does not spoil a coherent super-
position with a reference level. They used an intricate Ramsey scheme involving forwards and
backwards propagations under the optimised pulse, proving its high stability and versatility.
They found a very high fringe visibility of 0.891(6) which is mainly limited by electric field noise.
When the field noise was extrapolated to zero the value increases to 1, showing that the opti-
mised pulse preserves coherence extremely well. This is mostly relevant if the optimised pulse
shall be used to create or preserve superposition, as we do in the next section.

3.3 Electrometric cat states

Optimal control theory is more powerful than merely improving existing protocols such as the
circularisation of Rydberg atoms. It also enables to prepare a highly non-classical superposition in
the Stark manifold for which no intuitive preparation method is known. In Sec. 3.3.1, we motivate
the choice of our target state by its utility in quantum metrology. Afterwards, in Sec. 3.3.2, we
present the results of the optimisation and the experimental realisation, both of which have been
published in [61].

3.3.1 Choosing the target state

The general idea of quantum metrology is to measure a physical quantity with enhanced sensi-
tivity, beyond what is classically possible, by means of quantum strategies [23, 24, 25, 26]. The
most simple form is the quantum estimation problem in which the value of a continuous param-
eter x, for instance a quantum phase, is to be measured. For simplicity, we only consider pure
states and closed quantum systems in the following. Usually, the strategy to recover the value of
x can be divided into the following steps:
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1. Initialisation of the quantum sensor in a known state |ψ0〉.

2. Transformation into the initial sensing state, |ψ0
s〉 = Ûc |ψ0〉.

3. Sensing period: Evolution of the sensing state under the influence of the quantity to be
measured, |ψxs 〉 = Û(x) |ψ0

s〉.

4. Evolution of the final sensing state into observable states, often chosen to be |ψx〉 = Ûc
† |ψxs 〉.

5. Read-out of the final state of the quantum sensor, |ψx〉.

If the initial state is equal to the sensing state, |ψ0〉 = |ψ0
s〉, and if the final sensing state is read

out directly, |ψx〉 = |ψxs 〉, steps 2 and 4 could be omitted, respectively. The final read-out (step 5)
can be expressed in terms of a set of Hilbert space operators { P̂i } that form a positive operator
valued measure (POVM). The probability pi(x) to measure the outcome i if the sensor is in the
final sensing state |ψx〉 is given by [26]

pi(x) = Tr
{
P̂i |ψx〉〈ψx|

}
. (3.27)

The measurement outcome depends on the final sensing state and thus on the value of x. The
sensitivity with which the value of x can be deduced from the measurement outcomes is given
by the Cramér-Rao bound [25],

∆x ≥ 1√
F (x)

(3.28)

where F (x) is the Fisher information. Roughly speaking, the Fisher information measures the
amount of information on x that can be extracted from a probability distribution pi(x). Equa-
tion (3.28) is the best sensitivity given from this specific POVM. An accuracy bound which is
independent of the POVM can be found by minimising Eq. (3.28) with respect to all possible
POVM. This results in the quantum Cramér-Rao bound,

∆x ≥ 1√
J(x)

(3.29)

where J(x) is the quantum Fisher information [25]. In the simple case where the final sensing
state can be written as |ψxs 〉 = e−iĤx |ψ0

s〉, the quantum Cramér-Rao bound takes the simple form
of an uncertainty relation

∆x ≥ 1

2(∆Ĥ)|ψ0
s〉
, (3.30a)

with (∆Ĥ)|ψ0
s〉 =

√
〈Ĥ2〉|ψ0

s〉 − 〈Ĥ〉
2

|ψ0
s〉 (3.30b)

being the spread of the operator Ĥ on the initial sensing state |ψ0
s〉.
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The best precision for estimating the value of x that can be obtained from a single measure-
ment is thus fully determined by the energy variance of the Hamiltonian on the initial state. We
now consider the problem of estimating the rotation angle x about the Z-axis of the generalised
Bloch sphere of a spin-j system. The rotation can be written asRZ(x) = e−iĴZx (cf. Eq. (2.41)). The
simplest choice of an initial state is a SCS which is quasi-classical and has minimal uncertainty
(cf. Sec. 2.3.2). The SCS with the largest spread ∆ĴZ can be found at the equator. SCS at the north
or south pole, on the other hand, are invariant under rotations about the Z-axis. The single-shot
sensitivity of estimating the rotation angle x with a SCS |ϑ = π/2, ϕ〉 is equal to [26, 59],

∆xSCS ∼
1√
2j
, (3.31)

which is called the standard quantum limit (SQL). In order to increase the value of the quantum
Fisher information and to gain a quantum enhancement, it is necessary to employ non-classical
states. One option to achieve this goal is by using a superposition of SCS, so-called cat states.
They can be written as |ψcat〉 = 1√

2
(|0, 0〉+ |ϑ, 0〉), where we have chosen the coordinate system

of the Bloch sphere such that the first state of the superposition is located on the north pole and
the second state in the XZ-plane, for simplicity. The resulting single-shot sensitivity is [26, 59]

∆xcat ∼
1

j(1− cosϑ)
. (3.32)

For ϑ = π, which corresponds to a superposition of two SCS at opposite pole of the Bloch sphere,
the sensitivity reaches its maximal value

∆xHL ∼
1

2j
, (3.33)

which is called the Heisenberg limit (HL) [89]. It is the fundamental limit to the precision of
a measurement and ultimately originating from Heisenberg-like uncertainty relations. Another
method of achieving a precision beyond the SQL is by using spin squeezed states [90, 26, 91].

In the following, we consider the specific quantum estimation problem in which we use Ryd-
berg atoms as sensors for measuring electric field strengths based on preceding work by our
collaborators at the LKB at Collège de France presented in Ref. [59]. The large spin-j system can
be identified with the lowest diagonal ladder of the Stark manifold with j = (n− 1)/2 as defined
in Eq. (2.27) where the circular state |nC〉 corresponds to the north pole |ϑ = 0, ϕ = 0〉. The gen-
eral idea of the Rydberg atom electrometer is as follows: In a frame rotating with the frequency
ωRF of the RF pulse, any detuning δ between the energy splitting of the ladder, ωstark, and the RF,
δ = ωstark − ωRF, induces a rotation of the Bloch vector around the Z axis (cf. generalised Rabi
frequency in Eq. (2.40)). This can be written as a rotationRZ(x) with x = δτ where τ is the inter-
rogation time. As ωstark depends on the value of the DC field, the phase x contains information
on the DC field amplitude.
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Figure 3.10: Ramsey sequence for measuring an electric field. A detailed explanation in given in
the main text. Gray boxes indicate states, blue boxes MW pulses, red boxes RF pulses and the
green box the interrogation time. The circled Roman numbers label the steps. The Bloch spheres
on top visualise the Q-function on the generalised Bloch sphere of the lowest diagonal ladder
of the n = 51-manifold after the first four steps, respectively. The arrows on the Bloch sphere
visualise the effect of the RF pulses (red) and the interrogation time (green). The dashed box at
the bottom indicates an alternative approach which brings the reference state back to the n = 50
manifold.

The cat state |ψcat〉 from above can be prepared experimentally by using a combination of MW
and RF pulses as described in the following. The specific measurement protocol is an example
of a Ramsey interferometry measurement and depicted in Fig. 3.10. First, the Rydberg atom is
initialised in a circular state, |ψ0〉 = |nC〉 = |0, 0〉, with n = 50 in this case (first Bloch sphere in
Fig. 3.10). The initial sensing state |ψ0

s〉 = |ψcat〉 is prepared in three steps: First, a π/2-microwave
(MW) pulse (step I in Fig. 3.10) shelves half of the population in a different Stark manifold such
that the other half can be manipulated as required. Second, the state |0, 0〉, is rotated towards
lower latitudes into the SCS |ϑ, 0〉 by R1 = R(ϑ, 0) (cf. Eq. (2.42)) using a resonant RF pulse
(second Bloch sphere, step II). Since the Stark splitting differs between the n = 50 and n = 51-
manifolds, the shelved population in |51C〉 is mostly unaffected by the RF. Finally, the shelved
population can be brought back to the n = 50 manifold using a MW pulse (step IIIa). The initial
sensing state is then the cat state |ψ0

s〉 = 1√
2

(|0, 0〉+ |ϑ, 0〉). In the limit of ϑ = π, this state can
also be written as |j, j〉+ |j,−j〉
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The next step is the actual sensing period (step IIIb). Any detuning between the Stark splitting
and the RF, δ, induces a rotation of the SCS round the Z-axis of the Bloch sphere. After the
interrogation time τ , the SCS |ϑ, 0〉 has accumulated a field dependent phase, x = δτ , or in other
words, rotated by an angle x around the Z axis (third Bloch sphere). Afterwards, the preparation
of the cat state is inverted to prepare the read-out. For this, the population |0, 0〉 is shelved once
more in the n = 51 manifold using a MW pulse (step IIIc). Then, the SCS which remains in n = 50

is brought back towards the north pole of the sphere by applying a second RF pulse R2 = (ϑ, π)

(fourth Bloch sphere, step IV). Finally, the two parts of the superposition are recombined with
a π/2-MW pulse on the |50C〉 ↔ |51C〉-transition (step V). The final read-out is performed by
measuring the population in the circular state |50C〉.

If the Stark frequency is equal to the RF frequency, δ = 0, the initial state |50C〉 is recovered at
the end of the sequence. If δ is small but non-zero, the final SCS after step IV is overlapping with
|50C〉 = |0, 0〉 and the probability of finding this half of the population in |50C〉 is only slightly
smaller than one. However, the SCS has accumulated a quantum phase due to its trajectory
on the Bloch sphere (indicated by the white dashed area in the fourth Bloch sphere Fig. 3.10).
This “global phase” of the SCS can be measured by superposing it with a reference state, namely
|51C〉. The final π/2-MW pulse (step V) is able to reveal that phase as the final population in |50C〉
depends on it and accordingly on δ. The sensitivity of measuring the value of the DC field is
finally given by σcat ∼ 1/(τj(1− cosϑ)), equivalently to Eq. (3.32). For ϑ = π, which corresponds
to a superposition of the north and south pole of the Bloch sphere, the HL σHL ∼ 1/(2jτ) is
reached. Lastly, it shall be noted that the two MW pulses IIIa and IIIc, which transfer the reference
state from n = 51 to 50 and back, do not affect the sensitivity of the protocol at all. They were
thus omitted in the experiment as they extend the time required to perform the protocol without
any benefit. The steps IIIa to c in the dashed box in Fig. 3.10 can thus be replaced by step III (the
sensing period).

Our aim is now to improve the presented measurement scheme further by employing OCT.
There are two ways in achieving this. First, the actual sensitivity in the experiment depends on
the value of ϑ and the fidelity of the SCS after the rotation. The lowest diagonal of the Stark
manifold is not a perfectly harmonic spin-j system due to higher order Stark effects and the
quantum defect. Consequently, the SCS dephases during the rotation R1 and the distortion is
stronger, the closer the state is to the south pole of the sphere. As a result, the second RF pulse
R2 is not able to bring the population back to the north pole of the sphere. However, we have
shown in the previous section that OCT can be used to efficiently transfer population from one
end of the ladder to the other. By replacing the plain RF pulse R2 by the optimised pulse for
fast circularisation and R1 by the its time-inverse, we can rotate the circular state down to the
|m = 2〉 state and thus achieve a large superposition close to the fundamental limit ϑ ≈ π. In
fact, the fast circularisation pulse has already been used successfully for quantum metrology
achieving precisions below the SQL in the experiment [3].
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A second, more interesting approach is to omit the MW pulses altogether and prepare a cat
state starting directly from the circular state |50C〉, i.e. combining the pulses I, II and IIIa into
one optimised RF pulse. As MW pulses are one order of magnitude slower than RF pulses, an
optimised protocol using RF pulses only would increase the repetition rate significantly. We have
thus optimised a pulse that prepares a superposition of the north pole (i.e. the circular state |nC〉)
and the m = 1-state close to the south pole,

|ψ0
s〉 =

1√
2

(|m = 1〉+ |nC〉) . (3.34)

This superposition is a promising candidate for quantum metrology, as its two parts have very
different properties. The circular state with m = n− 1 and eccentricity quantum number µ = 0 is
completely insensitive to electric fields and serves as a reference. The state |m = 1〉, on the other
hand, is highly sensitive with µ ∝ n2. The preparation of the cat state can be interpreted as a
π/2-pulse on a large 50-photon transition which can be achieved using optimal control, as we
show in the following section.

3.3.2 Cat state preparation

We start the preparation of the cat state in Eq. (3.34) from the lowest state of the m = 2 ladder in
the n = 52 Stark manifold, |m = 2〉. To quantify the mismatch of the state-to-state optimisation,
we have employed the same functional from Eq. (3.14). The target state has been set to

|Ψsplit
t 〉 =

1√
2

(
eiφt |1〉+ |51〉

)
. (3.35)

The relative phase φt is fixed but arbitrary. We have tested several phases which all lead qualita-
tively to the same result and thus decided for φt = π leading to a relative phase of −1 between
the two parts of the superposition. Moreover, the balance between the two parts could be tuned if
desired and numerical tests showed that the optimisation is also successful for unequal weights.

In the simulations, we have assumed the same part of the Hilbert space and the same con-
straints as for the fast circularisation described above. As a guess pulse, we have used a cir-
cularly polarised RF pulse with a flat-top shape with a length of 150 ns, an amplitude of 22 mV

cm

and a central frequency of 250 MHz. As it has the same amplitude as the guess pulse of the fast
circularisation above, the circular state reaches its maximal population around 113 ns. At 150 ns,
there is only a small fraction of 0.0002% of the population in the circular state while the |m = 1〉
is populated with about 5%. This results in a poor fidelity of 2.4% for the guess pulse. Dur-
ing the optimisation with Krotov’s method, the bandwidth window has been slightly shifted to
frequencies between 130 and 320 MHz with edges of 50 MHz width, such that the centre of the
window, 225 MHz, is slightly smaller than before. This has been done with the knowledge, that
we not only have to address the transitions to larger m-values, which are nearly harmonic with a
transition frequency of 250 MHz, but also the |m = 1〉 ↔ |m = 2〉 transition which is detuned by
59.2 MHz. All remaining constraints have been left unchanged.
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Figure 3.11: Optimised cat state preparation with the 99%-optimised pulse under the current ex-
perimental constraints. (a) Same as Fig. 3.3. The grey line and the grey shade in the inset indicate
the population distribution of the closest SCS with ϑ = 0.61π when considering the states |m > 2〉
only. (b) Shown on top is the complex shape function of the optimised pulse when demodulating
the pulse with a phase of π/4. The pulse is separated in its real and imaginary part while the
envelope is represented by the grey shade in the background. The bottom shows the time evolu-
tion of the instantaneous eigenstates of the atom-RF field Hamiltonian in the rotating frame, also
called the “dressed states”. The vertical position of the lines in reflects the instantaneous energy
of the corresponding state, and their colour show the population at time t.

The preparation of the cat state could be optimised to a fidelity of 99% after only 77 iterations
of Krotov’s method. The remarkably fast convergence (when compared to the required 410 it-
erations of the fast circularisation) is an indicator that the duration of the protocol has not been
pushed to the speed limit. Indeed, we have determined the minimal time to perform the proto-
col only with a resolution of 10 ns, as we found this sufficient for our purposes. Pulses shorter
than 140 ns did allow for optimising the process to the desired fidelity of 99% from which we can
conclude that the speed limit has increased with respect to the fast circularisation.

In Fig. 3.11 (a), we present the optimised pulse and the resulting dynamics on the lowest
diagonal ladder of the n = 52-Stark manifold. We can identify three parts of the optimised pulse
with very distinct roles. In the first tens of nanosecond, we see that, even when starting with a
simple RF guess pulse, the optimised pulse manages to split the population into two branches.
The pulse shelves half of the population in a superposition of |m = 1〉 and |m = 2〉 (see high
peak in inset in lower panel of (a)) which is an eigenstate of the time-dependent Hamiltonian
and thus a dark state to the RF field. At the same time, the pulse forms a SCS centred at higher
levels with m ∼ 10. During the next ∼ 90 ns, the RF pulse rotates the SCS towards the north
pole of the generalised Bloch sphere, i.e. the circular state, while leaving the dark state unaltered.
This interpretation can be corroborated by considering the time-evolution of the instantaneous
eigenstates of the coupled atom and RF Hamiltonians in the lower panel of Fig. 3.11 (b). The RF
pulse dresses the eigenstates of the atom and modifies the instantaneous eigenenergies which
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Figure 3.12: Optimised cat state preparation using the normal (a) and the modified (b) quadra-
tures (solid lines) of the 99%-optimised pulse under the current experimental constraints. Same as
Fig. 3.9 (b). The coloured dashed lines in the upper panel in (b) show the unmodified quadratures
as a reference. The vertical dashed lines in (b) indicate the time points where the modifications
took place (see main text). The solid lines in the lower panel in (b) correspond to the numerical
simulation using the flattened pulse without the increased first lobe.

is apparent from the obvious similarity between the shape of the optimised quadratures in the
upper panel of (b) and of the dressed states as a function of time. The circularisation of the
SCS causes a complex interference pattern in the dressed-state picture. However, we discover
a separated energy level around 70 MHz in the dressed-state basis which stays populated with
about 50% during most of the pulses duration – the dark state. During the last ∼ 15 ns, the pulse
is smoothly switched off which adiabatically transforms the dark state into |1〉 and the SCS ends
up in the circular state. As it turned out, the undesirable trapping of the population in |m = 1〉,
that we have observed during the unoptimised circularisation and identified as the main source
of population loss, is now the enabler for the preparation of the cat state.

Before testing the pulse in the experiment, we perform one adjustment. We see that the op-
timised pulse does not go down to zero at the beginning and the end of the time interval. This
is due to the cutting of the bandwidth after the last iteration of Krotov’s method. To facilitate
the experimental implementation we add 1 ns before the beginning of the pulse and switch in
on smoothly using a sine-squared edge. Then, the pulse is shifted by 1 ns on the time grid such
that the pulse starts at 0 ns. The same was done at the end of the pulse. In Fig. 3.12 (a), we
present the experimental data when employing these optimised quadratures directly. As with
the circularisation, we see a qualitative agreement between the experimental measurements and
the theoretical predictions. However, we also see similar deviations as before. The circular state
population rises earlier in the experiment hinting towards a too high RF field strength. The pop-
ulation of the dark state, on the other hand, is slightly lower than predicted. At its maximal point,
the circular state reaches a population of 45% while |m = 1〉 reaches 43% at the end of the pulse,
indicating that we are already close to the target state.
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Similarly to the fast circularisation, we can use our physical insights to simplify and improve
the optimised pulse for the experimental implementation. Firstly, we employ a global scaling fac-
tor during the first 80 ns of the pulse of 0.925 to compensate for amplitude calibration uncertainty
and the observed too-high field strength. When employing this modification alone, the circular
state population is much closer to the theoretical prediction and rises to about 50% at the end.
The population in |m = 1〉, however, decreases even further. This is probably due to the overall
changed amplitude of the pulse which also changes the population of the dark state. Before turn-
ing to this, we simplify the shape of the second part of the pulse. As shown in Fig. 3.12 (b), we
replace the second half of the pulse, t > 80 ns, with linearly increasing, between 80 and 136 ns,
and decreasing, 136 and 167 ns, amplitudes of the control voltages of each quadrature. In doing
so, we have a single parameter to optimise for each quadrature, i.e. the amplitude at time 136 ns.
The linear ramps enables us to tune the rotation angle of the SCS by independently changing the
pulse area for each quadrature, while ensuring that the phase and amplitude of the RF field vary
slowly enough for the dark state to adiabatically remain shelved in the instantaneous dressed
state. The second ramp is slightly longer in the experiment than in the simulation and hence
lengthens the overall pulse duration to compensate for the non-linear dependency between the
RF field strength and the applied voltages. However, these optimisations were not sufficient
to increase the population in |m = 1〉. We found that the final balance depends strongly on the
applied voltage during the first 4 ns of the pulse. Hence, we rescale the amplitudes of the quadra-
tures for t ≤ 4 ns by a separate factor α. We found that the balance between the two parts of the
superposition can be tuned by changing the value of α and we obtained an equal superposition
for α = 2.8. Lastly, the linear ramp was reoptimised for the new beginning of the pulse.

Figure 3.12 (b) shows the dynamics in the Stark manifold as driven by the modified pulse
quadratures. The experimental data and the simulation reveal an excellent agreement. The final
target state population in the experiment (averaged over the last six points) is PC = 48(1)% in
the circular state and Pm=1 = 48.4(8)% in |m = 1〉. In the simulation, we achieved a fidelity of
99% (PC = 50.2% and Pm=1 = 48.6%). While we achieve a perfect balance and a great agreement
for |m = 1〉, the population in the circular state is slightly lower in the experiment. Lastly, the
coherence of the cat state has been examined in the experiment in a similar fashion as for the fast
circularisation. A high fringe visibility of 0.80(1) has been found which amounts to 0.97(2) when
extrapolated to zero field noise. Using the determined degree of coherence in the experiment, the
fidelity of the cat state preparation in the experiment could be calculated to be 93%.
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3.4 Summary

We have shown in this chapter how to navigate the Stark manifold of Rydberg atoms using op-
timal control theory by means of two examples. First, we have significantly improved the circu-
larisation of Rydberg atoms in terms of time and fidelity as compared to conventional methods.
Beyond deriving the optimal pulse shape, we have demonstrated together with our collabora-
tors from Laboratoire Kastler Brossel (LKB) at Collège de France their experimental feasibility as
shown in Fig. 3.9 (b).

This result was largely enabled by the elaborate theoretical study of the optimised pulse.
Most importantly, we were able to understand the dynamics induced by the optimised pulse and
found that they can be decomposed into two steps: the preparation of a spin-coherent state (SCS)
and its subsequent rotation towards the North pole of the generalised Bloch sphere spanned by
a subspace of the Stark manifold. This insight allowed us to fine-tune the field quadratures in
the experiment to compensate for experimental uncertainties, thus enabling the high fidelity of
circular state preparation in the experiment. Moreover, we have tested the optimised pulse for ro-
bustness against various sources of noise. We found the pulse to be very stable which can mostly
be attributed to the short duration and small bandwidth of the pulse. We found the largest source
of noise to be the coarse-graining of the optimised pulse due to the implementation in a arbitrary
waveform generator (AWG). We could solve this problem by demodulating the optimised pulse
with the central radio frequency and shaping only the weakly time-dependent envelopes instead.
RF calibration uncertainties, on the other hand, can be compensated for by scaling the amplitude
of the optimised field in the experiment with great success. Lastly, we have investigated the fun-
damental speed limit for circularisation when easing the experimental constraints as shown in
Fig. 3.7. We found that the time scale for preparing a SCS is given by the detuning of the RF pulse
from undesired transitions, whereas the time to rotate the SCS to the North pole is determined
solely by the Rabi frequency. A further speed up would thus be possible by using (a) a larger DC
field strength, which increases the detuning, and (b) a larger RF field strength, which allows for
faster rotation. For the given DC field strength, increasing the RF field strength could, in prin-
ciple, bring the circularisation time down to about 10 ns. However, the control fields become so
strong that eventually the theoretical model ceases to be reliable. Moreover, this would come not
only at the price of large RF amplitudes but also of a much broader spectral bandwidth. There-
fore, given the present experimental technology, circularisation times much below 50 ns do not
seem realistic.

In the second example, we have successfully employed optimal control to prepare a non-
trivial superposition of a low- and high-angular-momentum state for which no intuitive prepa-
ration method was known beforehand. The preparation of the Schrödinger-cat-like state can
be interpreted as a π/2-pulse on a large 50-photon transition. A similar state with much lower
distance between the two parts of the superposition could previously only be prepared experi-
mentally by using a sequence of several RF and MW pulses, thus within several microseconds.
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Again, the optimised control field allowed us remarkable insights into the dynamics in the Stark
manifold and the pulse can be split into three steps: (1) the generation of a superposition of a
SCS on the one hand, and a low-m` state which is dark towards the RF on the other hand, (2) the
rotation of the SCS towards the north pole which leaves the low-m` state unaffected, and (3) the
undressing of the system by switching off the RF adiabatically, thus transforming the dark state
into the desired m` = 1 state at the south pole while bringing the SCS to the north pole. The deep
insight into the dynamics allowed for fine-tuning the preparation and achieving a high fidelity
in the experiment, as presented in Fig. 3.12 (b).

The two presented protocols for the preparation of circular states and cat states are very valu-
able in several fields of quantum technology. Circular states are useful in many areas of quantum
technology, such as quantum metrology but also quantum computing [92, 93] and quantum sim-
ulation [94]. The fast circularisation scheme could significantly decrease the time required for
initialisation of circular states as well as increase their fidelity. The circularisation, interpreted as
the excitation of Rydberg states from low- to high-angular-momentum states, can also serve for
the microwave-to-optical single-photon conversion [95, 96]: While low-angular-momentum Ryd-
berg states couple to optical photons and thus have short lifetimes, circular states do not. Circular
states do, however, couple strongly to microwave photons. In other words, it is circularisation
from low- to high-angular-momentum states, together with its inverse process, that provides the
link to interface optical and microwave photons. However, such an interface will work reliably
only when the transfer proceeds both sufficiently fast and with high accuracy. Beyond the “stan-
dard” circularisation, optimal control could also assist the atom-specific preparation of circular
or near-circular states required for the quantum simulation of transport phenomena [97].

The main benefit of the cat state is its applicability for quantum metrology [59], thus acting
as a sensing state for measuring electric field strengths at the Heisenberg limit even under dissi-
pation [98]. As opposed to the conventional approach presented in Fig. 3.10, no MW pulses are
required when using the cat states. The protocol can thus be sped up by one order of magnitude
from micro- to a few hundred nanoseconds. In the current experimental setup, however, the rep-
etition rate is not limited by the MW pulses but by the time-of-flight of the atoms through the
experimental setup, which is about 300µs. The cat state would thus be most useful in a setup
with trapped atoms where the repetition rate is mainly limited by the actual protocol time and
could hence be greatly reduced by suppressing the MW pulses.
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4
IMPROVED MODELLING OF ALKALINE-EARTH ATOMS

The field of Rydberg physics has focused for a long time on the study of alkali atoms with a
single valence electron. The similarities to hydrogen render them easy to describe in theoretical
terms, as only slight modifications via the quantum defect suffice to model the dynamics of the
valence electron. There are, however, reasons to move forward and extend the study to atoms
with more electrons. Due to the very long lifetime of Rydberg atoms, the optical transition back
to the ground state occurs at a very low rate rendering the detection of alkali Rydberg atoms via
fluorescence difficult [18]. Circular states do not possess an optical transition at all and are thus
impervious to visible light. Additionally, trapping of alkali Rydberg atoms remains a challenging
task even if optical trapping has been demonstrated experimentally [99, 100, 101]. Due to the
exaggerated response of Rydberg atoms, they react very differently to external perturbations than
ground state atoms, rendering it difficult to trap both kinds of alkali atoms in the same potential.

Atoms with two valence electrons, such as alkaline-earth atoms, offer a new degree of free-
dom for studying and controlling Rydberg atoms [31, 102]. The electron that remains in the
core (the “inner” electron), after the other one has been excited to the Rydberg regime (the
“outer” electron), leaves the ionic core optically active. This allows, for instance, for confin-
ing Rydberg atoms in an optical lattice via optical dressing of the inner core electron which can
be used for quantum simulation of many-body physics [103, 104]. If the outer electron is in a
low-angular-momentum state, doubly excited states of strontium auto-ionise due to the inter-
action between the two electrons [105]. Auto-ionisation, however, can be avoided by exciting
the Rydberg electron to high-angular-momentum states. The absence of auto-ionisation allows
for probing the state of the outer electron. This can be used to optically image the atoms via
resonant light scattering off the ionic core [106] and even to distinguish low- from high-angular-
momentum states [107]. Moreover, the auto-ionisation rate of doubly excited states decrease
rapidly as the inner electron is excited which raises the possibility to create doubly excited plane-
tary atoms [108, 109]. All in all, the additional electron offers great new possibilities for quantum
technologies by trapping, cooling or observing the fluorescence of Rydberg atoms.

63
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In this work, we focus on the study of rubidium’s “big brother” strontium, which is located
right next to it in the periodic table. The additional electron requires an adapted model with
respect to alkali atoms which is why we lay out the theoretical methods for describing alkaline-
earth atoms available in literature in Sec. 4.1. This includes a thorough discussion of the role
of the spin in one- and two-electron systems and the single-active electron (SAE) model. De-
spite a qualitatively good agreement with experimental data for high-` states, the model fails
to reproduce the spectrum of strontium for lower angular momenta, as shown in Sec. 4.2. The
main reason is the interaction of the electrons with each other or their respective orbitals playing
a significant role. We therefore propose a physically motivated modification of the SAE model
which reproduces the experimental data with high fidelity. We focus on the study of Stark maps
of strontium measured experimentally by our collaborators at Laboratoire Kastler Brossel (LKB)
at Collège de France. In the remainder of Sec. 4.2, we optimise our model parameters using the
provided experimental data. As a proof-of-concept and first application, we utilise our model to
study and optimise the circularisation of strontium in Sec. 4.3. Note that we have compiled an
appendix listing the employed parameters in Appendix A.2 and the technical details within this
chapter in Appendix C, which we refer to throughout this chapter.

4.1 Methods for modelling alkaline-earth atoms

The Hamiltonian of hydrogen-like atoms as given in Eq. (2.2) describes the electrostatic interac-
tion between the positively charged core and the negatively charged electron. It can be gener-
alised to two-electron atoms by writing [110]

Ĥae = T̂1 + V̂ae(r̂1) + T̂2 + V̂ae(r̂2) + V̂12(r̂1, r̂2) (4.1)

with the kinetic energy of a single electron, T̂i = p̂2
i /2mr and the potential V̂ae(r̂i) of the atom’s

ionic core. In the case of strontium, this is the potential of the Sr2+ ion while for helium-like ions,
i.e. atoms with only two electrons in total, it would simply be the Coulomb potential V̂C(r̂) with
a suitable value of Z (cf. Eq. (2.2)). Lastly, the term V̂12 describes the interaction between the two
valence electrons

V̂12(r̂1, r̂2) =
1

|r̂1 − r̂2|
. (4.2)

When dealing with Rydberg states of strontium, where the inner electron is in the ground state
and outer electron is excited to the Rydberg regime, the Hamiltonian of alkaline-earth atoms in
Eq. (4.1) can be approximated by a single-active-electron model as shown in Sec. 4.1.1.

While the Coulomb force is the strongest interaction in the atom and thus dominates its be-
haviour, the Hamiltonian in Eq. (4.1) is but an approximation to the full problem, as it neglects
relativistic effects. The rigorous way to obtain relativistic corrections is via solving the Dirac equa-
tion [111]. The Dirac equation results from combining quantum mechanics with special relativity
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by ensuring that particles transform properly under Lorentz transformations. This leads to the
appearance of Pauli spin matrices in the Hamiltonian which ultimately entails the introduction
of the spin degree of freedom. In Sec. 4.1.2, we introduce spin orbitals and angular momentum
coupling for one- and two-electron atoms. For one-electron atoms, this gives rise to the total an-
gular momentum ĵ. As the electrostatic potential of hydrogen-like atoms does not depend on
the spin, the eigenstates hence obtain an additional two-fold degeneracy. The quantum defects,
however, depend on j which partly lifts the degeneracy in alkali atoms. For alkaline-earth atoms,
the angular momentum coupling is more intricate and the spin has a larger effect on the atomic
spectrum. We show that the individual spins of the two electrons couple to the total spin Ŝ which
ultimately affects the symmetry of the orbitals and lifts the degeneracy between states with dif-
ferent values of S. Furthermore, additional relativistic corrections constitute the fine structure
of atoms, the most prominent one being the spin-orbit coupling shown in Sec. 4.1.3. We end the
section by elaborating on the numerical implementation and evaluation of the matrix elements
of strontium in Sec. 4.1.4.

4.1.1 Single-active-electron (SAE) model

We now present an approximation to the two-electron Hamiltonian of alkaline-atoms in Eq. (4.1).
We start by regrouping the terms as

Ĥae = Ĥ1 + Ĥ2, (4.3a)

with Ĥ1 = T̂1 + V̂ae(r̂1) + V̂12(r̂1, r̂2), (4.3b)

Ĥ2 = T̂2 + V̂ae(r̂2), (4.3c)

where we labelled the outer electron with 1 and the inner electron with 2. The term Ĥ2 describes
the energy of the inner electron and Ĥ1 the energy of the outer electron plus the interaction. For
strontium, V̂ae corresponds to the potential of the Sr2+ ion. We now assume that the inner electron
is and stays in its ground state, |5s〉, which is an eigenstate of Ĥ2. If the outer electron is further-
more in the Rydberg regime, i.e. r2 � r1 for the most important part of the wave function, the
interaction V̂12 between the two electrons can in zeroth order be approximated by 1/r1 [43]. This
can be interpreted as a perfect shielding of the Sr2+ ionic core charge by the inner electron. We
can therefore focus on the dynamics of the outer electron and reduce the problem to an effective
one-electron problem which gives rise to the name single-active-electron (SAE) model. With this
approximation, we can write the eigenstates as |5s,R〉 where |R〉 is a Rydberg state of the outer
electron. In order to improve the model and account for imperfect shielding at small distances,
we can incorporate the effect of the inner electron into an effective potential V̂SAE(r̂) (where we
have dropped the index 1) [32],

V̂SAE(r̂) = −Z`(r̂)
r̂

, (4.4)
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where Z`(r̂) is the effective charge,

Z`(r̂) = 1 + (Z − 1)e−α
`
1r̂ + α`2r̂ e

−α`3r̂. (4.5)

Moreover, we account for the core polarisability induced by the outer electron,

V̂pol(r̂) = − αc
2r̂4

(
1− e−(r̂/r`c)

6
)
, (4.6)

which is a modified expression of higher accuracy as compared to Eq. (2.9). The values of the
model parameters are listed in Appendix A.2.2. The eigenstates |R〉 of the outer electron are thus
eigenstates of T̂1 + V̂SAE(r̂1) + V̂pol(r̂1). Similarly as has been done for alkali atoms, the effect of
the modified core potential can be represented by quantum defects which can be interpreted as
scattering phase shifts of the wave function outside the core region with respect to the hydrogenic
one. The explicit form of the potential plays a role when calculating the matrix elements of the
position operator as described in Sec. 4.1.4.

As a final note, we want to mention that there are more elaborate methods for modelling
alkaline-earth atoms than the one described in this section. One of them is multichannel quantum
defect theory (MQDT) [112] which describes the eigenstates of the atom as a linear combination
of scattering channels. As such, it builds up on the single quantum defect theory which interprets
quantum defects as phase shifts of the wave function with respect to the hydrogenic one. Another
approach is a configuration interaction (CI) expansion of eigenstates using a two-active-electron
(TAE) model based on the Hamiltonian in Eq. (4.1) [31, 110]. Since we, however, are mostly
interested in singly excited Rydberg states of strontium, we expect the SAE model to be sufficient
for our purpose. The validity of this assumption is tested thoroughly in Sec. 4.2, when comparing
simulations of the SAE model to experimental data.

4.1.2 Angular momentum coupling

We now derive the formalism for coupling the spin and the angular momentum of a single parti-
cle [43, 113] which allows us to describe alkali atoms in a basis which is more adapted to represent
the energy shift described by the quantum defect. When including the spin degree of freedom,
the state of the electron can be written as so-called spin orbitals,

|ψ〉 = |φ〉 ⊗ |ξ〉 = |n`m`〉 ⊗ |sms〉 = |n`m`sms〉 . (4.7)

The spatial part, |φ〉, represents the eigenfunctions of the Coulomb problem as introduced and
discussed thoroughly in Sec. 2.1.1. Note that we have added a subscript to m` to emphasize that
it is the projection associated with the angular momentum quantum number `. The spin part,
|ξ〉, can be characterised by the spin of the electron, s = 1

2 , and its projected value ms onto the
quantisation axis. Analogous to the orbital angular momentum operator l̂ (cf. Eq. (2.3)), the spin
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operator ŝ satisfies the relations

ŝ2 |sms〉 = s(s+ 1) |sms〉 = 3
4 |sms〉 , (4.8a)

ŝz |sms〉 = ms |sms〉 = ±1
2 |sms〉 . (4.8b)

Note that, in this chapter, we denote operators with lower-case letters to highlight that they act on
single particles. As the Hamiltonian of hydrogen-like atoms given in Eq. (2.2) does not depend on
the spin, the spin orbitals are still eigenfunctions of that Hamiltonian. The spin merely introduces
an additional two-fold degeneracy, leading to a total degeneracy of 2n2 of each energy level.

The two angular momenta l̂ and ŝ can be coupled to the total angular momentum,

ĵ = l̂+ ŝ, (4.9)

which fulfils

ĵ2 |jmj〉 = j(j + 1) |jmj〉 , (4.10a)

ĵz |jmj〉 = mj |jmj〉 , (4.10b)

where mj is the projection associated with j such that mj = −j, . . . , j. The quantum numbers
are connected via j = `± 1

2 for ` > 0 and j = 1
2 for ` = 0, and the projections fulfil mj = m` +ms.

The spin orbitals can then be written in terms of the total angular momentum by performing a
basis transformation,

|jmj`s〉 =
∑

m`ms

|`m`sms〉 〈`m`sms|jmj`s〉 ≡
∑

m`ms

C
jmj
`m`sms

|`m`sms〉 , (4.11)

where we have omitted the principal quantum number n for simplicity. The constants Cjmj`m`sms
=

〈`m`sms|jmj`s〉 in Eq. (4.11) are the Clebsch-Gordan coefficients. They are connected to the
Wigner 3j symbols via

(
j1 j2 j3

m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j1j2j3 −m3〉 =
(−1)j1−j2−m3

√
2j3 + 1

Cj3−m3
j1m1j2m2

. (4.12)

Linear combinations such as Eq. (4.11) can therefore also be written as

|j1j2j3m3〉 = (−1)j2−j1−m3
√

2j3 + 1
∑

m1m2

(
j1 j2 j3

m1 m2 −m3

)
|j1m1j2m2〉 . (4.13)

In the case of Eq. (4.11), we can identify j1 = `, j2 = s and j3 = j. We refer to the basis |`m`sms〉 as
the uncoupled and to |jmj`s〉 as the coupled basis. Both are eigenfunctions to the hydrogen-like
Hamiltonian in Eq. (2.2). When considering fine-structure corrections, however, the uncoupled
basis is not suitable any more as will be explained in more detail in Sec. 4.1.3.
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When considering systems with two (valence) electrons, the coupling becomes more intricate
as four angular momenta have to be coupled: the orbital angular momenta l̂i and the spins ŝi of
the two particles with i = 1, 2. There are two different ways of coupling the two electrons. The
first way is the so-called the jj-coupling. Here, we first couple the spin and angular momentum
of each electron independently as in the single-electron case (cf. Eq. (4.9)). Afterwards, the two
angular momenta ĵ1 and ĵ2 are coupled to the total angular momentum Ĵ , where the upper case
letter indicates that it is a two-particle operator. The two steps can be summarised as

ĵi = l̂i + ŝi, i = 1, 2 (4.14a)

Ĵ = ĵ1 + ĵ2. (4.14b)

The single electron operators ĵi fulfil the relations of Eq. (4.10). The eigenvalues of Ĵ2 are J(J+1)

with J = |j1− j2|, . . . , j1 + j2. Both coupling steps can be evaluated using Eq. (4.13). In summary,
the jj-coupled states can be denoted as |JMJj1j2〉 where MJ = −J, . . . , J = mj1 + mj2 is the
projection of Ĵ and eigenvalue of Ĵz (equivalently to j and mj).

The other way to couple the two electrons is the so-called Russell-Saunders, or, LS-coupling.
Here, we first couple the angular momenta l̂i and the spin ŝi of the two particles with i = 1, 2 to
the total angular momentum L̂ and the total spin Ŝ as

L̂ = l̂1 + l̂2, (4.15a)

Ŝ = ŝ1 + ŝ2. (4.15b)

The eigenvalues of L̂2 and L̂z are L(L+1) andML, respectively, with L = |`1−`2|, . . . , `1+`2 and
ML = m`1 +m`2 = −L, . . . , L. Equivalently, the eigenvalues of the spin operator Ŝ2 are S(S + 1)

with S = 0, 1. We call states with S = 0 singlets (MS = 0) and S = 1 triplets (MS = 0,±1). In
terms of the uncoupled basis and using Eq. (4.13), they can be written as

|S = 0,MS = 0〉 = 1√
2

(|↑, ↓〉 − |↓, ↑〉) , (4.16a)

|S = 1,MS = 1〉 = |↑, ↑〉 , (4.16b)

|S = 1,MS = 0〉 = 1√
2

(|↑, ↓〉+ |↓, ↑〉) , (4.16c)

|S = 1,MS = −1〉 = |↓, ↓〉 , (4.16d)

where we have used the abbreviations |s1 = 1
2 ,ms1 , s2 = 1

2 ,ms2〉 ≡ |ms1ms2〉 for the uncoupled
basis on the right-hand side where ↑ (↓) indicates msi = +1

2 (msi = −1
2 ). From Eq. (4.16), we

see that singlets are antisymmetric and triplets symmetric with respect to interchange of the two
electrons. Finally, the angular momentum L̂ and the spin Ŝ are coupled to the total angular
momentum Ĵ equivalently to Eq. (4.9) with MJ = −J, . . . , J = ML + MS resulting in the basis
|JMJLS〉. For short, we denote states in the LS-basis using the spectroscopic notation 2S+1LJ

where the angular momentum L is given by a capital (e.g. S, P,D, . . . for L = 0, 1, 2, . . . ).
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The symmetry of the spin eigenstates in Eq. (4.16) directly affects which orbital wave func-
tions they can be combined with. Equivalently to the single electron case in Eq. (4.7), we can write
the two-particle wave function as spin orbitals, |Ψ〉 = |Φ〉 ⊗ |Ξ〉. The spin part |Ξ〉 is given by the
singlet and triplet states from Eq. (4.16). The orbital part |Φ〉, on the other hand, can be written
as a product of single particle wave functions |φ1〉i and |φ2〉i, where the indices 1 and 2 label two
arbitrary single particle orbitals and the index i labels the index of the particle. As electrons are
indistinguishable particles, the orbitals have to be (anti-)symmetrised as

|Φ±〉 =
1√
2

(|φ1φ2〉 ± |φ2φ1〉) (4.17)

with the abbreviation |φi〉1 ⊗ |φj〉2 ≡ |φiφj〉. For fermions, the total spin orbital |Ψ〉 has to be
anti-symmetric with respect to particle exchange. We can therefore follow that singlet states
(which are anti-symmetric) are only allowed in combination with symmetric spatial orbitals,
|Φ+〉. Conversely, triplet states (which are symmetric) are only allowed in combination with
the anti-symmetric spatial orbital |Φ−〉.

In our case, we are interested in a singly excited Rydberg state of strontium where the outer
electron is excited to the Rydberg regime, |φ1〉 = |R〉, while the other electron is in the ground
state, |φ2〉 = |5s〉 (cf. Sec. 4.1.1). The only allowed spin orbitals are thus

|Ψ+〉 =
1√
2

(
|5s,R〉+ |R, 5s〉

)
⊗ |S = 0,ms〉 , (4.18a)

|Ψ−〉 =
1√
2

(
|5s,R〉 − |R, 5s〉

)
⊗ |S = 1,ms〉 . (4.18b)

Even though the alkaline-earth Hamiltonian in Eq. (4.1) does not depend on the spin degree
of freedom, the interaction between indistinguishable particles suffices to partially lift the de-
generacy. In our case, where the interaction between the two distant electrons is small, the en-
ergy correction can be calculated using perturbation theory. When denoting the perturbation as
Ŵ = V̂12− 1

r1
, where the second term corresponds to the zero-order approximation of interaction

as discussed in Sec. 4.1.1, the energy correction is given to first order by [43]

〈Ψ±|Ŵ |Ψ±〉 = 〈Φ±|Ŵ |Φ±〉 〈Ξ|Ξ〉 = J ±K, (4.19a)

J = 〈5s,R|Ŵ |5s,R〉 , (4.19b)

K = 〈5s,R|Ŵ |R, 5s〉 . (4.19c)

In writing this formula, it has been assumed that |5s〉 and |R〉 are orthogonal to zero-order. Al-
though |5s〉 and |R〉 are eigenstates of different Hamiltonians, they are eigenstates with different `
values such that the angular part leads to a vanishing overlap [43]. J from Eq. (4.19a) is called the
Coulomb andK the exchange term. The Coulomb term reflects the Coulomb interaction between
the two electronic orbitals. The exchange term originates from the indistinguishability of the elec-
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trons and can be interpreted as the frequency with which the electrons exchange their state. The
positive sign in Eq. (4.19a) corresponds to singlet states for which the energy is raised and the
negative sign to triplet states for which the energy is lowered; the energy splitting between them
is called the exchange energy. For low-angular-momentum states, the exchange energy is of the
order of Gigahertz and is thus the major influence of the spin on the spectrum of alkaline-earth
atoms. The effect of the exchange energy is usually included in the quantum defect, which, for
alkaline-earth atoms, therefore also depends on S.

4.1.3 Fine-structure corrections

As mentioned in the beginning of this section, the Hamiltonians of Eqns. (2.2) and (4.1) are mere
approximations where relativistic effects are neglected. For weakly relativistic systems, it is not
necessary to solve the Dirac equation rigorously and the significant corrections can be obtained
by employing perturbation theory [43, 113]. The resulting Dirac equation shows three correction
terms which constitute the so-called fine structure of the atom.

The first term attributes for the relativistic correction of the kinetic energy, i.e. the relativistic
variation of the electron’s mass with its velocity. The operator is diagonal in the |n`m〉 basis and
for hydrogen-like atoms, the correction can be written as

Er = −α
2Z4

2n3

(
1

`+ 1
2

− 3

4n

)
(4.20)

with the fine-structure constant α. It can be seen that the correction vanishes for large n and `

values. The second correction is called the Darwin term which shifts the energy of s-orbitals only
due to a modified effective potential of the nucleus resulting from rapid quantum oscillations of
the electron. For hydrogen-like atoms, it takes the form

ED =
α2Z4

2n3
. (4.21)

As both corrections are diagonal in the spherical basis and decay with increasing ` and n, they
can be included into the quantum defect.

The last and most important term is the spin-orbit coupling. It arises due to the coupling of
the magnetic moment of the electron spin with the magnetic field seen by the electron due to its
motion in the electrostatic field of the proton. The spin-orbit coupling can be written as

V̂so(r̂) =
α2Z

2

l̂ · ŝ
r̂3

. (4.22)

Using Eq. (4.9), the matrix elements of l̂ · ŝ can be calculated to

〈jmj`s|l̂ · ŝ|jmj`s〉 =
1

2

(
j(j + 1)− `(`+ 1)− s(s+ 1)

)
, (4.23)
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while non-diagonal elements vanish. Inserting this into Eq. (4.22) results in the known expression
from Eq. (2.8). The spin-orbit coupling lifts the degeneracy between states with different values of
j, ` and s, while s-orbitals do not show spin-orbit coupling. The effect of the spin-orbit coupling
can also be included into the quantum defect introducing a j-dependence which renders the
coupled basis |jmj`s〉 more suitable than the uncoupled one. As a result, m` and ms are strictly
speaking no longer good quantum numbers. In Chapters 2 and 3, we have neglected spin-orbit
coupling for alkali atoms by approximating δn` ≈ δn`,j=`+ 1

2
.

The spin-orbit coupling can be generalised to two-electron systems as [113]

V̂so(r̂1, r̂2) =
α2Z

2

(
l̂1 · ŝ1

r̂3
1

+
l̂2 · ŝ2

r̂3
2

)
. (4.24)

To evaluate this expression, we have to distinguish two limiting cases. If the Rydberg electron is
in a high-angular-momentum state, the overlap between the two orbitals is negligible causing a
vanishing exchange energy. The spin-orbit coupling is dominant, the jj-coupled basis |JMJj1j2〉
is preferred and the spin-orbit coupling in Eq. (4.24) can be evaluated straight-forwardly. If, on
the other hand, the exchange energy is much larger than the spin-orbit coupling, which is the
case if the Rydberg electron is in low-angular-momentum states, the LS-basis is preferred. The
angular part of the spin-orbit coupling can be considered similarly as given in Eq. (4.23) (by re-
placing lower by upper case operators/quantum numbers) while the radial part requires a more
thorough treatment [113]. Equation (4.23) shows that singlets (S = 0 and J = L) do not show
spin-orbit coupling. Moreover, the L̂ · Ŝ coupling commutes with both L̂2 and Ŝ2, and therefore
lifts the degeneracy between singlets and triplets. In literature, this effect is usually taken into
account via J , L and S-dependent quantum defects, thus implicitly assuming the limiting case
of the LS-basis being the preferred one. We discuss and investigate the two competing regimes
more thoroughly in Sec. 4.2 when discussing the energy levels and the Stark map of strontium.

Finally, it shall be mentioned that the Dirac equation could be expanded to the next higher
order. This would entail relativistic effects due to the magnetic moment of the proton’s spin
which contribute to the hyperfine structure. However, they can be neglected for our purposes, as
the corrections are about three orders of magnitude smaller than the fine structure [113].

4.1.4 Implementation of the strontium Hamiltonian

In order to perform simulations with strontium, some modifications have to be included in the
program we have used in Chapter 3. As before, we consider the Rydberg atom in an external
electric field and write the Hamiltonian of strontium as

Ĥ = Ĥae + ẑFDC. (4.25)

We therefore have to (1) implement the eigenstates and energies of Ĥae in a suitable basis and (2)
calculate the matrix elements of ẑ for strontium.
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For the field free Hamiltonian Ĥae, we use the results presented in the previous sections and
choose the LS-basis |JMJLS〉 as the computational basis1. This is the basis commonly used in
literature, as the quantum defects depend on J , L and S (e.g. [114]). The quantum defects account
for the SAE potential, the exchange energy and the fine structure and thus fully describe the
spectrum of strontium at zero DC field. We employ the quantum defects for strontium as listed
in Appendix A.2.1. In short, we have implemented quantum defects up to L = 5, exchange
energy for 1 ≤ L ≤ 4, and spin-orbit coupling for triplets with L = 1 and 2. Note that the
resulting Hilbert space is four times larger than in the previous chapter because we now consider
singlets and triplets while we have neglected spin-orbit coupling for rubidium.

When employing a DC (or equivalently an RF) field, we have to evaluate the matrix elements
of the ẑ (x̂± iŷ) operator. To this end, we have to transform the states to the |LMLSMS〉 basis, as
the angular part of the matrix elements (as given in Eq. (2.11)) depend on ML. The dipole matrix
elements can then be calculated as follows,

〈J ′M ′JL′S|T (1)
q |JMJLS〉 =

∑

ML

∑

M ′L

C
J ′M ′J
L′M ′LSMS

CJMJ
LMLSMS

〈L′M ′L|T (1)
q |LML〉 , (4.26)

where the sums run over ML = MJ ± 1
2 and M ′L = M ′J ± 1

2 . The matrix element of T (1)
q in

the |LML〉 basis can be calculated using Eq. (B.5), as they are independent of the spin degree of
freedom. Note that it is not necessary to return to the uncoupled basis |`m`sms〉1 ⊗ |`m`sms〉2,
where the indices denote the two electrons, by undoing the coupling of the l̂i to L̂ and ŝi to Ŝ (cf.
Eq. (4.15)) to calculate the influence of the DC field on the outer, active electron only. Since we
assume that the inner electron, which we have denoted by the index 2, is in the ground state, it
has the quantum numbers `2 = m`2 = 0. We hence know that L = `1 and M = m`1 and Eq. (4.26)
already gives the required information about the Stark effect of the outer electron.

To evaluate the radial part of the matrix elements, a basis transformation is not necessary.
We solve the radial Schrödinger equation to obtain the radial wave functions using Numerov’s
method as explained in Sec. 3.1.1. To this end, we replace the Coulomb potential by the adapted
potential

V̂sr(r̂) = V̂SAE(r̂) + V̂pol(r̂) + V̂so(r̂) (4.27)

with the SAE potential V̂SAE from Eq. (4.4), the core polarisability V̂pol from Eq. (4.6), and the spin-
orbit coupling V̂so from Eq. (4.22). The model parameters are summarised in Appendix A.2. It
turns out that the modifications given by the potential in Eq. (4.27) do not change the matrix ele-
ments significantly with respect to a plain Coulomb potential which corroborates our assumption
that most of the properties of strontium are captured by a simple model of one electron interact-
ing with a single charge in the centre.

1We neglect cross-terms due to the (anti-)symmetrisation of the orbitals in the simulations since they are much
smaller than the direct terms.
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4.2 Optimising the Stark map of strontium

When one valence electron of strontium is excited to the Rydberg regime while the other one
stays in the ground state, the single-active electron approximation could be expected to describe
the atom very well. However, it turns out that the experimentally measured Stark map can not be
reproduced accurately using the SAE model as shown in Sec. 4.2.1. We therefore propose physi-
cally motivated modifications which allow for reproducing the measured Stark map. Afterwards,
in Sec. 4.2.2, we perform a parameter optimisation to determine the model parameters directly
from the experimental data. Lastly, in Sec. 4.2.3, we present the results of the optimisation in
several Stark maps.

4.2.1 Benchmark and modification of the SAE model

Stark maps show the position of the energy levels of (in this case) Rydberg atoms as a function of
the DC field (cf. Fig. 2.4). They nicely illustrate the Stark splitting and thus contain information
about the eigenenergies at zero DC field, the matrix elements of the ẑ operator and, accordingly,
the wave functions of the atom. A good agreement between a theoretical model and experimental
data in the Stark map is therefore a good indicator for an adequate model. In the experiment,
however, it is challenging to measure the bare energies of the atom directly, such as depicted in
Fig. 2.4, and often, the transition frequencies between different eigenstates are recorded instead.
Figure 4.1 (a) shows as an example the Stark map of strontium for transitions from the reference
state 501F3,mj = 2. The selected energy window shows transitions to the singlet and triplet states
of1 49g. The lines show the simulations using the model described in Sec. 4.1 and the points depict
the measurements in the experiment performed by our collaborators at LKB. Due to the selection
rule of ∆mj = 1, only the states with mj = 1, 2, 3 are of relevance which is why only those mj

ladders are shown in the figure. We see that the agreement between simulations and experiment
is very poor despite a qualitatively similar behaviour. Already at zero DC field, the states do not
possess the correct energy. At higher fields, the experiment reveals four “bundles” of states while
in the simulations, we find two which correspond to the singlets and triplets, respectively. This
comes at no surprise, as the implemented quantum defects of the g-states account only for the
exchange energy but not for spin-orbit coupling (values listed in Appendix A.2.1). Both problems
could be fixed by introducing well-adjusted, J-dependent quantum defects. Beyond this, the
figure reveals that two different states are being populated at zero field in the experiment. We
would not expect this from our model, as only singlets can be populated when the reference state
is a singlet due to selection rules. Moreover, the experiment detects an avoided crossing of two
lines between 30 and 45 V

m (lowest two branches of points close to the green line) while no such
feature is visible in the simulations.

1Since we employ the SAE model, we effectively only describe single valence electron while implicitly, we always
deal with two electrons. If possible, we employ lower or upper case letters to denote the quantum numbers depending
on which property we want to highlight or which ones are dominating, the single- or two-electron ones.
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Figure 4.1: Stark map from 501F3,mj = 2 to 49g for mj = 1, . . . , 3. The used quantum defects are
listed in Appendix A.2.1. The line colour indicates the expectation value of m` (a) and S (b), the
crosses indicate the experimental measurements. Shown are the data without additional l̂1 · ŝ1

coupling (a) and with a coupling of ω49g/2π = 3 MHz (b). The expectation values of S at zero
field in (b) are (from bottom to top) 0.14, 1, 0.86 and 1.

From the observations made in Fig. 4.1, we can conclude which properties are missing in our
model and how to improve it. Most importantly, our model cannot explain the population of two
states at zero field when starting in a singlet. As only transitions to singlet states are allowed,
we can conclude that the singlet and triplet states have to mix. This can be explained as follows:
If the outer valence electron is in a high-angular-momentum state, its overlap with the inner
electron is small. The electrons are thus almost independent, the exchange energy vanishes and
the states can not necessarily be identified as “singlets” or “triplets” any longer. Each particle
couples its own spin ŝi to its own angular momentum l̂i, and the jj-basis is thus the preferred
one. The spin-orbit coupling is thus very different for the two electrons and must be considered
independently as given in Eq. (4.24). This expression can be simplified since the inner electron is
in a s-state, `2 = 0, and therefore l̂2 · ŝ2 = 0. The only remaining term is

V̂ j1
so =

Zα2

2

l̂1 · ŝ1

r̂3
1

. (4.28)

This potential introduces an energy shift and couples states with the same J , MJ and L but
different S as can be seen from its matrix elements,

〈JMJLS
′|V̂ j1

so |JMJLS〉 = ωn`
∑

j1

C(j1)
(
j1(j1 + 1)− `1(`1 + 1)− s1(s1 + 1)

)
, (4.29)

where `1 = L and s1 = 1
2 . Moreover, C(j1) is a combination of Clebsch-Gordan coefficients and

we have defined the j1-coupling strength1 ωn`. We provide a thorough derivation of the constant

1Note that the j1-coupling strength ωn` uses the lower case omega, as it refers to the single-electron operators.
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C(j1) and a motivation of the coupling strength ωn` in Appendix C.1. In short, C(j1) describes
the transition from the |JMJLS〉 to the |JMJj1j2〉 basis which is required to calculate the matrix
elements of l̂1 · ŝ1.

The influence of j1-coupling is visualised in Fig. 4.2 (a) which shows the splitting of the energy
levels at zero field as a function of ωn`. The green and blue line correspond to the triplets J = L±1

which are not mixed but merely shifted in energy. For L = 4, the green line corresponds to
J = L − 1 = 3 for which 〈j1〉 = 7

2 such that the energy is shifted by −5ωn` (by evaluating
the parentheses in Eq. (4.29)). Equivalently, the blue line shows the triplet with J = 5 which
corresponds to 〈j1〉 = 9

2 and an energy shift of +4ωn`. The singlet and triplet with J = L = 4, on
the other hand, are being mixed as can be seen from the curvature of the red lines. Evaluation of
the Clebsch-Gordan coefficients reveal that their j1 expectation value is around 4 which induces
a shift of about 3

4ωn` up (for the singlet) or down (for the triplet).

We perform a first test of our conjecture that j1-coupling improves the agreement between
the simulated and experimentally measured Stark map in Fig. 4.1 (a). For L = 4 (G), we expect
j1-coupling and exchange energy to compete which results in an energy splitting as depicted in
Fig. 4.3 (b). We assume a j1-coupling of ω49g/2π = 3 MHz and re-compute the Stark map. The
result is shown in Fig. 4.1 (b). It is clearly visible that the two bundles of states in panel (a) have
split up into four according to their J values. As visualised by the line colour, the singlet and
triplet with J = 4 mix, resulting in S-expectation values of 0.14 and 0.86, respectively. Since the
former triplet 3G4 has now singlet character, it can be populated at zero field in agreement with
the observation in the experiment. For higher fields, the states mix further such that previously
unattainable states can get populated. Moreover, we now observe two anti-crossings around
17 V

m and 40 V
m in the simulations which were not present in (a) but predicted by the experiment.

We conclude that the j1 coupling improves the agreement of theory and experiment significantly.

The mixing of eigenstates is a direct consequence of l̂1 · ŝ1 not commuting with Ŝ2 such that
S is not a good quantum number any more. The exchange energy, on the other hand, splits the
singlets and triplets. In fact, they are competing effects. The exchange energy is stronger when the
overlap between the two electrons is large, i.e. for small `1, while the j1-coupling dominates for
large `1. The composition of the eigenstates thus depends on the ratio between exchange energy
and j1-coupling strength. For instance, if the exchange energy was set to zero in Fig. 4.2 (a), the
red lines would not have any curvature but lie on top of the green and blue ones. In the next
subsection, we characterise the strength of the two effects for different values of L = `1.

In order to facilitate the fitting procedure in the following, we perform one more adjustment
before. Note that for low-angular-momentum states, the spin-orbit coupling is proportional to
L̂ · Ŝ as described in Sec. 4.1.3. This also lifts the degeneracy between different J states but does
not mix singlets and triplets. As a result, the quantum defect given in the literature depends on
J , L and S. However, Eq. (4.23) reveals that the shift between states with different values of J
is, in fact, not independent. Equivalently to the single-electron case and the j1-coupling, we can
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Figure 4.2: Energy shift due to j1-coupling as given in Eq. (4.29) (a) and LS-coupling as given in
Eq. (4.30) (b) for a g-state. Note that, since the singlets and triplets with J = L mix in (a), the
notation 2S+1LJ is not strictly correct any more for ω`1s1 6= 0 and J = L. In both panels, the zero
of energy was set to the triplet state for ω = 0. The exchange energy was set to 24.665 MHz.
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Figure 4.3: (a) Exchange energy Eex (not to scale) and spin-orbit coupling ∆ELS ∝
(J(J + 1)− L(L+ 1)− S(S + 1)) of the L = 3 (F ) state using the notation 2S+1LJ . (b) Ex-
change energy Eex and spin-orbit coupling ∆Ej1 ∝ (j1(j1 + 1)− `1(`1 + 1)− s1(s1 + 1)) of the
L = 4 (G). A small shift ∆ELS is not visible on this scale. (c) Spin-orbit coupling ∆Ej1 ∝
(j1(j1 + 1)− `1(`1 + 1)− s1(s1 + 1)) of the L = 5 (H) with no significant exchange energy.
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write for the two-electron case

〈JMJLS|V̂ LS
so |JMJLS〉 = ΩnL

(
J(J + 1)− L(L+ 1)− S(S + 1)

)
, (4.30)

where we have defined the LS-coupling strength1 ΩnL which depends on the radial part and
hence on n andL. We therefore move to a physically motivated parametrisation instead of merely
employing different quantum defects δJLS . A non-zero ΩnL lifts the degeneracy between states
with different values of J , L and S. Opposed to a quantum defect, however, it guarantees that
the splitting is proportional to the expectation value of L̂ · Ŝ. Figure 4.2 (b) shows the splitting of
the energy levels at zero field as a function of the LS-coupling strength ΩnL. It is clearly visible
that the singlet is not affected by LS-coupling which was expected as J = L for singlets such that
the expression in parentheses in Eq. (4.30) vanishes. As a consequence, singlets and triplets do
not mix under LS-coupling. Fundamentally, this is because L̂ · Ŝ commutes with Ŝ2 which leaves
the S quantum number invariant. The triplets, on the other hand, split linearly according to their
J-value. More specifically, for L = 4 and by evaluating Eq. (4.30), the three triplets J = 3, 4, 5 are
shifted by −10ΩnL, −2ΩnL and 8ΩnL, respectively.

In summary, we are adding two terms to the Hamiltonian which implement two different
kinds of spin-orbit coupling,

1
2 V̂

tot
so = ΩnLL̂ · Ŝ + ωn`l̂1 · ŝ1, (4.31)

where the factor half stems from Eq. (4.23). This choice of parametrisation, however, is arbitrary
because it can be rewritten as

ΩnLL̂ · Ŝ + ωn`l̂1 · ŝ1 = ΩnLl̂1 · (ŝ1 + ŝ2) + ωn`l̂1 · ŝ1 = Ω̃nLL̂ · Ŝ + ω̃n`l̂1 · ŝ2, (4.32)

since L̂ = l̂1 and with Ω̃nL = ΩnL + ωn` and ω̃n` = −ωn`. The left-most expression suggests that
the spin-orbit coupling of the outer electron (l̂1 · ŝ1) is dominant. The right-most expression, on
the other hand, suggests that the inner electron’s spin couples to the orbital angular momentum
of the outer electron (l̂1 · ŝ2), i.e. the coupling of the inner electron to the magnetic field of the
outer one. Using our parametrisation, it is not possible to distinguish both interpretations.

Figure 4.3 summarises the effect of exchange energy, j1 and the LS-coupling for three dif-
ferent angular momentum states L. The relatively low-angular-momentum state F (a) shows
strong exchange energy. The levels have strong singlet/triplet character, the spin-orbit coupling
is proportional to L̂·Ŝ and lifts the degeneracy between the three triplet states. The high-angular-
momentum stateH (c), on the other hand, is dominated by j1-coupling. Singlets and triplets mix,
and the levels are two-fold degenerate. As observed in the Stark map from Fig. 4.1, theG-state (b)
shows an intermediate behaviour where exchange energy and j1-coupling are of the same order
of magnitude. This qualitative behaviour is discussed in more detail in the following sections.

1Note that the LS-coupling strength ΩnL uses the upper case omega, as it refers to the two-electron operators.
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4.2.2 Optimisation of the model parameters

We now turn to the question how to determine the values of the model parameters: the quantum
defects δ

2S+1L, which effectively establish an energy splitting between singlets and triplets result-
ing from the exchange energy, and the spin-orbit coupling strengths ΩnL and ωn`. In theory, the
coupling constants can be determined from the radial matrix elements. However, the calculation
of the radial part requires the radial wave functions which are not necessarily reliable when using
the SAE model. The SAE potential in Eq. (4.4) cannot attribute for electronic correlations such as
the mixing of singlet and triplets states which we observe for the G state. Instead, our approach
is to fit the model parameters directly to the experimental data.

However, we do not try to fit the Stark manifold directly, but we use the absolute energies
that have been measured in the experiment at zero DC field, as listed in Appendix A.2.3, to fit the
quantum defects and spin-orbit couplings. More specifically, we fit the four parameters to each
set of states with a fixed n and ` independently. We calculate the error of the simulation by using
a least-squares approach,

ε =
∑

i

(
Etheo
i − Eexp

i

)2
, (4.33)

where Etheo
i and Eexp

i are the theoretical and experimental energy levels, respectively, and i runs
over all the considered experimental data points. Accordingly, ε has the unit MHz2 and its square-
root can be interpreted as the average mismatch of the theoretical and experimental points. We
assign experimental and theory lines beforehand, such that every theory point is fitted to the
correct experimental point. Note that ε does not have an upper bound but approaches zero
as the theoretical simulation reproduces the experimental data points. We set a target error of
ε ≤ 0.01 MHz2. This corresponds to the precision of the experimental spectroscopy due to the
Doppler effect1. As a starting point for the optimisation, we assume quantum defects as given in
Appendix A.2.1 with ωn` = ΩnL = 0.

We have given a general introduction to optimisation methods in Sec. 3.1.3. In Chapter 3,
we have used the gradient-based Krotov algorithm to optimise the RF pulse shaped for the fast
navigation in the Stark manifolds of Rydberg atoms. Now, we change the strategy and perform a
gradient-free parameter optimisation, since the number of optimisation parameters is very small.
More specifically, we use the Subplex algorithm [116] provided by the Python NLopt package
[117] which is a more robust and efficient variant of the Nelder-Mead method [75]. We connect
the Fortran program and the Python optimisation using the F2PY Fortran to Python interface
generator by NumPy [118].

1Depending on the direction of the microwave, the Doppler effect can shift its frequency up to ±70 kHz [115]. Since
the direction of the MW is unknown, this sets the uncertainty of the frequency measurements in the experiment.
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Optimisation of f states

We optimise the parameters for each set of states with a fixed value of n and ` quantum numbers
separately. We start with the f states, ` = 3, which is the lowest angular momentum we are
considering. In this case, experimental data is provided for the n = 48 to 54 manifolds (cf.
Appendix A.2.3). However, only for n = 48 are the energies of all four energy levels known.
For n = 50 and 52, the singlet and two of three triplets are known. We therefore focus on the
optimisation of these three n-values. After first, preliminary optimisations, we found that the
j1-coupling is vanishingly small for all three manifolds and therefore set ωnf = 0. The initial
error of the theoretical points is around 1200 MHz2. After the parameter optimisation, we find
the following optimised parameters:

n ε [MHz2] ΩnF /2π [MHz] δ
1F δ

3F

orig. ≈ 12000 0 δ
1F
0 = 0.08707, δ

1F
2 = -2 δ

3F
0 = 0.111867, δ

3F
2 = -2.2

48 0.7488 6.126743 0.0866934 0.1121021
50 0.0094 5.311711 0.0867488 0.1121091
52 0.0074 4.723026 0.0867919 0.1119283

Table 4.1: Original (first row) and optimised LS-couplings ΩnL and quantum defects δ
2S+1L
i of

the f states for singlets and triplets, where i is the order of the quantum defects in the modified
Rydberg-Ritz expression in Eq. (2.7). If i is not specified, i = 0 is assumed with vanishing higher
order.

It is important to note that 48f , which is the only set for which the energies of all four states are
provided by the experiment, is the only one for which the error did not fall below the threshold
of 0.01 MHz2. We have tested different guess parameters and tried to include j1-coupling but
nothing allowed for diminishing the error. We found that this is due to the limited freedom in
choosing the positions of the triplets with respect to each other. As shown in Fig. 4.4 (a), any
tuning of ΩnL would increase the fidelity of one point at the expense of at least one other. The j1-
coupling cannot compensate for this, as the triplet with J = L is bent downwards independently
of the sign of ωn`, cf. Fig. 4.2 (b). Qualitatively, Fig. 4.4 (a) suggests that the red line would require
a push upwards, which cannot be induced by j1-coupling. At this point, it is not possible to say
if the problem lies in an insufficient model or inaccurate experimental data. To clear this point,
more experimental data would be required.

To obtain quantum defects and LS-coupling constants which are valid for all n values, we fit
the optimised parameters from Tab. 4.1 to suitable functions. First, the LS-coupling is fitted to a
power law of the form

ΩnL = 10anb. (4.34)

We expect the coupling constant to be proportional to 〈r̂−3〉which for hydrogen scales as (n`)−3 [8].
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Figure 4.4: (a) Energy shift of the triplet states 483F due to LS-coupling ΩnL. The zero of energy
was set to the centre of the n = 48 manifold. The horizontal dashed lines indicate the experi-
mental measurements. The vertical grey line indicates the optimal value that has been found.
(b) LS-coupling ΩnL as a function of the principal quantum number n. The points show the
optimised values from Tab. 4.1, the dashed line is the fit from Eq. (4.35).

We thus assume b = −3 and fit the value of a using the optimize package provided by SciPy. We
obtain the function

ΩnF /2π = 105.826 MHzn−3 = 1.931 MHz

(
50

n

)3

(4.35)

with a standard error of 0.003 in a. The optimised values and the fit are shown in Fig. 4.4 (b).
Next, we fit the optimised quantum defects to the modified Rydberg-Ritz expression given in

Eq. (2.7). However, for the singlets, it is not actually necessary to optimise the quantum defects
as given above, but they result directly from inverting the Rydberg formula (cf. Eq. (2.6)),

δ
2S+1L = n−

√
−R
En

, (4.36)

where R is the Rydberg constant of strontium [102]. Inserting the energies of the singlets from
Appendix A.2.3 gives us the quantum defects from n = 48 to 54 as shown in Fig. 4.5 (a, points).
We now fit these points to the modified Rydberg-Ritz expression,

δ
2S+1L = δ

2S+1L
0 +

δ
2S+1L
2

(n− δ2S+1L
0 )2

, (4.37)

which results in the parameters,

δ
1F
0 = 0.087369± 0.000003, δ

1F
2 = −1.549± 0.007, (4.38)

as shown in Fig. 4.5 (a, line) and where the errors reflect the standard error of the fit.
Next, we turn to fitting the optimised data of the triplets from Tab. 4.1 to Eq. (4.37). In this

case, only three data points are available, one of which has a large error (48f ) and the other two
were optimised using incomplete data. We fit them in the same fashion as the singlets to the
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Figure 4.5: Quantum defect of the singlet (a) and triplet (b) F states as a function of the principal
quantum number n. The points show calculated values using Eq. (4.36) for the singlets and the
optimised values from Tab. 4.1 for the triplets. The dashed lines show the fit of Eq. (2.7) using all
data points. The dotted line in (b) shows the fit when only considering the points n = 50 and 52.

expression in Eq. (4.37) and the resulting parameters are

δ
3F
0 = 0.1110± 0.0007, δ

3F
2 = 2.63± 1.77, (4.39)

see dashed line in Fig. 4.5 (b). The fit is obviously worse than for the singlets which is not sur-
prising given the low quality of the data and the parameter optimisation. As an alternative, we
have fitted the quantum defects considering n = 50 and 52 only resulting in

δ
3F
0 = 0.1097, δ

3F
2 = 5.95, (4.40)

(dotted line) which do not have a fitting error, since we are fitting two points with two degrees of
freedom. Due to the lacking triplet points, this fit does not necessarily deliver reliable results but
it might be more suitable when describing the n = 50 and 52 manifolds. As mentioned above,
more experimental data is necessary to improve the quality of this fit.

Finally, we summarise the optimisation of the F states as follows:

ΩnF /2π [MHz] δ
1F
0 δ

1F
2 δ

3F
0 δ

3F
2

orig. 0 0.08707 -2 0.111867 -2.2

opt. 105.826n−3 0.087369 -1.549
{

0.1110
0.1097

} {
2.63
5.95

}

Table 4.2: Original and optimised LS-couplings ΩnL and quantum defects δ
2S+1L
i of the f states

for singlets and triplets, where i is the order of the quantum defects in the modified Rydberg-Ritz
expression in Eq. (2.7). The set of values for the quantum defect of the triplets correspond to the
fit of n = 48, 50, 52 (upper number) and n = 50, 52 (lower number), respectively.
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Optimisation of g states

We continue by fitting the 49g state, as it is the only g state for which all four energy levels
were measured in the experiment. Since ultimately, we are interested in the Stark map around
49g (as shown in Fig. 4.1), this is sufficient for our purposes. If the model parameters shall be
determined for other n-manifolds with high precision, more experimental data is required. The
initial quantum defects (cf. Appendix A.2.1) lead to an error of about 2700 MHz2. The parameter
optimisation reduces the error below the desired threshold and we stopped the optimisation at
ε = 0.009 MHz2 which results in the following optimised parameters:

ω49g/2π [MHz] Ω49G/2π [MHz] δ
1G δ

3G

orig. 0 0 0.038 0.03844
opt. 2.720488 -0.0195798 0.0383956 0.0388679

Table 4.3: Original and optimised j1-couplings ωn`, LS-couplings ΩnL and quantum defects δ
2S+1L

of the 49g states.

The quantum defects were only slightly adjusted by the optimisation. The dominating cou-
pling is the j1-coupling and the splitting between the triplets is fine-tuned by a small LS-coupling.
The observations are in agreement with our expectation of G being an intermediate state (cf.
Fig. 4.3 (b)). The states show strong j1-coupling, thus reflecting the beginning independence of
the two electrons, which is consistent with a decreased exchange energy (as compared with the
F states). The LS-coupling is non-vanishing but much smaller than the j1-coupling. In fact, the
energy shift induced by Ω49G is of the order of 100 kHz and could be the result of detection noise.
More experimental data would be required to gain more insight.

During the parameter optimisation we noted that the outcome is particularly sensitive to the
guess parameters. If the guess parameter of ωn` is chosen badly, e.g. ω49g = 0, the optimisation
runs into the wrong minimum with ω49g/2π = −3.3 MHz and Ω49G/2π = 0.31 MHz. While this
combination leads to a similarly high fidelity at zero field, it does not reproduce the avoided
crossing observed in the experimental Stark map of Fig. 4.1 around 40 V

m . The opposite sign of
ω49g (as compared to the value listed in Tab. 4.3) inverses the order of the J states (cf. Fig. 4.2 (a))
which leads to wrong coupling at higher fields. We thus chose a positive guess value which then
resulted in the optimised values from Tab. 4.3 which reproduce the avoided crossing, as shown
in Sec. 4.2.3.

Optimisation of h states

Lastly, we consider the ` = 5 (h) states. In the experiment, it was possible to determine three
doublets of h states, namely for n = 48, 52 and 54. For h states, we do not expect to see any
exchange energy or LS-coupling ΩnL but only j1-coupling ωn` which splits the states according
to their j1 value (cf. Fig. 4.3 (c)). As there is no exchange energy, the states split linearly as shown
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Figure 4.6: Quantum defect δL (a) and j1-coupling ωn` (b) of the h states as a function of the
principal quantum number n. The points show the optimised values from Tab. 4.4. The dashed
lines show the result of the fit with the parameters given in Eq. (4.41) and (4.42), respectively.

by the green and blue line in Fig. 4.2 while the singlet and triplet with J = L = 5 mix and split
in the same way. We therefore set δH ≡ δ

1H = δ
3H (no exchange energy) and ΩnH = 0. The

optimisation succeeds in reducing the error below the desired threshold for all three manifolds,
and the optimised parameters are:

n ωnh/2π [MHz] δH

orig. 0 0.0134759
48 0.448723 0.01390709
52 0.365062 0.01391523
54 0.323817 0.01392212

Table 4.4: Original (first row) and optimised j1-couplings ωn` and quantum defects δ
2S+1L = δL

of the h states.

The optimised parameters can be fitted as described for the f state. The quantum defects are
fitted to Eq. (2.7) resulting in

δH
0 = 0.013975± 0.000011, δH

2 = −0.158± 0.029. (4.41)

The data points and the fit are shown in Fig. 4.6 (a). Regarding the j1-coupling, we see that the
determined values of ωn` are weaker than for the G states. This was to be expected, since 〈r̂−3〉
scales (for hydrogen) as (n`)−3 [8] and thus decreases with `. We fit ωnh using the same ansatz as
for the ΩnL-coupling given in Eq. (4.34) with n = −3 and we obtain the values

ωnh/2π = 104.703 MHzn−3 = 0.404 MHz

(
50

n

)3

(4.42)

with a standard error of 0.005 in the exponent. The data points and the fit are shown in Fig. 4.6 (b).

Before finishing this section and proceeding with discussing the optimised Stark map, we
present a short summary of our findings. We have optimised the f , 49g and h states and deter-
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Figure 4.7: Energy shift induced by the exchange energy Eex, LS-coupling ΩnL and j1-coupling
ωn` of f , g and h states. Missing data points indicate zero energy shifts. The horizontal dashed
line indicates the precision of the fit and in the experiment.

mined the quantum defects for singlets and triplets, effectively determining the exchange energy,
and the spin-orbit couplings, ΩnL and ωn`, which minimise the mismatch between the theoretical
calculation of the energy levels at zero field and the experimentally measured ones. A summary
is shown in Fig. 4.7. The optimised values of the f state are shown in Tab. 4.2. The f state shows
strong exchange energy and LS-coupling ΩnL, since the overlap and thus the interaction between
the two electrons is strong. Regarding the g-state, we could only investigate the 49g-state, as no
further experimental data were available. The exchange energy is weaker than for the f state
as the overlaps between the electrons decrease. As a result, the states show strong j1- and weak
LS-coupling, as listed in Tab. 4.3. For the h states, we did not observe LS-coupling or exchange en-
ergy, resulting in the same quantum defects for singlets and triplets as given in Eq. (4.41). Instead,
it showed j1-coupling as given in Eq. (4.42), indicating the independence of the two electrons. All
optimised parameters are summarised in Appendix A.2.4. Our findings are in agreement with
our expectations (cf. Fig. 4.3) and our model, which is based on physical principles, proved to be
able to reproduce the measured energy levels with high accuracy.

We close this part with a final remark. For ` = 4 and 5, the fit gives a spin-orbit coupling that
is mainly proportional to l̂1 · ŝ1. Note that the experimental data do not allow us to determine
whether breaking the spin symmetry of singlets and triplets is due to the coupling of the angular
momentum of the Rydberg electron to its spin, l̂1 · ŝ1, or to the spin of the inner electron, l̂1 · ŝ2.
The parameters

ωn`L̂ · Ŝ − ωn`l̂1 · ŝ1 = +ωn`l̂1 · ŝ2 (4.43)

would fit the data as well (compare to Eq. (4.32) for ΩnL = 0). The energy of the levels would
be exactly the same, and the interpretation would be similar; the only difference being that the
quantum number j1 would be replaced by k corresponding to k̂ = l̂1 + ŝ2 in the analysis.
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Figure 4.8: Stark map from 501F3,mj = 2 to 49g for mj = 1, . . . , 3 after the parameter optimisa-
tion. The line colour indicates the expectation value of m`, the crosses indicate the experimental
measurements. (a) considers the optimised quantum defects and spin-orbit coupling constants.
(b) also considers quantum defects for i and j. The light grey lines in the background of (a) indi-
cate the Stark map from Fig. 4.1 (a).

4.2.3 Optimised Stark maps

We now turn to the evaluation and discussion of the updated Stark map under the optimised
parameters of the previous section. The reference is the Stark map of Fig. 4.1 (a) showing the
transitions from the reference state 501F3,mj = 2 towards 49g for mj = 1, . . . , 3. The updated
version is presented in Fig. 4.8 (a). It can be seen that the mismatch at zero field (on the left-
hand side) decreased significantly. However, the curves still deviate noticeably at higher DC
field amplitudes. We therefore include higher order quantum defects, ` > 5, to improve the
accuracy. The quantum defects for ` = 6 (i) and 7 (j) can be derived from spectroscopy data [115]
using Eq. (4.36). For example, the quantum defect of the j states were calculated from the energy
splitting between 50h, j1 = 9

2 and 49j measured in the experiment. The results are

δ I
0 = 0.006, δ J

0 = 0.003. (4.44)

The updated Stark map is shown in Fig. 4.8 (b). The agreement between theory and experiment
is remarkable. It might seem surprising that the i and j states affect the structure of the f and g

states, as they are far away. However, it turns out that their presence and mixture with neighbour-
ing states induced by the DC field heavily influences the Stark map of the g state. Interestingly,
we found that the fidelity of the Stark map in the discussed energy window was even slightly
higher when we only considered the quantum defect of the i state and did not include δ J

0 yet.
However, when considering higher DC fields, the overall fidelity increases when including δ J

0.
It might therefore be fruitful to measure the quantum defects of the i and j states, and possibly
even higher quantum defects, with a higher precision in the experiment.
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Figure 4.9: Same as Fig. 4.8 (b) but on a larger scale. The insets show a zoom as indicated by the
coloured rectangles. The red and green inset show the good agreement between simulation and
experiment for medium fields and within the Stark manifold, respectively. The blue inset shows
the mismatch arising at higher DC fields.

To summarise, we have significantly improved the agreement between the simulated and
experimentally measured Stark map by optimising the parameters of our physically motivated
model using only experimental data points at zero DC field, cf. Fig. 4.8. The simulations repro-
duce the experimental points until DC fields around 65 V

m and within the Stark manifold with
high accuracy as shown in Fig. 4.9 (red and green inset). It is only for larger fields (blue inset)
that a stronger deviation emerges. We have tried to improve the accuracy at higher fields by opti-
mising the radial part of the wave function directly. In doing so, we attempted to compensate for
errors in the potential due to the SAE approximation by accounting for mixing of energy levels.
However, any improvement in fidelity at the considered DC field increased the error at higher
fields or within the Stark manifold (around the green inset). The overall increase of fidelity was
furthermore not satisfying. More details on the attempted optimisation of the radial part can be
found in Appendix C.2.

In the next section, we investigate the dynamics within the Stark manifold n = 51 and we
therefore conclude this section by briefly considering the corresponding Stark map when starting
from the reference state 521F,mj = 2, see Fig. 4.10 (a). In this case, experimental data is available
for high fields until 140 V

m which are reproduced very well by the simulations (see also inset). The
experimental points which do not seem to match any theoretical line stem from transitions to the
higher manifold, i.e. from 521F,mj = 2 towards n = 53. The corresponding theoretical lines are
not shown in the plot. The high fidelity of the presented Stark map inclines us to the conjecture
that we mainly fail to simulate the curvature of the g-state when it joins the Stark manifold in
Fig. 4.9 with high accuracy. The mismatch between theory and experiment might therefore de-
crease again at higher fields when the g-state merged with the Stark manifold. In the same way
as we noticed that the hydrogenic behaviour of rubidium dominates for states within the Stark
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Figure 4.10: (a) Stark map from 521F3,mj = 2 towards n = 51 formj = 1, 2, 3 using the optimised
parameters when having fitted the f -states for n = 48, 50, 52 (upper number in Tab. 4.2). The line
colour indicates the expectation value ofm`, the crosses indicate the experimental measurements.
The inset shows a zoom as indicated by the coloured rectangle. (b) Stark map around n = 51
showing the bare energy levels. The line colour indicates the ` value at zero field. The zero of
energy was set to the n = 51 level of hydrogen.

manifold, the same might be true for strontium and the SAE model. Additional data would be
necessary to prove this conjecture. We conclude that the improved model derived in this section
delivers promising results and seems to be suitable for investigating the dynamics within the
Stark manifold. On a final note, we would like to mention that we checked the accuracy of the
model for other Stark maps. One further example is shown in Appendix C.3.

4.3 Circularisation of strontium

Ultimately, the goal is to use strontium atoms for quantum technology applications such as quan-
tum metrology which requires the accurate control of the dynamics within the Stark manifold.
In the previous section, we presented the first step which is the optimisation of the employed
model. In this section, we explore the possibilities of controlling the dynamics within the Stark
manifold. A mandatory requirement for this is an accurate model of the system. As a proof-
of-principle, we examine the well-known circularisation of the Rydberg atom. If it is possible to
circularise the strontium atoms with a high fidelity, it is a promising indicator that we will be able
to control strontium similarly to rubidium in the future.

The Stark map of strontium for n = 51 is shown in Fig. 4.10 (b). In the experiment, the
circularisation is performed at a DC field of 110 V

m . The figure shows that at this field the g
state has already joined the Stark manifold but the f state has not yet – the situation is thus
slightly different than for rubidium. The initial state of the circularisation is the lowest state of
the mj = 2 ladder at the considered field. To reduce the computational cost, we neglect states
with 〈Ŝ〉 > 0.999 (i.e. states with at least 99.9% triplet character). Of the remaining states, we only



88 CHAPTER 4. IMPROVED MODELLING OF ALKALINE-EARTH ATOMS

−20
−10

0
10
20

F
R

F
[m

V
cm

]
real part imag. part

0 10 20 30 40 50 60 70 80 90 100
t [ns]

0
10
20
30
40
50

m

E[m]
σ[m]

0.00.10.2
pop.

(a)

−20
−10

0
10
20

real part imag. part

0 100 200 300 400
t [ns]

0
10
20
30
40
50

E[m]
σ[m]

10−3

10−2

10−1

100

0.00.10.2
pop.

(b)

Figure 4.11: Circularisation of strontium at FDC = 110 V
m in the n = 51 manifold using a π-pulse

(a) and the (b) 99%-optimised pulse under experimental constraints. Top: RF π-pulse shapes
(grey) and their real and imaginary parts (red and blue lines, respectively). Bottom: Correspond-
ing distribution of the population over the lowest diagonal ladder of singlet states. Note the
logarithmic scale in the colour bar. The expectation value E[m] and the standard deviation σ[m]
are indicated by the solid and dashed lines, respectively. The inset displays a snapshot of the pop-
ulation distribution (red) and the distribution of the closest SCS with (a) ϑ = 0.60π, (b) ϑ = 0.62π
(grey shade).

consider the lowest two diagonal ladders of the Stark manifold and states which are very close
to it. These additional states are mixtures of singlets and triplets arising from the j1-coupling of
g and h states. We end up with a Hilbert space of dimension 105.

We now study the circularisation of strontium atoms using a π-pulse. We choose an initial
RF amplitude of FRF = 25 mV

cm , which is the maximum used for rubidium, and assume a circu-
larly polarised RF-pulse with sine-squared edges of 12 ns length. To determine the frequency
ωRF enabling the most efficient population transfer, we perform a parameter optimisation. We
find that we can circularise strontium with 81% fidelity using a frequency of ωRF = 107.63 MHz

within 105 ns. The pulse and the dynamics on the lowest diagonal (singlet) ladder are shown in1

Fig. 4.11 (a). Despite being very similar to the circularisation of rubidium (compare to Fig. 3.3),
subtle differences arise. Most strikingly, the population is spread out more strongly over the lad-
der as can be seen from the grey streaks in the lower right part of the plot. Moreover, the m = 1

state is not the only one to get significantly populated in the beginning. Instead of a sharp peak at
m = 1, population can be found in a small range from m = 1 to approximately 4 (see inset). The
dark state of strontium is thus much broader than for rubidium. We have also tested the influ-
ence of the radial part optimisation on the circularisation as described in the end of Appendix C.2.
We found that the dynamics within the Stark manifold are not significantly affected by further
optimisation of the Hamiltonian and conclude that the result of the propagation is reliable.

1Note that for singlets m ≡ mj = m`.
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As a last proof-of-concept, we optimise the circularisation of strontium using Krotov’s method.
The procedure is similar to the one described in Sec. 3.2.5 for rubidium. However, as the central
frequency of the RF, ωRF = 107.63 MHz, is not within the previous window (140 to 360 MHz),
the filter had to be adjusted. Since the experimental setup has changed, it is unknown which
frequency window would be most suitable. We therefore choose a window between 60 and
160 MHz which is centred around the central frequency, while the flat-top shape function with
sine-squared edges of 20 MHz is retained. Regarding the optimisation, we have tested several
guess pulses with varying amplitude FRF between 3 and 25 mV

cm and adjusted the length to fit a
π-pulse. The resulting pulses vary in length between 770 and 105 ns. Then, we have tried to
optimise each guess pulse to a fidelity of 99% using Krotov’s method. The shortest pulse which
succeeded in optimising the dynamics had a length of 465 ns and an initial amplitude of 5 mV

cm .
The optimised pulse and the dynamics on the lowest diagonal ladder of the Stark manifold are
shown in Fig. 4.11 (b). It is striking that the pulse is about four times longer than for rubidium.
The optimised pulse shows two strong peaks around 10 and 100 ns while staying close to the
guess amplitude for the remainder of the time. The population is thus excited to a SCS-like state
in two steps. However, the overlap with a SCS is lower than has been observed for rubidium
as can be seen from the grey shade in the inset. Instead, the population distribution is slightly
broader and asymmetric with more population towards lower states. This is most likely due to
the higher spread of population in the guess pulse. As a result, the standard deviation of m is
comparatively high at the end of the pulse. The final population of the circular state is 98.7%.

The generally low amplitude of the pulse, apart from the two peaks, suggests that shorter
pulses are possible if more sophisticated guess pulses are employed. Indeed, we found that
pulses down to 111 ns (corresponding to a guess pulse with FRF = 23 mV

cm ) were able to optimise
the dynamics to an error of 2.5·10−2 in the target state population. Further increase of fidelity was
then prevented by the experimental constraints. Since the exact constraints are yet unknown, a
further decrease of pulse length seems very likely. As a comparison, we have optimised the orig-
inal π-pulse with tstop = 105 ns without experimental constraints. The optimisation succeeded
and the optimised pulse had a peak amplitude of 75 mV

cm and a bandwidth of around 550 MHz

including components of the opposite polarisation. It therefore seems that the bandwidth is the
major limiting factor when trying to achieve high fidelities under experimental constraints.

We conclude that it is possible to circularise strontium with high accuracy under experimental
constraints. However, a more thorough optimisation including more sophisticated guess pulses
is necessary to circularise strontium on a similar timescale as rubidium. As the exact experi-
mental constraints are not yet known, it is beneficial to wait until this information is available, as
especially the bandwidth is a crucial factor for the feasibility of the optimisation. Moreover, we
could not compare the numerical propagation to experimental data yet which would allow us to
test the quality of our model. If necessary, the model parameters could be fine-tuned to improve
the agreement between theory and experiment, hence enabling high-fidelity control of strontium
Rydberg atoms.
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4.4 Summary

In this chapter, we have studied Stark maps of strontium around the state 49g and found that
the single-active electron (SAE) model proposed in literature does not predict the outcome of
experiments accurately. We have therefore developed an improved, physically motivated model
which could reproduce the experimental data with high fidelity as shown in Fig. 4.9. We found
an excellent agreement until DC fields 65 V

m and also at higher fields within the Stark manifold.
Deviations only emerge for fields around 70−80 V

m where the g-state joins the Stark manifold. The
study of the Stark manifold around n = 51 revealed excellent agreement for fields up to 140 V

m ,
shown in Fig. 4.10 (a), for which no data was available around 70 V

m . If necessary, the accuracy of
the model parameters could be improved if more experimental data was provided.

The pivotal adjustment was the introduction of an additional spin-orbit coupling term which
we referred to as j1-coupling. This term accounts for independent spin-orbit coupling of the two
electrons and mixes singlet and triplet states which was not covered by the single electron pic-
ture. This stands in contrast to a simple spin-orbit coupling proportional to L̂ · Ŝ of the coupled
system, referred to as LS-coupling, which commutes with the total spin Ŝ2. We obtained the
optimal parameters for both kinds of spin-orbit coupling and the quantum defects, which effec-
tively implement the exchange energy between singlets and triplets, by performing a parameter
optimisation. More specifically, we have employed a gradient-free method in order to minimise
the mismatch between the model and experimentally recorded data points at zero DC field.

We found that for f -states (` = 3), the exchange energy is the dominant contribution and
the spin-orbit coupling can be described by simple LS-coupling. The high-angular-momentum
h-states (` = 5), on the other hand, show strong j1-coupling without exchange energy. In both
cases, we fitted the obtained values to suitable functions of the principal quantum number n,
thus allowing for extrapolation to other n-manifolds. The g-state (` = 4) lies in the intermediate
range where exchange energy and spin-orbit coupling are of the same order of magnitude. We
further included high quantum defects of ` = 6 and 7 into the simulations. A summary of the
optimised model parameters can be found in Appendix A.2.4.

As the overall goal of our study was to pave to way to optimal control of strontium atoms, we
have performed a first test by investigating the circularisation of strontium as shown in Fig. 4.11.
We found that a π-pulse with a duration of 105 ns populates the circular state with 81% fidelity.
We then have optimised the pulse using Krotov’s method under preliminary experimental con-
straints. We found optimised pulse shapes reaching 99% fidelity within 465 ns. The pulse shape
suggests, however, that shorter times are feasible if the guess pulse was designed more intricately.
We found, for instance, that shorter pulses with 111 ns duration could circularise strontium with
fidelities up to 97.5%. The optimisation thus needs further investigation once the final experi-
mental conditions are known and experimental tests have yet to be conducted. However, our
preliminary tests suggest that fast and accurate circularisation under experimental constraints is
possible.



5
QUANTUM SIMULATION OF OPEN QUANTUM SYSTEMS

In an ideal world, it would be possible to completely isolate quantum systems from their sur-
roundings. In reality, however, every system unavoidably interacts with its environment, may it
be via stray fields or particles, thermal fluctuations or other sources of noise. Generally, this inter-
action results in a loss of energy or phase information – also called decoherence – which can never
be entirely controlled, neglected nor avoided. In particular in the delicate field of quantum tech-
nology, already small disturbances can render entire protocols useless due to decoherence or the
decay of quantum states. At the same time, control strategies unavoidably introduce a source of
noise into the quantum system, for instance via fluctuating field strengths. It is thus necessary to
balance a sufficient isolation of the quantum system with the required level of control [30]. More-
over, the readout of information itself, which is a crucial step of quantum information processing,
effectively introduces decoherence into the system. It is thus not sufficient to try to suppress de-
coherence altogether, but it is necessary to study and understand open quantum system, in order
to rise to the challenge of controlling open quantum systems for quantum technologies.

The theory of open quantum systems [33] aims to describe or approximate the dynamics in
quantum systems that interact with their environment, also called the bath. How the quantum
system is influenced by its surrounding depends on the nature of the environment and their
coupling with each other. In many cases, the dynamics of the open quantum systems can be
described in the so-called Markov approximation which can be interpreted as an information
flow from the system to the bath only. In the most general case, however, the system can retrieve
information from the bath at later times, in which case the bath is said to have a “memory”.
These processes are called non-Markovian [119, 35]. Non-Markovian dynamics are ubiquitous in
condensed phase [120] but inherently difficult to describe and study [121]. They are thus subject
of current research, as many important questions are still open. One of them is the role of non-
Markovianity in the engineering and control of open quantum systems, or in other words, if
non-Markovianity can in certain cases be an asset for control [122, 123, 124].

Studying open quantum systems is difficult because the environment is usually not control-
lable, very large and partly unknown. An ideal framework for solving this problem can be found

91
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in the field of quantum simulation [34]. The central idea of quantum simulation is to use a con-
trollable quantum system in order to study another more complex, less controllable one. This
method is predominantly used to study many-body dynamics in condensed matter physics [34]
but application to open quantum systems is also most natural [125, 126]. What is missing to date
is an open system quantum simulator that allows us to fully tune the strength of memory effects.
This is essential to study the role of non-Markovianity in the engineering and control of open
quantum systems.

In this thesis, we capitalise on the idea of quantum simulation and model a quantum simula-
tor for open quantum systems using Rydberg atoms. To this end, we exploit the formal analogy
between the theory of open quantum systems and the measurement process to induce a tunable
source of dissipation in a quantum system. More specifically, we consider a cavity quantum
electrodynamics (cavity QED) setup and induce dissipation in a photonic mode of a microwave
cavity by performing controlled measurements using circular Rydberg atoms. In particular, we
model a quantum simulator which is fully tunable between the Markovian and non-Markovian
regime independently from the strength of dissipation.

To this end, we start by giving an introduction into the required methods for describing open
quantum systems and quantum measurements in Sec. 5.1. Afterwards, we present the model for
our open quantum system simulator in Sec. 5.2 where we explore the parameter landscape of
the simulator when controlling it with a single pulse. In Sec. 5.3, we extend the scheme to two
control pulses and show how to tune memory effects and dissipation independently from each
other. Note that the results of these chapter have already been published in [127].

5.1 Methods for open quantum systems

The state of a closed quantum system can be fully described by a state vector |ψ〉 in Hilbert space.
Its time evolution is determined by the Schrödinger equation whose solutions can be represented
in terms of unitary time-evolution operators Û(t, t0),

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 , (5.1)

propagating the state from the initial time t0 to the final time t. If we consider a statistical mixture
of quantum systems, on the other hand, the systems’ state can generally not be described by a
state vector in Hilbert space. Instead, we define the density operator [33],

ρ̂ =
∑

α

wα |ψα〉〈ψα| , (5.2)

where the wα are positive weights and the |ψα〉 are normalised state vectors. If only one wα0 = 1

while all the others are 0, the state is called pure. In all other cases, the system is said to be in a
mixed state. When a specific basis {|n〉} is chosen, the matrix elements of the density operator
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can be written as a matrix ρ = (ρnm)nm with the matrix elements

ρnm = 〈n|ρ̂|m〉 =
∑

α

wα 〈n|ψα〉 〈ψα|m〉 . (5.3)

The density matrix ρ is normalised, Tr {ρ} =
∑

n ρnn = 1, hermitian, ρnm = ρ∗mn, and positive
semi-definite, ρ ≥ 1. The diagonal elements, ρnn, are real, non-negative numbers and can be
interpreted as the population of the state |n〉. The off-diagonal elements, ρnm, are in general
complex and describe the coherence between the states |n〉 and |m〉. The density matrix allows
for a clear distinction between pure and mixed states by defining the so-called purity

γ = Tr
{
ρ2
}
, (5.4)

which fulfils 1
N ≤ γ ≤ 1 with N being the dimension of the Hilbert space. The purity takes its

maximal value, γ = 1, if and only if the state is pure.

For density matrices, the Schrödinger equation takes the form

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
(5.5)

which is also called the Liouville-von Neumann equation. An alternative way of writing this
equation is in Liouville space, i.e. the space in which the density operator becomes a column
vector, as

d

dt
ρ̂(t) =

ˆ̂L(t)ρ̂(t) (5.6)

where ˆ̂L is a super operator, i.e. an operator acting on operators. It is called the Liouville operator
and is equivalent to the Hamilton operator in Hilbert space.

When dealing with open quantum systems, the state of the system can no longer be described
by a single state vector |ψ〉 in Hilbert space. Instead, the density matrix formalism proves to be
more suitable. In the following, we first discuss how to describe the dynamics of open quan-
tum systems using dynamical maps. In Sec. 5.1.2, we discuss the formal analogy between the
theory of open quantum systems and indirect quantum measurements. In Sec. 5.1.3, we present
the Lindblad master equation – the generalisation of the Liouville-von Neumann equation for
Markovian open quantum systems – and discuss the approximations made during its deriva-
tion. Finally, we go beyond the Markov approximation and discuss non-Markovian dynamics as
well as suitable measures of non-Markovianity in Sec. 5.1.4. Note that the content of this section
is mostly based on [33] unless noted otherwise.
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Figure 5.1: Sketch of an open quantum system (a) and an indirect measurement (b) with the
system in red, the environment/meter in blue and the interaction in green.

5.1.1 Dynamics of open quantum systems

An open quantum system can be described as a quantum system S coupled to another, typically
larger quantum system B which is called the environment, reservoir or bath, see Fig. 5.1 (a). The
three terms are often used synonymously (as we do in this thesis) while they are sometimes used
to highlight certain properties of B. The combined system S + B is commonly assumed to be
closed, i.e. decoupled from an even bigger environment. Strictly speaking, this is only true if the
environment covers the whole universe. However, it is usually sufficient to include only those
degrees of freedom into the bath B which have a considerable effect on the subsystem S. The
dynamics of the resulting system S + B can then be described as unitary. Note that the division
into system and bath is not always clear-cut. Usually, the system S includes those degrees of
freedom that we are interested in, have access to or control over. The environment, on the other
hand, is often very large and we cannot control it.

The total Hamiltonian of the combined system can be written as

Ĥ(t) = ĤS ⊗ 1̂B + 1̂S ⊗ ĤB + ĤI(t) (5.7)

where ĤS,B are the Hamilton operators of the system or bath, respectively, 1̂ is the identity oper-
ator and ĤI(t) describes the interaction between system and bath. The dynamics of the density
operator of the combined system, ρ̂(t), is determined by the Hamiltonian Ĥ(t). All observables
refer (by definition of S) to the system S only, Â = Â ⊗ 1̂B. The expectation value of Â can thus
be written as

〈Â〉 = Tr
{
Âρ̂
}

= TrS

{
Âρ̂S

}
(5.8)

where

ρ̂S = TrB {ρ̂} (5.9)

is called the reduced density operator of the system with TrB being the partial trace over the
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Hilbert space of the bath. The calculation of the partial trace can be understood as an averaging
over the degrees of freedom which are not of interest or not accessible, and thus reflects our ig-
norance towards the state of the bath. As system and bath are generally entangled after some
interaction time, tracing out the bath decreases the coherence of the system which can be inter-
preted as a loss of information. This process is also called decoherence.

When evaluating the partial trace of the Liouville-von Neumann equation from Eq. (5.6), we
obtain a differential equation describing the time evolution of the open quantum system,

d

dt
ρ̂S(t) = −iTrB

{[
Ĥ(t), ρ̂(t)

]}
, (5.10)

whose solution can be expressed equivalently to Eq. (5.1) as

ρ̂S(t) = TrB

{
Û(t, t0)ρ̂(t0)Û †(t, t0)

}
, (5.11)

where Û(t, t0) is the time-evolution operator of the full system S + B. The time-evolution of the
system can be expressed in terms of the dynamical map V̂ (t, t0) as

ρ̂S(t) = V̂ (t, t0)ρ̂S(t0) (5.12)

where V̂ (t, t0) lives in the Hilbert space of the system. In order to obtain a more explicit ex-
pression for the dynamical map, we first assume that S and B are initially separable and can be
written as ρ̂(t0) = ρ̂S(t0) ⊗ ρ̂B. We further express the density matrix of the environment in its
spectral decomposition

ρ̂B =
∑

α

λα |φα〉〈φα| , (5.13)

with { | φα〉 } being an orthonormal basis in the environment’s Hilbert space. Inserting both into
Eq. (5.11), we obtain

ρ̂S(t) = V̂ (t, t0)ρ̂S(t0) =
∑

β

〈φβ| Û(t, t0) (ρ̂S(t0)⊗ ρ̂B) Û †(t, t0) |φβ〉

=
∑

αβ

λα 〈φβ| Û(t, t0) |φα〉 ρ̂S(t0) 〈φα| Û †(t, t0) |φβ〉

=
∑

αβ

Ŵαβ(t)ρ̂S(t0)Ŵαβ
†(t) (5.14)

with the Kraus operators

Ŵαβ(t) =
√
λα 〈φβ| Û(t, t0) |φα〉 , (5.15)

which satisfy the condition
∑

αβ Ŵαβ
†(t)Ŵαβ(t) = 1̂S. Note that the sum representation in

Eq. (5.14) is not unique, since the Kraus operators depend on the choice of basis. In the spe-
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cial case with only one Kraus operator, we recover unitary dynamics. As the dynamical map
can be expressed in terms of Kraus operators, it represents a convex-linear, completely positive
and trace-preserving (CPT) quantum operation [14]. If t is not fixed, the dynamical map forms
a one-parameter family { V̂ (t, t0) | t ≥ t0 } (with V̂ (t0, t0) being the identity) which describes the
whole future of the system.

5.1.2 Quantum measurements

In the following, we show that the interaction of an open quantum system with its environment
can equivalently be interpreted as the continuous observation of the system by the environment
and vice versa. For this, we consider the indirect measurement of a quantum object via its interac-
tion with another quantum system called the meter. In general, the advantage of such an indirect
measurement is that it reduces the back-action of the measurement onto the quantum object –
the most extreme case of back-action being the detection of the quantum object via a destructive
measurement such as absorption or ionisation. An indirect measurement scheme can be divided
into the following three steps (see also Fig. 5.1 (b)):

1. The meter is prepared in a known initial state ρ̂M ∈ HM with HM being the Hilbert space
of the meter. The quantum system is in an unknown state ρ̂S(0) ∈ HS with HS being the
Hilbert space of the system. The initial state of the combined system can then be written as
ρ̂(0) = ρ̂S(0)⊗ ρ̂M.

2. The system and the meter interact during a time τ under the action of the time-evolution
operator Û(τ) corresponding to the dynamics induced by the interaction Hamiltonian ĤI ∈
HS ⊗ HM (cf. Eq. (5.7) with changed subscript B → M ). The state of the full system after
the interaction is

ρ̂(τ) = Û(τ) (ρ̂S(0)⊗ ρ̂M) Û †(τ). (5.16)

3. The state of the meter is measured destructively via a classical detector.

In more detail, destructive measurement of meter proceeds as follows. We assume that the de-
tector measures the meter observable

R̂ =
∑

β

rβΠ̂β (5.17)

with R̂ ∈ HM and where rβ are the eigenvalues and Π̂β = |ϕβ〉〈ϕβ| the projectors onto the
eigenstates |ϕβ〉. The probability to measure the outcome rβ can be calculated using Eq. (5.8) to

P (β) = Tr
{

Π̂β ρ̂(τ)
}
. (5.18)
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The probabilities are normalised to one,
∑

β P (β) = 1. The state of the system after the measure-
ment of the meter is

ρ̂′S,β(τ) = P (β)−1 〈ϕβ|ρ̂(τ)|ϕβ〉 , (5.19)

with ρ̂′S,β(τ) ∈ HS. If the measurement outcome is not recorded and the sub-ensembles are re-
mixed afterwards, the measurement is called non-selective and the post-measurement state can
be written as

ρ̂′S(τ) =
∑

β

P (β)ρ̂′S,β(τ) =
∑

β

〈ϕβ|ρ̂(τ)|ϕβ〉 . (5.20)

If we now insert the time-evolved state from Eq. (5.16) and express the state of the meter in its
spectral decomposition (compare Eq. (5.13)), we arrive at

ρ̂′S(τ) =
∑

β

〈ϕβ|Û(τ) (ρ̂S(0)⊗ ρ̂M) Û †(τ)|ϕβ〉

=
∑

αβ

λα 〈ϕβ|Û(τ)|φα〉 ρ̂S(0) 〈φα|Û †(τ)|ϕβ〉

=
∑

αβ

Ωαβ ρ̂S(0)Ωαβ
† (5.21)

with the measurement operators

Ωαβ =
√
λα 〈ϕβ|Û(τ)|φα〉 . (5.22)

The measurement operators live in the Hilbert space of the system, Ωαβ ∈ HS, and describe
the change of the system’s state induced by measuring the meter in state |ϕβ〉. If the meter is
in a pure state, ρ̂B = |φ〉〈φ|, the index α vanishes and the measurement operators simplify to
Ωβ = 〈ϕβ|Û(τ)|φ〉. Note the striking equivalence between indirect measurements and the theory
of open quantum systems when comparing the measurement operators from Eq. (5.22) to the
Kraus operators in Eq. (5.15). We can conclude that the meter can equally be interpreted as an
environment observing the system as depicted in panels (a) and (b) of Fig. 5.1.

Before continuing the description of open quantum systems, we discuss two special cases of
measurements. The first is the so-called quantum non-demolition (QND) measurement [128].
As mentioned above, quantum measurement usually cause a significant back-action on the mea-
sured system which, in the worst case, demolishes the system. The basic idea of a QND mea-
surement is to avoid demolition but there are several ways of defining it in theoretical terms. The
easiest picture is that a QND measurement yields one of the outcomes rβ0 with probability P (β0)

(cf. Eq. (5.18)), and after the measurement the system is in the state |ψβ0〉. The meter thus does
not add any perturbation and several repetitions of the same measurement yield the same out-
come. A sufficient condition for a QND measurement is that the observable R̂ commutes with
the time-evolution Û .
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For the second scenario, we consider a series of direct, ideal and instantaneous measurements.
Two measurements are separated by the time interval τ and if τ goes to zero, it is called a con-
tinuous measurement. We moreover assume the system to be initially in an eigenstate of the
measurement operator, i.e. |ψ(0)〉 = |ψ0〉. In-between of the measurements, the dynamics of the
system is given by the time-evolution operator Û(τ). For small τ , it can be expanded as

Û(τ) = 1̂− iĤτ − 1

2
Ĥ2τ −O(τ3). (5.23)

After the first measurement, the probability to measure the system in its initial state is

p0(τ) = |〈ψ0|Û(τ)ψ0〉|2 ≈ 1− (∆E0)2τ2 (5.24)

with the energy uncertainty (∆E0)2 = 〈ψ0|Ĥ2|ψ0〉 − 〈ψ0|Ĥ|ψ0〉
2
. After N = T/τ measurements,

the probability to find the state in the initial state is

p0(T ) =

(
1− (∆E0)2 τT

N

)N
≈ exp

(
−(∆E0)2τT

)
. (5.25)

In the limiting case of continuous measurements (τ → 0), the probability to keep the system in
the initial state is one, p0(T )→ 1. This effect is called the quantum Zeno effect (QZE) in reference
to the arrow paradox (”A watched arrow does not move.”) by the antique philosopher Zeno
of Elea. The fundamental reason for this is that, for small times τ , the state collapse due to the
measurements occurs on a faster time scale than transitions to other states. This effect can be
generalised to measurements of states other than the initial state. In this case, transitions to the
measured states are forbidden, which effectively builds up a barrier in the Hilbert space. The
dynamics are therefore confined to a subspace of the full Hilbert space, called the Zeno subspace.
This effect is referred to as quantum Zeno dynamics (QZD) [129, 130, 131] and it can be used to
control the dynamics of a quantum system as discussed in more detail in Sec. 5.2.

5.1.3 The Lindblad master equation

The Kraus representation from Eq. (5.14) is not always the most suitable form to describe the
dynamics of an open quantum systems. In fact, it is not always possible to evaluate the Kraus
operators in Eq. (5.15) explicitly. Instead, it often proves to be more convenient to describe the dy-
namics by a Hamiltonian which determines the time evolution of the system via the Schrödinger
or Liouville-von Neumann equation in Eq. (5.5). In the following, we outline the derivation of a
differential equation which describes the dynamics of an open quantum system equivalently to
the Liouville-von Neumann equation for closed systems under certain approximations.

We sketch the derivation from a microscopic model as described in more detail e.g. in [33].
The starting point is the Hamiltonian of system and bath, S + B, as given in Eq. (5.7). First,
this Hamiltonian is inserted into the Liouville-von Neumann equation of Eq. (5.5) and the bath
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degrees of freedom are traced out. The first approximation, called the Born approximation, is
to assume that the coupling between the system and bath is weak. As a result, the effect of the
interaction onto the state of the bath ρ̂B is negligible and the full density matrix may be written
as ρ̂(t) = ρ̂S(t) ⊗ ρ̂B at all times t. In the second approximation, the Markov approximation,
we assume that the time evolution of the system only depends on the present state ρ̂S(t) at all
times. Another way of phrasing this is that memory effects of the bath are neglected. The result
of this approximation is a time-local equation. It is important to note that these approximations,
together named the Born-Markov-approximation, do not imply that the state of the bath was
constant. It rather means that the time scale τB over which the bath correlation decays is much
faster the timescale τR on which the system changes appreciably, i.e. τB � τR. We describe the
dynamics on a coarse-grained time scale τR which does not allow to resolve the dynamics on a
timescale τB . These approximations alone, however, do not guarantee that the resulting equation
defines the generator of a dynamical semigroup. The final rotating wave approximation is used
to average over rapidly oscillating terms. If these oscillations, which describe the high frequency
components of the intrinsic evolution of the system, occur on a timescale τS which is much faster
than τR, i.e. if τS � τR, they can can be neglected. Finally, we arrive at the so-called Gorini-
Kossakowski-Sudarshan-Lindblad equation,

d

dt
ρ̂S(t) = −i

[
Ĥ, ρ̂S(t)

]
+

N2−1∑

k=1

γk

(
Âkρ̂S(t)Â†k −

1

2

{
Â†kÂk, ρ̂S(t)

})
, (5.26)

which is the most general form of describing the dynamics of a Markovian open quantum system.
The commutator represents the unitary part of the evolution equivalent to the Liouville-von Neu-
mann equation Eq. (5.5). The right-hand side is called the dissipator, since it describes the effect
of the environment on the system through the so-called Lindblad operators Âk. The non-negative
quantities γk are the corresponding decay rates indicating the strength of the dissipation. The ex-
plicit form of the decay rates and Lindblad operators gives information on the kind of dissipation
that occurs.

The explicit form of the Lindblad operators give further insight into the decay channels in-
duced by the interaction of the system with the environment. If we consider for simplicity a
two-level system with the states |0〉 and |1〉, a typical source of noise is the population relaxation
from the excited to the ground state, |1〉 → |0〉. This can be interpreted as energy draining from
the system to the bath and the corresponding Lindblad operator can be written as Â1 = |1〉〈0|.
A second example is the pure dephasing of the system. In this case, the coherence of the state
decays over time and the Lindblad operator could be written as Â2 = |1〉〈1|. The energy of the
system is conserved during pure dephasing, since system and bath do not exchange energy.

In many cases, one consequence of dephasing is that a quantum system loses purity (as de-
fined in Eq. (5.4)). If the system is initially in a superposition state, dephasing destroys coherence
and mixes the state. However, this is not necessarily the case. If the two-level system is initially
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in the ground state, |0〉, dephasing under the Lindblad operator Â2 does not have any effect on
the state. On the other hand, the superposition state |ψ+〉 = 1√

2
(|0〉 + |1〉) is transformed into

an incoherent mixture of |0〉 and |1〉. In order to gauge the influence of the environment on the
system, it is therefore useful to define a measure for the degree of mixing of a quantum state. To
this end, we define the von Neumann entropy as the quantum analogue of the classical Shannon
entropy,

S(ρ̂) = −Tr {ρ̂ ln ρ̂} (5.27)

with ln = log2. If furthermore λα denote the eigenvalues of ρ̂, the von Neumann entropy can
simply be calculated via

S(ρ̂) = −
∑

α

λα lnλα. (5.28)

S is invariant under unitary operations and therefore changes under dissipative dynamics or
measurements. If and only if ρ̂ represents a pure state, S = 0. If ρ̂ is a completely mixed state,
on the other hand, S takes its maximal value of lnN with N being the dimension of the system.
Given the example of a two-level system above, the superposition |ψ+〉 has a vanishing entropy,
while the entropy of the mixed state after dephasing increased to the maximal value S = ln 2.

In practice, the calculation of the von Neumann entropy requires the diagonalisation of the
density matrix. A measure which is easier to calculate is the so-called linear entropy. If we expand
the von Neumann entropy to first order around a pure state, we arrive at

SL = 1− γ (5.29)

where γ is the purity of the state. It is a lower approximation to the von Neumann entropy. It can
easily be seen that the linear entropy can take values between 0 ≤ SL ≤ 1− 1

N . If and only if the
state is pure, γ = 1, the linear entropy is minimal, SL = 0. A completely mixed state with γ = 1

N

has maximal linear entropy 1− 1
N which, as expected, is smaller than Smax = lnN for all N > 1.

5.1.4 Non-Markovian dynamics

In realistic physical systems, the assumptions made during the derivation of the Lindblad master
equation are often violated. Most importantly, the Markovian approximation, which assumes a
memory-less environment, does not hold true in many cases. Only if the bath is very large or the
coupling is weak can memory effects be neglected. If not, the state of the bath is changed consid-
erably due to the interaction with the system and the Markov approximation breaks down. The
main consequence of non-Markovian dynamics is that the evolution of the reduced system does
not only depend on the current state ρ̂S(t) but also on earlier times. In the following, we discuss
dynamics beyond the Markov approximation in more detail and discuss possible measures of
non-Markovianity.
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Figure 5.2: Sketch of the information flow (black arrows) in a Markovian (a) and non-Markovian
(b) open quantum system.

One major difficulty when dealing with non-Markovian dynamics is the lack of a unique
definition of non-Markovianity in quantum systems in literature [119, 35]. The terms Markovian-
ity and non-Markovianity originate from well-defined classical stochastic processes. In classical
terms, a stochastic process is called Markovian if the probability of a random variable X to take
the value xn at time tn provided it took the value xn−1 at time tn−1 is uniquely determined and
not affected by values of X at earlier times ti with i < n − 1. This definition can be interpreted
as the already mentioned memoryless evolution. The problem with extending this definition
to the quantum regime is that n-point probabilities always depend on the particular choice of
the measurement scheme [35]. In the worst case, the measurement completely destroys system-
environment correlations and therefore strongly influences the subsequent dynamics. The char-
acterisation and quantification of memory effects should instead be independent of the measure-
ment scheme and be based on the properties of the open systems density matrix instead.

In the following, we present one such approach to quantify non-Markovianity based on the
notion of memory effects and the information flow between the system and environment [35],
see Fig. 5.2. While in a Markovian process, the information always flows from the system to
the bath (a), in a non-Markovian process, the information flows in both directions (b). Alter-
natively, this observation can be phrased in terms of the distinguishability between two quan-
tum states: While a Markovian process tends to continuously decrease the distinguishability
between any two states, a non-Markovian process could increase it. To construct a measure for
non-Markovianity based on this property, it is first necessary to define a measure for the distance
between two quantum states. One such measure is the trace distance,

D (ρ̂1, ρ̂2) =
1

2
Tr|ρ̂1 − ρ̂2|, (5.30)

with |Â| =
√
Â † Â. The trace distance is a metric on the space of density matrices and can be used

as a quantifier for the distinguishability of quantum states. Furthermore, it has the important
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feature that all CPT maps V̂ are contractions for this metric such that

D
(
V̂ ρ̂1, V̂ ρ̂2

)
≤ D (ρ̂1, ρ̂2) . (5.31)

A CPT map (such as the Lindblad master equation from Eq. (5.26)) can therefore never increase
the distinguishability between two states. With

σ(t, ρ̂1,2(0)) =
d

dt
D (ρ̂1(t), ρ̂2(t)) (5.32)

being the rate of change of the trace distance, we can write this observation as σ ≤ 0 for all times
and initial state pairs. By definition of Ref. [35], processes are called non-Markovian if there exists
an initial state pair for which σ > 0 at a certain time.

Based on this definition, it is possible to define a measure for non-Markovianity as the inte-
grated backflow of information,

NBLP = max
ρ̂1,2(0)

∫

σ>0
dt σ(t, ρ̂1,2(0)) (5.33)

which is commonly referred to as the BLP measure in reference to the last names of the authors
of Ref. [35]. Note that the integration is carried out over all time intervals where σ is positive,
and the maximum is taken over all pairs of initial states. The state pair which optimises the
time integral is called the optimal state pair. By construction, NBLP is vanishing for Markovian
processes. However, there is no upper bound to the measure, since the revivals of the trace
distance can in principle persist forever. The main obstacle in using the BLP measure is finding
the optimal state pair, since it requires an optimisation over the full Hilbert space of the system.
In simple cases, the optimal state pair can be determined analytically [132]. However, once the
optimal state pair is known, evaluation of this measure requires comparatively little numerical
effort, as only the optimal state pair has to be propagated once.

Apart from the BLP measure, there are several other approaches to define and quantify the
degree of non-Markovianity in a system. For instance, the measure proposed in Ref. [133] is
linked to the change in volume of physical states that are dynamically accessible to a system and
provides a geometrical interpretation of non-Markovianity in terms of an increase of this vol-
ume. Another approach is based on maximally entangling the system with an ancillary system
and measuring a possible increase in entanglement caused by non-Markovian dynamics [134]. A
final example proposes the use of negative decoherence rates for characterising non-Markovian
dynamics [135], since, in fact, it is possible to write any time-local master equation in Lindblad-
like form. For non-Markovian processes, the decay rates can become negative which can be inter-
preted as a “recoherence” of the system due to the information backflow from the environment.
However, note that not every non-Markovian process can be written in a Lindblad-like form.
More general approaches of non-Markovian master equations involve, for instance a memory
kernel which requires an integration over past times of the evolution [136, 137, 135].
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5.2 Exploring the parameter landscape of the quantum simulator

We now suggest a quantum simulator that allows for the study of the role of memory effects in
the dynamics of open quantum systems. A particular feature of our simulator is the ability to en-
gineer both Markovian and non-Markovian dynamics by means of quantum measurements and
the quantum Zeno dynamics induced by them. We first present the model of our quantum sim-
ulator which is based on a bipartite quantum system in Sec. 5.2.1. Our setup is heavily inspired
by a cavity QED experiment at Laboratoire Kastler Brossel (LKB) at Collège de France, Paris,
which considers the interaction between photons in a microwave (MW) cavity and circular Ryd-
berg atoms [138, 139]. In cavity QED [9], the interaction between light and matter is studied by
confining light in a reflective cavity. In the famous experiments of Serge Haroche and his group,
the cavity is constructed of two superconducting mirrors between which microwave modes are
formed. The light then interacts with Rydberg atoms which fly through the cavity. The quantum
simulator thus highlights another application of Rydberg atoms for quantum technologies. How-
ever, our setup is more general and can be applied to varies bipartite and even unary systems, as
addressed throughout the text. The subsequent section are dedicated to explore the tunability of
the quantum simulator and investigate how the parameters of the quantum measurement affect
the character of the engineered open quantum system. To this end, we derive a suitable measure
for non-Markovianity in Sec. 5.2.2 and discuss how the dissipation and the non-Markovianity
can be controlled in the simulator in Sec. 5.2.3. Afterwards, we discuss the Markovian limit and
derive a master equation in Lindblad form in Sec. 5.2.4.

5.2.1 The model

We take the system to be a harmonic oscillator,

ĤS =
∑

n

ωn |n〉 〈n| , (5.34)

where we have set the vacuum energy to zero, see Fig. 5.3 (a). The eigenstates |n〉 of the harmonic
oscillator are called the Fock states. In a cavity QED setup, the harmonic oscillator corresponds
to a photonic mode in a MW cavity [9]. The system is further coupled to a meter which we model
by a three-level system with states |h〉, |g〉, and |e〉,

ĤM = ω′ |g〉 〈g|+
(
ω + ω′

)
|e〉 〈e| . (5.35)

They can be identified with three neighbouring circular states of a Rydberg atom as |49C〉 ≡ |h〉,
|50C〉 ≡ |g〉, and |51C〉 ≡ |e〉 which all lie in the MW regime. The energy of |h〉 is set to zero and
we assume the |g〉 ↔ |e〉 transition to be resonant with the system frequency ω, which can easily
be achieved by tuning the resonance of the cavity mode. The |h〉 ↔ |g〉 transition is then far off-
resonant with ω � ω′ as given by the Rydberg formula in Eq. (2.5). Transitions to higher or lower
circular states are sufficiently far detuned from all other transitions and can thus be neglected.
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Figure 5.3: Energy level diagram of a bipartite system consisting of a harmonic oscillator and a
few-level system in the bare (a) and dressed (b) basis. The arrows in (b) depict the three external
fields: a drive D of the harmonic oscillator (red), and two Zeno pulses Z1 (green) and Z2 (blue)
addressing the levels |z = 1〉 and |z = 2〉, respectively. Arrows with solid (light dashed) lines
indicate (off-)resonant transitions.

The resulting interaction can be described by the Jaynes-Cummings model [9]. In the inter-
action picture with respect to the drift Hamiltonian, Ĥ0 = ĤS + ĤM, and after employing the
rotating wave approximation, the interaction can be written as

ĤSM =
Ω

2

(
σ̂-â
† + σ̂+â

)
(5.36)

with the Rabi frequency Ω, σ̂- = |g〉 〈e| = σ̂†+, and creation and annihilation operators â(†) for the
harmonic oscillator. Note that the state |h〉 of the meter is decoupled from the harmonic oscillator.
The eigenstates of ĤSM are the dressed states,

|g, 0〉 , |±, n〉 =
1√
2

(|e, n− 1〉 ± |g, n〉) for n ≥ 1 (5.37)

with eigenenergies (cf. Fig. 5.3 (b)),

E±n = ωn± Ω

2

√
n. (5.38)

In addition to its coupling to the meter, the system is driven by a resonant classical sourceD with
field strength α,

ĤD = αâ† + α∗â , (5.39)

see red arrows in Fig. 5.3 (b). We assume the drive to be weak compared to the coupling with the
meter, α � Ω, such that the system is only driven if the meter is in |h〉. In this limit, ĤD induces
a displacement β = −iατ of the system’s state,

ÛD(τ) = e−iĤDτ = eβâ
†−β∗â. (5.40)
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Figure 5.4: Dynamics in the harmonic oscillator with ξ = −iαt, the initial state |0〉 and the Zeno
level z = 2. (a) shows the free evolution without Zeno coupling or measurements. The colour
bar indicates the number of the eigenstates |n > 1〉. (b+c) show the dynamics with measurements
after a displacement of β = 0.0126 and a Rabi angle of φ2 = π/2 (b) and φ2 = 2π (c). In both cases,
the population is confined to the Zeno subspace {|0〉 , |1〉} and populations of higher states |n > 1〉
are not visible on this scale. The measurement induces a significant amount of dissipation in (b)
while the subsystem is almost perfectly closed in (c).

Similarly, the total time evolution can be described using the rescaled coordinate ξ = −iαt. Fig-
ure 5.4 (a) shows the dynamics of the harmonic oscillator when driven by the source D if the
meter is in |h〉 (i.e. system and meter are decoupled).

A tunable source of dissipation is introduced by a series of indirect measurements of the
system’s state using identical meters (equivalently to Fig. 5.1 (b)). These measurements determine
whether the system is in a specific Fock state |z〉, the ’Zeno level’. To this end, system and meter
are coupled by a so-called Zeno pulse Zz with coupling strength gz which is resonant to the
|h, z〉 ↔ |+, z〉 transition,

Ĥz =
gz
2

(
|h, z〉 〈+, z|+ |+, z〉 〈h, z|

)
, (5.41)

where the subscript z indicates the Zeno level |z〉. The coupling is depicted in Fig. 5.3 (b) for the
example of z = 1 (green) and z = 2 (blue). Zz induces Rabi oscillations only if the system is in
the Zeno level,

Ûz(τ) = e−iĤzτ = e

(
|h,z〉〈+,z|+|+,z〉〈h,z|

)
φz
2 , (5.42)

accumulating a Rabi angle φz = gzτ during the interaction time τ . As a result, there will only
be population in the state |+, z〉 if there was population in |z〉 initially. A subsequent destructive
measurement of the meter at time τ , corresponding to a partial trace over the meter, thus provides
information on the population of |z〉. The system’s state at the end of one time interval τ can be
obtained in terms of the piecewise dynamics (cf. Eq. (5.11)),

ρ̂S(t+ τ) = TrM

{
Û(τ)ρ̂(t)Û †(τ)

}
(5.43)
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with Û(τ) = e−i(ĤD+ĤSM+Ĥz)τ . ρ̂ and ρ̂S describe the state of the bipartite and reduced system,
respectively. The sequence of coupling the system to a meter during time τ and performing a
destructive measurement of the meter afterwards is repeated several times, with the new meter
initially always in |h〉.

For small displacements of the system between two measurements, |β| � 1, the protocol
gives rise to quantum Zeno dynamics (QZD, compare to Sec. 5.1.2). Hence, when choosing an
initial state of the system below the Zeno level, |n0 < z〉, the dynamics is confined to the Zeno
subspace Hz = {|0〉 , . . . , |z − 1〉}. The displacement β (due to the drive D) and the Rabi angle
φz (due to the Zeno pulse Zz) act as “knobs” to control the dynamics of the quantum simulator
as shown for three exemplary cases in Fig. 5.4. Panel (a) shows the free evolution of the system
when no Zeno pulses are employed, i.e. the system and meter stay uncoupled and the measure-
ments of the meter has no effect on the system. In panels (b+c), the system and meter are coupled
by a Zeno pulse with φ2 = π/2 and 2π, respectively. Measurements are performed after displace-
ments of β = 0.0126. The quasi-continuous measurements induce QZD in both cases as can be
seen clearly from the fact that no states higher than |z = 1〉 are being populated. The dynamics
in (b) show strong signatures of dissipation due to the measurement as can be seen from the
damped amplitude of the oscillation. The dynamics in (c), on the other hand, resemble those of
a closed two-level system. These observations are discussed and explained more thoroughly in
the following sections.

Before, we give some details on the numerical implementation of this model and the cavity
QED experiment. All numerical calculations in this chapter were conducted with a truncated
basis for the harmonic oscillator with nmax being large enough to avoid reflections on the upper
end of the Hilbert space. Newton’s method was used to perform time propagations (cf. Sec. 3.1.2).
The values for the system parameters, such as the Rabi and transition frequencies, were chosen in
agreement with cavity QED experiment proposed in Ref. [138]. In this experiment, the Rydberg
atoms interact with the microwave cavity in an atomic fountain arrangement: the atoms are
injected into the cavity vertically from underneath while they are accelerated downwards by
their own gravity. The turning point of the atom’s trajectory is adjusted to be in the centre of the
cavity such that the interaction time between cavity and atom is sufficiently long to perform the
experiment. Due to the cryostatic environment of the experiment and the long lifetime of circular
states in Rydberg atoms, ‘true’ dissipation due to field energy damping or atomic relaxation is
negligible on the relevant timescale. The atom is excited to the Rydberg regime when it is already
located inside the cavity which marks the beginning of one sequence of the protocol. In order to
specifically address a |h, z〉 ↔ |+, z〉 transition using a Zeno pulse Zz and distinguish it from the
nearby |h, z〉 ↔ |−, z〉 and |h, z〉 ↔ |−, z − 1〉 transitions, the duration ∆tZ of the pulse Zz has to
be long enough, namely ∆tZ � 1/

(
Ω|
√
z + 1−√z|

)
. The end of the experiment with total time

T is triggered by ionising the atom within the cavity by field ionisation.
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Figure 5.5: (a) Energy level diagram of the bipartite system indicating different subspaces: The
Zeno subspace HZ (red shaded), the Zeno level |z = 2〉 (blue shaded), the extended Zeno sub-
space H+

Z (black dashed box) and the subspace with purely unitary dynamics (grey shaded).
(b) Illustration of the optimal state pair. In the Zeno limit, a state |Ψ1(0)〉 = |ϑ, ϕ〉 within the
Zeno subspace is confined by quantum Zeno dynamics (QZD). If the initial state is the one being
measured, |Ψ2(0)〉 = |z = 2〉, the state is frozen by the quantum Zeno effect (QZE).

5.2.2 Calculation of the non-Markovianity measure

In order to quantify the degree of non-Markovianity in the quantum simulator, we use the BLP
measure, NBLP , as introduced in Eq. (5.33). Evaluation of this measure requires comparatively
little numerical effort, namely the propagation of only two well chosen initial states, which is cru-
cial when considering the theoretically infinite dimensionality of the harmonic oscillator. Other
measures mentioned in Sec. 5.1.4 either lead to qualitatively similar results (e.g. the geometri-
cal measure from Ref. [133] when employing a truncated basis for the harmonic oscillator) or
are not practical, since they increase the dimension of the Hilbert space even further (e.g. the
entanglement-based measure from Ref. [134] using ancillary systems). An obstacle for using the
BLP measure is that it requires optimisation over the system Hilbert space in order to identify the
optimal state pair (ρ̂1(t), ρ̂2(t)). On first glance, this seems difficult for the infinitely large Hilbert
space of a harmonic oscillator. Nonetheless, the BLP measure turns out to be suitable in our case
since we can reduce the size of the subspace in which we have to perform the optimisation sig-
nificantly by using our knowledge about the tailored interaction of the harmonic oscillator and
the meter.

The reduction of the system size goes as follows, cf. Fig. 5.5 (a). We know that the Zeno pulse
only affects the Zeno level and the level below since the dressed state we couple to is |+, z〉 =

1√
2
(|e, z − 1〉 + |g, z〉). If the initial state is located within the Zeno subspace HZ, signatures of

non-Markovianity can only arise from population in states within the extended Zeno subspace
H+

Z = {|0〉 , . . . , |z〉}, whereas the dynamics in the remaining Hilbert space are purely unitary.
Numerical tests confirm this conjecture. It is thus sufficient to consider only the extended Zeno
subspace for the optimisation.

The optimisation can be further simplified by considering properties of optimal state pairs for
the BLP measure in general. The BLP measure is defined as the integral over all times where the
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trace distance is increasing (cf. Eq. (5.33)), maximised over all initial state pairs. Vice versa, we
can conclude that the optimal state pair shows revivals of the trace distance for the longest time
with a maximal peak amplitude as compared to all other state pairs. Ideally, the states oscillate
between being fully distinguishable, with D = 1, and fully indistinguishable, with D = 0. Thus,
the dynamics of the two states which form the optimal pair should be as different from each
other as possible. In a qubit this can be realised by choosing the initial state pair to be orthogonal
and on the boundary of the space of physical states [132]. In our model, the Zeno level and a
state within the Zeno subspace, as shown in Fig. 5.5 (b), form such a pair. The former is subject
to the quantum Zeno effect (QZE) which means that the population in the Zeno level is frozen.
For the latter, quantum Zeno dynamics (QZD) are induced and the population never leaves the
Zeno subspace. Thus, in an ideal Zeno situation (τ → 0), the trace distance of this pair of initial
states is constant with D = 1, i.e. it stays distinguishable forever. However, in a realistic system,
the measurements leading to Zeno dynamics are not continuous but separated by short time
intervals τ > 0. During that time, the Zeno pulse introduces Rabi oscillations on the |h, z〉 ↔
|+, z〉 transition (cf. Eq. (5.42)). The overlap between the two states varies with time, leading to
oscillations of the trace distance which indicate information flow and non-Markovianity. In the
following, we seek to calculate the time-dependent trace distance of such a state pair explicitly.

We start by describing the dynamics of the first state of the pair: a state in the Zeno subspace
(left-hand panel in Fig. 5.5 (b)). In the Zeno limit, every state in the Zeno subspace is confined to
it forever and is only driven coherently by the drive D (cf. Eq. (5.39)). In the special case of z = 2,
an arbitrary state in the Zeno subspace can be parametrized by its Bloch angles,

|ϑ, ϕ〉 = cos
(
ϑ
2

)
|0〉+ sin

(
ϑ
2

)
eiϕ |1〉 , (5.44)

and the unitary evolution induced by D takes the form

Uz=2(t) = e−i
(
α|1〉〈0|+α∗|0〉〈1|

)
t = cos (|α|t)

(
1 0

0 1

)
− i sin (|α|t)

(
0 e−iϕα

eiϕα 0

)
(5.45)

with α = |α|eiϕα being the amplitude of the field D. The eigenstates of this map are

|ϑ = π
2 , ϕ = ±ϕα〉 =

1√
2

(
|0〉+ e±iϕα |1〉

)
. (5.46)

In the following, we choose α such that −iαT = 2π where T is the total duration of the protocol.
We then obtain ϕα = π/2 leading to e±iϕα = ±i.

The second state of the pair is the Zeno level, |h, z〉, and in the Zeno limit the Zeno pulse
freezes the population in this state due to the QZE (right-hand panel in Fig. 5.5 (b)). On the
timescale of the Zeno pulse, however, the pulse induces oscillations between the initial state and
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the dressed state |+, z〉,

|Ψ|h,z〉(t)〉 = cos

(
gzt

2

)
|h, z〉+ sin

(
gzt

2

)
|+, z〉 , (5.47)

while all other states |h, n 6= z〉 are unaffected by Ĥz . The action of the drive D is negligible on
the timescale τ since α � gz . For gzt = π, the final state is the dressed state. At this point, the
reduced density matrix of the system reads

ρ̂2

(
t =

π

gz

)
≡ ρ̂(π)

2 =
1

2

(
|z − 1〉 〈z − 1|+ |z〉 〈z|

)
. (5.48)

For gzt = 2π, the population has oscillated back to the initial state.

We now consider the initial state pair {|Ψ1(t = 0)〉 = |ϑ, ϕ〉 , |Ψ2(t = 0)〉 = |2〉} for the spe-
cial case of a Rabi angle φ2 = 2π. In the beginning and end of each time interval τ , the state
|Ψ2(t = nτ)〉 with n being an integer is in the Zeno level, the overlap between the two states
is zero and the trace distance is one. No information is destroyed during the measurement
at these points because the system and the meter are separable. In the middle of the interval,
|Ψ2(nτ + τ/2)〉 is in the state ρ̂(π)

2 which has the largest overlap with the level |z − 1〉 that is pos-
sible when starting in the Zeno level. The trace distance thus oscillates quickly between 1 (at
t = nτ ) and the lower envelope given by the trace distance of |Ψ1(t)〉 = Uz=2(t) |ϑ, ϕ〉 evolving
in the Zeno subspace and |Ψ2(t)〉 being ρ̂

(π)
2 . If the Rabi angle is different from φ2 = 2nπ, the

system and meter are entangled at the time of the measurement. A measurement thus destroys
coherence and decreases the trace distance. As a result, the integrated trace distance and hence
the BLP measure are maximal for φ2 = 2nπ which is why we focus on this case.

To calculate the lower envelope trace distance (cf. Eq. (5.30)) we have to express both states
in terms of density matrices. The density matrix of the state within the Zeno subspace is simply
given by ρ̂1(t) = |Ψ1(t)〉 〈Ψ1(t)| while we assume the second state to be in mixed state ρ̂(π)

2 (cf.
Eq. (5.48)) all the time. Afterwards, we have to calculate the eigenvalues λi of the matrix ρ̂1−2(t) =

ρ̂1(t)− ρ̂(π)
2 . Using computer algebra and setting ϕα = π/2, we obtain

λ1 = −1

2

λ2,3 =
1

4
± 1

4
ie−iϕ

{
e2iϕ

(
4 sin(θ) cos(ϕ) sin(2|α|t)− 4 cos(θ) cos(2|α|t)− 5

)}1/2

The envelope of the trace distance is then given by D (ρ̂1(t), ρ̂2(t)) = 1
2

∑3
i=1|λi(t)|. The result is

shown for the two extremal cases in Fig. 5.6 (a). If we choose |Ψ1〉 to be one of the eigenstates of
Uz=2(t) (cf. Eq. (5.46)), the envelope of the trace distance is constant (dark blue line). If we choose
|Ψ1〉 = |ϑ, ϕ = {0, π}〉 such that it lies on the meridian of the Bloch sphere (dark red) the envelope
of the trace distance undergoes slow oscillations due to the drive D (cf. Eq. (5.45)). The red curve
in Fig. 5.6 (a) shows the case |Ψ1〉 = |0〉 where ϑ = 0. A variation of ϑ simply shifts the curve on
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Figure 5.6: (a) Evolution of the trace distance for two different initial state pairs with Rabi angle
φ2 = 4π and a displacement β = 0.025 as a function of ξ = −iαt. The state pairs are |Ψ1〉 =
|ϑ = 0, ϕ = 0〉 = |0〉 (red) and |Ψ1〉 = |ϑ = π

2 , ϕ = π
2 〉 = 1√

2
(|0〉+ i |1〉) which is an eigenstate

of Uz=2(t) (blue), paired with the Zeno level |Ψ2〉 = |2〉. The dark lines show the result of the
analytical calculation of the lower envelope, the light, fast oscillating lines show the numerical
calculations. The inset shows the fast oscillation of the trace distance due to the Zeno pulse Z2

acting on |Ψ2〉. The vertical black dashed lines show the positions of the meter’s measurement.
(b) BLP measure NBLP for different initial states |Ψ1〉 = |ϑ, ϕ〉 on the Bloch sphere spanned by
the Zeno subspace {|0〉 , |1〉}. The second state of the state pair is the Zeno level |Ψ2〉 = |2〉
outside of this subspace. Yellow indicates the smallest, black the highest value. The parameters
are β = 0.025 and φ2 = 4π. The data was obtained numerically but the analytical expression in
Eq. (5.50) gives the same results.

the time axis. This is because the drive D induces a rotation around the y-axis for our choice of
ϕα = π/2 and every state that lies initially on that meridian stays on it. In more general terms,
the rotation axis ~nα depends on the phase of the complex amplitude α as

~nα = (cosϕα, sinϕα, 0) = (Reα, Imα, 0) /|α|. (5.49)

The eigenstates are given by Eq. (5.46) and the states with ϕ = ±ϕα + π/2 evolves on a meridian
through the Bloch sphere’s poles.

The value of the BLP measure is now connected to the area enclosed by the lower envelope
(dark line) and the D = 1 line in Fig. 5.6 (a). The trace distance oscillates between the lower
envelope and 1 every time a 2π pulse is completed on the |h, 2〉 ↔ |+, 2〉 transition (see light
lines indicating the numerical calculations). Since the BLP measure sums up all the areas where
the trace distance is increasing, we have to sum n peaks per time τ for φ2 = 2nπ (see inset of
Fig. 5.6 (a), there are n = φ2/2π = 2 peaks between two measurements). This leads to the final
expression

NBLP =
nN∑

j=1

(
1−D

(
jτ

n

))
(5.50)

where T = Nτ . Note the remarkable agreement of the analytical envelope and the numerical



CHAPTER 5. QUANTUM SIMULATION OF OPEN QUANTUM SYSTEMS 111

calculations in Fig. 5.6 (a) albeit the assumption of a perfect Zeno confinement. Finally, Fig. 5.6 (b)
shows the BLP measure for different initial states |Ψ1〉. The BLP measure takes a minimum for
the eigenstates of Uz=2(t) and a maximum for the states on the meridian with ϕ = {0, π}. This
is because the blue area in Fig. 5.6 (a) which describes the evolution of the trace distance for the
eigenstates is smaller than the red which describes the states on the meridian.

Summing up, the optimal state pair which leads to the maximal value of the BLP measure was
found to be composed of the state |Ψ1〉 = |ϑ, ϕ = ±ϕα + π/2〉 which lives in the Zeno subspace
spanned by {|0〉 , |1〉} and depends on the phase ϕα of the complex amplitude α of the drive D,
and the Zeno level |z = 2〉. For our choice of α, the optimal state pair is given by

|Ψ1(ϑ)〉 = cos
(
ϑ
2

)
|0〉+ sin

(
ϑ
2

)
|1〉 , |Ψ2〉 = |2〉 (5.51)

for all ϑ ∈ [0, 2π), and we take ϑ = 0 in the following. Note that the calculations can be gener-
alised to larger values of z > 2. The larger dimension of Uz(t) (cf. Eq. (5.45)) turns the equations
more complicated but the central results remain unchanged.

5.2.3 Tuning dissipation or non-Markovianity

We now discuss the quantum simulator subject to the drive D (which controls the displacement
β) and one Zeno pulse Zz=2 addressing the Zeno level |z = 2〉 (which controls the Rabi angle
φz=2). We choose the overall protocol duration T such that−iαT = 2π and we take the initial state
of the harmonic oscillator to be the vacuum, |n0 = 0〉. To quantify the amount of dissipation, we
use the linear entropy SL as defined in Eq. (5.29). For the following discussion and explanation
of the system’s dynamics it also proved to be useful to define a measure for the infidelity of the
QZD. To this end, we introduce the population PZ̄ that has escaped from the Zeno subspace,

PZ̄ =

∞∑

n=z

〈n|ρ̂S(T )|n〉 . (5.52)

Figure 5.7 shows these two quantities together with the non-Markovianity measure for different
values of the displacement and the Rabi angle. The figure shows that an arbitrary degree of
dissipation SL can be engineered by tuning β and φ2 (panel b). Moreover, we observe a clear
correlation between the dissipation and the infidelity of the QZD, PZ̄ (panel a). In particular,
strong dissipation can be realised by a small φ2 where the population leaves the Zeno subspace.
Only in this case, the Zeno level |2〉, which is the only state being subject to dissipation due to
the Zeno coupling, is being populated. Hence, it is constructive to understand the mechanisms
leading to Zeno confinement in more detail, as there is more than one.

(i) QZD describes the effect of confining the dynamics of a system to a tailored subspace by
frequent measurements. The dynamics shown in Fig. 5.7 agrees with this intuitive picture since
the Zeno infidelity PZ̄ vanishes as the displacement β (which is proportional to the time between
two measurements) goes to zero.
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Figure 5.7: Infidelity PZ̄ of the quantum Zeno dynamics (a), dissipation SL (b), and non-
Markovianity measure NBLP (c) as a function of the displacement β due to the drive D and the
Rabi angle φ2 accumulated due to the Zeno pulse Z2. Inset: NBLP as a function of φ2 for β = 0.025
(blue dotted, circles, highest peaks), 0.050 (red dashed, crosses) and 0.075 (green dash-dotted,
squares, smallest peaks) with linearly increasing peak heights. The data points which generate
the linear functions were calculated analytically.

(ii) QZD can not only be induced by frequent measurements but also by strongly coupling
the system to a meter. The latter can be interpreted as a “persuading gaze” [140] of the meter.
In fact, the two cases are formally equivalent in the limit of a fast repetition rate and strong
coupling [140]. In our case, the coupling strength between the harmonic oscillator and the three-
level system is given by the field strength of the Zeno pulse, gz = φz/τ , which is proportional to
φz . Thus, the quality of the Zeno confinement is very good for large values of the Rabi angle φz
even if β is large. For Rabi angles φz > 4π, PZ̄ and SL are vanishingly small which is why this
parameter range is omitted in Fig. 5.7 (a) and (b).

(iii) The coupling between the Zeno level and the dressed state |+, z〉 induces a decay of the
Zeno level’s population to the level below, that is, back into the Zeno subspace. More explicitly,
the Hamiltonian Ĥz (cf. Eq. (5.41)) induces Rabi oscillations as shown in Eq. (5.47). When per-
forming a Zeno pulse with Rabi angle φz = gzτ 6= 2nπ, a fraction of sin2

(
φz
2

)
of the population

that has been in the state |h, z〉 ends up in the state |+, z〉. According to the definition of the
dressed states, half of the system is in the state |z − 1〉 here, i.e. back in the Zeno subspace, which
enhances the Zeno confinement. As a consequence, if the initial state was lying above the Zeno
level, n0 > z, the Zeno pulse has to be changed to be resonant to the |h, z〉 ↔ |+, z + 1〉 transi-
tion to induce the same effect. In this case, the population is “confined” to the Zeno subspace
Hz = {|z + 1〉 , . . . }, meaning it is excluded from the subspace with n ≤ z.
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(iv) For π < φz < 2π, the phase of the |h, z〉 contribution in Eq. (5.47) is negative due to the
cosine. This leads to an inversion of the dynamics back into the Zeno subspace which improves
the QZD additionally.

Note that there is one exception to the correlation between dissipation SL and the Zeno in-
fidelity PZ̄ . For φ2 → 0, there is no dissipation even though the population leaves the Zeno
subspace. In this case, the coupling between system and meter vanishes and the system evolves
freely without dissipation.

The signatures of non-Markovianity are strongest for Rabi angles φ2 = 2nπ with n being an
integer, cf. Fig. 5.7 (c). This is because for small β and every choice of |z〉, a pulseZz with φz = 2nπ

corresponds to the map |h, z〉 7→ (−1)n |h, z〉, i.e. the pulse changes only the phase of the Zeno
level and no entanglement between system and meter is generated. In other words, this choice
of φz results in a quantum non-demolition (QND) measurement (cf. Sec. 5.1.2) preserving the
information of the system’s state. In this case, the value of the non-Markovianity measure can be
calculated analytically as shown in the previous section. The agreement between the analytical
and the numerical calculation is remarkable, as can be seen by the data points in the inset of
Fig. 5.7. They reveal a linear increase of the non-Markovianity measure with Rabi angle φ2 for
a given displacement β. For constant φ2, in turn, the non-Markovianity measure decreases as
β grows larger because the number of measurements N = T/τ ∝ T/β, and hence the number
of 2nπ-pulses for fixed T decreases. If N is fixed instead of T , the value of the non-Markovian
measure is roughly constant for a fixed value of φ2.

In summary, we are able to induce both dissipation and non-Markovian dynamics in the pro-
posed quantum simulator. In particular, a Zeno pulse with small Rabi angles φz . π induces
strong dissipation due to the entanglement between the system and the meter at the time of the
measurement. On the other hand, large memory effects are obtained with a Rabi angle φz = 2nπ

because system and meter remain separable at the time of the measurement and the distinguisha-
bility oscillates between 0 and 1 due to the strong coupling between the two subsystems. We next
turn to the analysis of the Markovian regime and derive a suitable master equation of Lindblad
form in the next section. Afterwards, we unite dissipation and non-Markovianity and enable
independent tunability of both by combining two Zeno pulses as discussed in Sec. 5.3.

5.2.4 Realising the Markovian limit

For arbitrary values of z (i.e. lifting the assumption of z = 2) and Rabi angles φz 6= 2nπ, the sys-
tem and meter are entangled at the end of each time interval τ . Measurement of the meter then
erases information, resulting in less distinguishable states, such that the system dynamics be-
comes Markovian on the coarse-grained timescale τ . As explained in Sec. 5.1.3, the most general
way to describe the dynamics of a Markovian open quantum system is by means of a Lindblad
equation (cf. Eq. (5.26)). The explicit form of the decay rates and Lindblad operators gives infor-
mation on the kind of dissipation occurring in an open quantum system and it provides us with
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a recipe on how to control the open quantum system simulator. In the following, we derive the
master equation in Lindblad form for the quantum simulator.

We start from the piecewise dynamics of Eq. (5.43) which describes the reduced state of the
system after interacting with a meter during time τ . We assume to employ a single Zeno pulse
Zz which acts on an arbitrary Zeno level |z〉. The first step is to evaluate the partial trace and to
derive the Kraus representation of the dynamical map (cf. Eq. (5.15) and Eq. (5.22)). To this end,
we expand the time evolution operator Û(dt) using the Baker-Campbell-Hausdorff formula up
to first order,

Û(dt) = e−i(ĤD+ĤSM+Ĥz)dt ≈ e−iĤDdte−iĤSMdte−iĤzdt = ÛD(dt)ÛSM(dt)Ûz(dt).

The expression for the unitary evolution of the bipartite state, Û(τ)ρ̂(t)Û †(τ), can be simplified
using two properties. First, we start each sequence of coupling the system to a meter with the
separable initial state ρ̂(t) = ρ̂S(t)⊗ |h〉 〈h|, where ρ̂S(t) is the reduced state of the system and |h〉
is the initial state of the meter. Second, it is easy to see that

[
ĤSM, ρ̂S(t)⊗ |h〉 〈h|

]
= 0 since ĤSM

(cf. Eq. (5.36)) couples the system to the |g〉 ↔ |e〉 transition of the meter. By combining both, we
can evaluate the partial trace explicitly and arrive at

ρ̂S(t+ dt) =
∑

j=h,g,e

wjh ÛD(dt) ρ̂S(t) Û †D(dt)w†jh (5.53)

with wjh = 〈j| Ûz(dt) |h〉. To describe the dynamics in its most general form we write the Zeno
Hamiltonian as

Ĥz =
gz
2

(
|h, z〉 〈+, n|+ |+, n〉 〈h, z|

)
(5.54)

with n and z being arbitrary. Next, the unitary Ûz(dt) can be rewritten as

Ûz(dt) = 1̂−
(

1− cos φz2

) (
|h, z〉 〈h, z|+ |+, n〉 〈+, n|

)
− i sin φz

2

(
|h, z〉 〈+, n|+ |+, n〉 〈h, z|

)

with the Rabi angle φz = gzdt. Using this, the operators wjh can be explicitly evaluated to

whh = 1̂S −
(

1− cos φz2

)
Π̂z , (5.55a)

wgh = − i√
2

sin φz
2 L̂(z,n) , (5.55b)

weh = − i√
2

sin φz
2 L̂(z,n−1) , (5.55c)

where

Π̂z = |z〉〈z| , L̂(z,m) = |m〉〈z| (5.56)

are system operators. As discussed in Sec. 5.1.2, the operators in Eq. (5.55) can be interpreted
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both as the measurement operators of an indirect measurement and as the Kraus operators of an
open quantum system’s evolution. They depend only on the Zeno Hamiltonian and the meter’s
initial state.

We now derive a time-continuous master equation in Lindblad form from the Kraus opera-
tors. To this end, we assume the measurement to be performed continuously with constant rate
κ = 1

τ such that the number of measurements in a time interval dt is κdt. This can be interpreted
as the “smearing” of one measurement over the whole time interval τ . As a result, evolution
described by the master equation deviates from the one described by the piecewise dynamics on
the timescale τ or for large values of τ . With this and when going to the interaction picture with
respect to the coherent evolution ĤD, we can rewrite Eq. (5.53) to [141]

ρ̂S(t+ dt) = κ dt
∑

j=h,g,e

wjh ρ̂S(t)w†jh + (1− κ dt) ρ̂S(t) . (5.57)

Finally, we calculate the derivative of the reduced state as

dρ̂S(t)

dt
= lim

dt→0

ρ̂S(t+ dt)− ρ̂S(t)

dt
(5.58)

and go back to the non-interacting picture [141],

dρ̂S(t)

dt
= −i

[
ĤD, ρ̂S

]
+ κ


 ∑

j=h,g,e

wjh ρ̂S(t)w†jh − ρ̂S(t)


 . (5.59)

Finally, the Kraus operators of Eq. (5.55) can be inserted and the terms rearranged the properties
Π̂z = Π̂2

z = Π̂z
† and Π̂z = L̂†(z,m)L̂(z,m). We arrive at a Lindblad master equation of the form

Eq. (5.26) with the coherent evolution driven by ĤD (in the commutator) and three Lindblad
operators and decay rates,

L̂(z,n) = |n〉〈z| , γ(z,n) =
1

2
sin2

(
φz
2

)
, (5.60a)

L̂(z,n−1) = |n− 1〉〈z| , γ(z,n−1) =
1

2
sin2

(
φz
2

)
, (5.60b)

Π̂z = |z〉〈z| , γz = 4 sin4

(
φz
4

)
. (5.60c)

We now discuss some special cases of this equation to give some basic intuition. First, the
case n = z results in the original Zeno Hamiltonian from Eq. (5.41) where |h, z〉 is coupled to
|+, z〉 as depicted by the red straight arrow in Fig. 5.8 (a). Note that this is the case discussed
in Sec. 5.2.3. With the abbreviations Â ≡ L̂(z,z−1) = |z − 1〉〈z|, Π̂ ≡ Π̂z = L̂(z,z) = |z〉〈z|,
γA ≡ γ(z,z−1) = 1

2 sin2 φz
2 and γΠ ≡ γz + γ(z,z) = 4 sin4 φz

4 + γA, we arrive at the simple mas-
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Figure 5.8: Decay channels in the resonant (a) and off-resonant (b) case for the Zeno level |z = 2〉
(and |z = 1〉 for the green and yellow arrows in (a)). The straight arrows in the middle of each
panel indicate the driven transitions, the snaked arrows indicate the effective decay channels in
the master equation. A circular, snaked array depicts dephasing.

ter equation

dρ̂S(t)

dt
= −i

[
ĤD, ρ̂S(t)

]
+ κγA

(
Âρ̂S(t)Â† − 1

2

{
Â†Â, ρ̂S(t)

})

+ κγΠ

(
Π̂ρ̂S(t)Π̂− 1

2

{
Π̂, ρ̂S(t)

})
(5.61)

The dependency of the decay rates on the Rabi angle in shown in Fig. 5.9 (a, solid lines). Given
the definitions of Â and Π̂, κγA corresponds to the rate of population transfer from the Zeno level
to the level below, and κγΠ to the dephasing rate of the Zeno level (see red, snaked arrows in
Fig. 5.8 (a)). The effect of the operator Â can be identified with the projection the population back
into the Zeno subspace as explained in Sec. 5.2.3, (iii). This becomes apparent by comparing the
decay rate γA with the weight of the |+, z〉 contribution in Eq. (5.47).

The master equation provides yet another perspective, in addition to Fig. 5.7, to illustrate the
functionality of the quantum simulator: The decay rates can be varied by tuning the experimen-
tally accessible parameters φz and κ. To assess the agreement of the master equation (5.61) with
the piecewise dynamics of Eq. (5.43) used to generate Fig. 5.7, we propagate the initial state |0〉
with z = 2 using both methods. Figure 5.9 (b) shows the difference in infidelity of the QZD,
PZ̄ , and in the linear entropy SL between the two pictures. It can be seen that they show good
agreement for small Rabi angles φ2 or displacements β. However, the two pictures deviate if our
assumptions during the derivation of the master equation are violated. Firstly, the agreement de-
teriorates for large β, since this contradicts the assumption of continuous measurements, dt→ 0.
Secondly, we have used the Baker-Campbell-Hausdorff formula up to first order to derive the
Kraus representation. We thus make an error which is of the order of the commutator of ĤD and
Ĥz which scales as φzβ. Therefore, the deviation also rises as φ2 increases.
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Figure 5.9: (a) Decay rates, γA and γΠ, and their ratio for the resonant case coupling |h, z〉 ↔
|+, n = z〉 (solid lines) and the off-resonant case coupling |h, z〉 ↔ |e, n = z − 1〉 (dashed lines).
(b) Difference obtained when solving the master equation and using the piecewise dynamics for
the Zeno infidelity PZ̄ and the dissipation SL as a function of the displacement β and the Rabi
angle φ2.

Next, we briefly discuss the master equation for some other cases to illustrate its generality.
For n = z + 1, the Zeno Hamiltonian couples |h, z〉 to |+, z + 1〉 (blue arrows in Fig. 5.8 (a)).
Equation (5.60) leads to the Lindblad operators

B̂ ≡ L̂(z,z+1) = |z + 1〉〈z| , Π̂ = Π̂z = L̂(z,z) = |z〉〈z|

with the decay rates γΠ and γB = γA being identical to the previous case. The two cases n = z+1

and n = z are hence similar but the Lindblad operator B̂ now describes population excitation
instead of relaxation.

Going to the off-resonant case allows for even broader generalization. We now assume the
detuning ∆ = ωeg − ωS between the transition frequencies of the harmonic oscillator, ωS , and
the |g〉 ↔ |e〉 transition of the meter, ωeg, to be non-vanishing. For large detuning |∆| � Ω, the
dressed states tend towards the uncoupled ones, |+, n〉 ∼ |e, n− 1〉 and |−, n〉 ∼ |g, n〉 [9]. The re-
maining interaction leads to a slight shift of the bipartite energy levels which still allows for state
selective excitation. If we now couple the |h, z〉 ↔ |e, n〉 transition with a Zeno pulse, we are able
to create the Lindblad operators L̂(z,n) = |n〉〈z| and Π̂z = |z〉〈z| where the corresponding decay

rate can be calculated to be γ∆
(z,n) = 2γ(z,n) = sin2

(
φz
2

)
and γ∆

z ≡ γz = 4 sin4
(
φz
4

)
. Incidentally,

the ratio between the two decay rates is given by

γ∆
(z,n)

γ∆
z

= cot2

(
φz
4

)
. (5.62)

Figure 5.9 (a) shows the decay rates in the resonant case with n = z (solid lines) and the off-
resonant case with n = z − 1 (dashed line) which both induce the same Lindblad operators
Π̂ = |z〉〈z| and Â = |z − 1〉〈z| (see also red arrow in (a) and (b) of Fig. 5.8). In the resonant case,
the ratio never exceeds the value 1 rendering it impossible to engineer decay rates with γA > γπ.
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In the off-resonant case, on the other hand, the ratio varies between ∞ for φz = 0 and 0 for
φz = 2π. By additionally adjusting the measurement rate κ, by which all the decay rates have to
be multiplied, it is possible to tune the ratio and the amplitude of the decay rates arbitrarily.

Lastly, by choosing n = z in the off-resonant case, the pulse induces pure dephasing L̂(z,z) =

Π̂z = |z〉〈z| with the decay rate γ∆
z = γz + 2γ(z,z) = 4 sin4

(
φz
4

)
+ sin2

(
φz
2

)
(see green arrow in

Fig. 5.8 (b)). In the same spirit, we can couple |h, z〉 to |g, n〉 in the off-resonant case. This case is
completely analogous to coupling to |e, n〉 but gives yet another degree of freedom to tailor the
open systems dynamics.

While it may seem like the generation of arbitrary sets of Lindblad operators is hampered by
connections between them due to the Rabi angles, the number of linked decay rates is actually
very small. For instance, a coupling of the Zeno level |h, z〉 to the dressed state |+, n〉 induces the
three Lindblad operators Π̂z = |z〉〈z|, L̂(z,n) = |n〉〈z| and L̂(z,n−1) = |n− 1〉〈z| whose decay rates
γz , γ(z,n) and γ(z,n−1) (cf. Eq. (5.60)) all depend on the same Rabi angle φz . This can be reduced
to two Lindblad operators, Π̂z = |z〉〈z| and L̂(z,n) = |n〉〈z|, or even a single one describing pure
dephasing Π̂z (for n = z) simply by going to the off-resonant case, as explained above. In other
words, only between one to three decay rates depend on the same Rabi angle.

The key to engineering decay rates which are independent from each other is to combine
several Zeno pulses Zi which address different transitions |h, zi〉 ↔ |+, ni〉 with Hamiltonian
ĤZ =

∑NZ
i=1 Ĥzi where NZ is the number of Zeno pulses employed.. The Rabi angles φzi can then

be tuned for each pulse independently leading to independent decay rates. Figure 5.8 (a) shows
the combination of four exemplary Zeno pulses in the resonant case. The only exception to the
compatibility of the pulses is that the same dressed state |+, n′〉 cannot be addressed with several
pulses without introducing correlations, possibly undesired ones, of the decay channels. For
instance, we cannot address the |h, 2〉 → |+, 2〉 transition (red arrow), inducing dephasing on |2〉
and deexcitation |2〉 → |1〉, and the |h, 1〉 → |+, 2〉 transition (green arrow), inducing dephasing
on |1〉 and excitation |1〉 → |2〉, at the same time because both address |+, 2〉. This does not,
however, reduce the generality of the scheme since simultaneous deexcitation, |2〉 → |1〉, and
excitation, |1〉 → |2〉, can be replaced by an effective (de)excitation rate.

To summarise, the general Lindblad operators in Eq. (5.60) can induce various different dy-
namics: Taking the Zeno pulse to couple |h, z〉 to |+, n〉 with arbitrary z and n, it is possible to
generate Lindblad operators |z〉〈z|, |n〉〈z| and |n− 1〉〈z| with tunable decay rates. For example,
by choosing n = z, the Lindblad operators inducing population relaxation, |z − 1〉〈z|, while for
n = z+ 1 they induce excitation, |z + 1〉〈z|, both in combination with dephasing |z〉〈z|. Choosing
the system to be off-resonant with respect to the |g〉 ↔ |e〉 transition of the meter provides more
freedom to adjust the decay rates. Taking the Zeno pulse to couple to the |h, z〉 ↔ |e, n〉 transition
allows to arbitrarily tune the ratio between dephasing |z〉〈z| and population transfer |n〉〈z|. In
particular, it allows for inducing pure dephasing in the special case of n = z. Finally, employing
several pulses at the same time engineers arbitrary decay channels for every system state.
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Figure 5.10: Attainable combinations of dissipation SL and non-Markovianity NBLP using two
Zeno pulses Z2 and Z1 with −iαT = 10π (dark grey dots). The light grey shading highlights the
area which is attainable by an extended sampling range. Only the coloured lines are different
between the two panels: they highlight the combinations of SL and NBLP for a Rabi angle φ2 =
4π (a) and 6π (b) with different values of displacement β and Rabi angle φ1 ≤ π as given by the
line style and colour, respectively.

5.3 Independent tunability of non-Markovianity and dissipation

With a single Zeno pulse, dissipation and memory effects cannot be tuned independently. This
shortcoming is remedied by employing two state-selective excitations simultaneously, for exam-
ple Z1 and Z2 addressing states |1〉 and |2〉, cf. Fig. 5.3 (b) (in principle, any two non-degenerate
states can be chosen). Even with two Zeno fields, only a single measurement needs to be carried
out at the end of time interval τ . While Z2 controls memory effects, Z1 induces dissipation: Large
memory effects are obtained with a Rabi angle φ2 = 2nπ, and small φ1 results in strong dissipa-
tion (for our values of the displacement β induced by the coherent drive D “small” is φ1 < π).
The interplay of two pulses in the non-Markovian regime requires a numerical analysis.

First of all, when considering two Zeno pulses, Z1 and Z2, the optimal state pair is possibly
different since all three states in the extended Zeno subspace H+

Z take part in the non-unitary
dynamics induced by the Zeno coupling and the measurement. A numerical re-optimisation
was performed for the specific case of {β = 0.025, φ2 = 4π, φ1 = 0.25π} providing both dissi-
pation (SL = 0.48) and a large amount of non-Markovianity (about twice as large as without
having the second Zeno pulse Z1). After optimising |Ψ1〉 numerically (as described in detail
for one Zeno pulse in Sec. 5.2.2), the optimal state pair for this set of parameters was found to
be {|Ψ1〉 = |ψ(ϑ = 0.56π, ϕ = 1.92π)〉 , |Ψ2〉 = |2〉}. To be exact, this optimisation would have to
be performed for all considered parameters {β, φ2, φ1} and with considering choices other than
|Ψ1〉 = |ψ(ϑ, ϕ)〉 and |Ψ2〉 = |2〉 for the optimal state pair. However, the minimal and maximal
value of the BLP measure differ by about 1% only and since the absolute value of the BLP mea-
sure is not important, we choose

{
|Ψ1〉 = 1√

2
(|0〉+ |1〉) , |Ψ2〉 = |2〉

}
until the end of this chapter

for simplicity.
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Figure 5.10 shows the attainable combinations of dissipation strength SL and memory effects
NBLP when varying the displacement β and the two Rabi angles φ2 and φ1. The grey dots in the
background show all combinations of SL and NBLP obtained by sampling β from 0.01 to 0.5 in
80 steps, φ2 from 2π to 12π in steps of 2π and φ1 from 0 to 2π in steps of 0.01π. For simplicity,
we discuss the example of φ2 = 4π and φ1 ≤ π in more detail (indicated by the coloured lines in
Fig. 5.10 (a)). For small values of φ1 (yellow end of the lines), the dissipation SL increases with φ1

while keeping the non-Markovianity almost constant, as can be seen from the initially flat curves.
For larger φ1, the curves reach a clear boundary at a linear entropy of SL = 1

2 , i.e. at the purity
of the completely mixed two-level system state. This is because Z2 creates a perfect Zeno barrier
at |2〉while Z1 induces dissipation in the resulting two-dimensional Zeno subspace whose linear
entropy is limited by 1

2 . When increasing φ1 even further, the dissipation and non-Markovianity
drop drastically because the pulse Z1 induces a Zeno barrier at |1〉 and the dynamics become
confined to the one-dimensional Zeno subspace {|0〉}. For a Rabi angle of φ2 = 6π, the situation
looks similar as shown in panel (b). The main differences are that the maximal value of the BLP
measure is higher and the linear entropy is not limited by 1

2 . The dependency of both the non-
Markovianity and the dissipation on of φ2 are discussed in detail in the following.

In the case of two combined Zeno pulses, Z1 and Z2, the dynamics depends on three con-
trol parameters (β, φ1, φ2). Since the values of all three parameters affect both the dissipation
strength, quantified by the linear entropy SL, and the non-Markovianity, measured by the BLP
measure NBLP , the discussion of the tunability of the quantum simulator needs some special
care and attention. We start by discussing the dependency of the dissipation and the non-
Markovianity on the Rabi angle φ2 which is induced by Z2 addressing the state |2〉. We set
φ2 = 2nπ with n being an integer in order to induce strong non-Markovianity and Zeno con-
finement as discussed in Sec. 5.2.3. In between, i.e. φ2 6= 2nπ, the signatures of non-Markovianity
vanish quickly (compare to inset in Fig. 5.7 (c)) which also allows access to the Markovian regime.
In the following, we show that φ2 tunes the non-Markovianity also in the presence of the second
Zeno pulse Z1.

Figure 5.11 (a+b) shows the dissipation and the non-Markovianity as a function of the Rabi
angle φ2 for φ1 = 0.05π and five different values of the displacement β. Panel (b) shows clearly
that the non-Markovianity depends linearly on φ2. For this reason, the light grey area in Fig. 5.10
is also accessible by extending the sampling range of φ2 which increases the strength of non-
Markovianity. The dependency of the dissipation on φ2, on the other hand, is comparatively flat
as can be seen in panel (a). The curves are flatter the smaller β. This points to φ2 being a suitable
knob to control the non-Markovianity in the quantum simulator. Most notably does a Rabi angle
with uneven multiples of 2π, φ2 = 2(2n+1)π, and in particularly 2π, lead to more dissipation than
even multiples, φ2 = 4nπ. The reason for this lies in the non-commutativity of the Hamiltonians
ĤD (Eq. (5.39)) and Ĥz (Eq. (5.41)). For large interaction times τ (and accordingly large values of
β), the pulse Zz is not able to perform a perfect φz-pulse on the |h, z〉 ↔ |+, z〉 transition because
the dynamics is also affected by the driveD. As a consequence, the dressed state stays populated
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Figure 5.11: Dependency of the dissipation SL (upper panels, a+c) and the non-Markovianity
NBLP (lower panels, b+d) on the Rabi angle φ2 (left panels, a+b) and on the Rabi angle φ1 (right
panels, c+d). In the left-hand panels, φ1 was set to 0.05π (indicated by the vertical grey line in
the right-hand panels) and in the right-hand panels, φ2 was set to 2π (indicated by the vertical
grey line in the left-hand panels). β is fixed as given by the key. The total duration T of each
propagation was set to fulfil −iαT = 10π. The horizontal black dashed lines in (a+c) indicate a
linear entropy of 1

2 and 2
3 , respectively.

at the time of the measurement and dissipation occurs. A pulse with φz = 4nπ, however, is less
affected by the non-commutativity of the operators because the first and second half of the Zeno
pulse differ in sign as shown in Eq. (5.47). In the same fashion as a spin-echo [142], the second
half reverts the unwanted effects of the first one. As a result, a pulse with φ2 = 4nπ confines
the dynamics of the system to the two-dimensional Zeno subspace created by it and the linear
entropy cannot surpass the value of 1

2 while a φ2 = 2(2n+ 1)π-pulse can. Only the exceptionally
large value of β = 0.4 breaks this pattern, since the displacement in-between two measurements
is too large to guarantee a proper Zeno confinement.

We now turn to discussing the dependency of the dissipation and the non-Markovianity on
the Rabi angle φ1, see panels (c+d). We added the pulse Z1 with the intention of inducing dissi-
pation in the two-dimensional Zeno subspace of the system and, in the following, we show that
the dissipation SL depends particularly strongly on φ1 if φ1 is very small.

As φ1 is switched on (φ1 . 0.1π), the linear entropy rises rapidly from 0 to its maximal value
1
2 while NBLP is only mildly modified. This points to φ1 being a suitable knob to control the
dissipation in the quantum simulator. Note that the maximal value of the non-Markovianity
depends on β sinceNBLP is proportional to the numberN of measurements performed during the
total time T . As mentioned before, the linear entropy takes values larger than 1

2 for exceptionally
large values of β such as 0.4 because the Zeno coupling induced by the pulse Z2 is not sufficient
to generate Zeno confinement confinement. In order to provide full tunability of the dissipation
in the Zeno subspace of the system, it is sufficient to consider this range of φ1 . 0.1π, where the
dissipation takes all the possible values between 0 and 1

2 .
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Nonetheless, we also discuss the parameter range after the peak of SL in order to provide deep
insight into the dynamics of the system. After the peak in dissipation and non-Markovianity, care
must be taken since both quantities drop as φ1 is increased further. In this parameter regime, Z1

induces Zeno confinement at |1〉 which prevents dissipation from occurring. The confinement
is stronger the smaller β and it also prevents a population of |2〉, which is the origin of memory
effects, turning the dynamics Markovian. As φ1 → 2π, the combination of two Zeno pulses Z1

and Z2 induce induce a strong disturbance of the initial state |0〉while keeping it in the subspace
{|0〉 , |1〉 , |2〉}. Hence, both the dissipation and the non-Markovianity rise significantly and the
initial state drifts towards the completely mixed state with SL = 2

3 (compare to boundary in
Fig. 5.10).

We want to stress that the Zeno pulses can not only be used to induce dissipation and non-
Markovianity, but they can also confine the dynamics of the system to a subspace of adjustable
size. In general, to confine the dynamics to a d-dimensional subspace, we simply need to choose
the Zeno level |z = d〉 by adjusting the frequency of the Zeno pulse Zz accordingly. The dimen-
sion of the system should therefore at least be three in order to enable non-trivial dynamics, but
can be arbitrarily large and even infinite as in our setup. It is also possible to generate dissipa-
tion and memory effects on multiple system states |zi〉 with i ∈ {1, 2, . . . , NZ} by varying the
frequency of a single Zeno pulse Zz as a function of time or by employing multiple Zeno pulses
Zzi . The number NZ of maximally controlled states is then only limited by the number of control
pulses available.

To conclude, we showed that we are able to tune the dissipation and the strength of memory
effects independently from each other by employing two control pulses. In our example, we cre-
ated the two-dimensional Zeno subspace {|0〉 , |1〉} by employing one Zeno pulse Z2 addressing
the Zeno level |2〉 with Rabi angles φ2 = 2nπ. The value of the non-Markovianity measure de-
pends linearly on the value of φ2 and thus allows for tuning the strength of memory effects. In
addition to that, we employed a second pulse Z1 addressing the state |1〉 which lies within the
Zeno subspace with a small Rabi angle. We showed that already very small Rabi angles φ1 . 0.1π

suffice to tune the dynamics in the subspace from closed to showing strong dissipation. Our find-
ing can be generalised to subspaces with other size or a larger number of control pulses to induce
more complex dynamics.

Before closing this chapter, we discuss possible experimental realisations of the proposed quan-
tum simulator beyond cavity QED to emphasize the generality of our scheme. The bipartite sys-
tem of a harmonic oscillator and a three-level system is very natural and can be found in many
experimental setups. For instance, due to the formal similarities to cavity QED, a superconduct-
ing qubit coupled to a cavity in circuit QED [143] or a common vibrational mode of trapped
ions together with ion qubit states [144] are equally suitable. Beyond this, our approach is not
restricted to modelling the system as a harmonic oscillator. In fact, not even a bipartite setup is
required—it is sufficient to identify two different subspaces in the quantum system, the ‘system’
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and ‘meter’ parts, and carry out state-selective measurements of the ‘system’ using the ‘meter’.
An example for a realisation in a single system would be a Bose-Einstein condensate (BEC) with
hyperfine ground state levels encoding the system [145]. In general, realisation of our proposal
requires three conditions to be met: (i) existence of a ‘system’ part whose dynamics are decoupled
from the ‘meter’ part when driven by a classical sourceD, (ii) selective excitation of system states
by driving transitions in the meter using one or several Zeno pulses Zzi , (iii) subjecting meter
states to dissipation. Dissipation can be introduced by projective measurement of the meter, as
in the cavity QED example, or it can be natural such as a fast decay. In the BEC experiment, the
Zeno pulse drives transitions to an excited state hyperfine manifold such that the meter is subject
to spontaneous decay. Note that in this case, the number NZ of maximally controlled states is
limited by the dimension of the ‘meter’ subspace, i.e. the excited hyperfine manifold.

5.4 Summary

In this chapter, we have proposed a quantum simulator for open quantum systems which is fully
tunable between the Markovian and non-Markovian regime independently from the strength of
dissipation. It is based on a series of indirect, state-selective measurements of a system by a meter.
Controlling the specifications of the measurement then allows for tuning the properties of the
resulting open quantum system as shown in Fig. 5.7. The control parameters are the displacement
of the harmonic oscillator in-between two measurements, which quantifies the strength of the
coherent evolution, and the Rabi angle induced by the control pulses, which can be interpreted
as the coupling strength between system and meter. For a large range of control parameters, the
measurement gives rise to Quantum Zeno dynamics which allows for confining the dynamics
to a subspace of arbitrary size and which is why we refer to the control pulses as Zeno pulses.
The dissipation inside the open system can be tuned by choosing the amount of entanglement
between system and meter at the end of their interaction. Roughly speaking, the stronger their
entanglement, the higher the dissipation. The frequencies of the Zeno pulses, in turn, determine
which system levels are subject to dissipation.

We further employed the BLP measure, and derived the optimal state pair for the special
case of a two-dimensional Zeno subspace analytically, in order to quantify the degree of non-
Markovianity in the system. We found that the system can be tuned from memory-less to max-
imal display of memory effects where strongest signatures of non-Markovianity occur if system
and meter remain separable at the time of the measurement. For the Markovian limit, we de-
rived a Lindblad master equation (cf. Eq. (5.61)) which describes the dynamics and dissipation
of the open quantum systems in terms of Lindblad operators. We demonstrated that it is possi-
ble to engineer essentially arbitrary decay channels and rates by combining several Zeno pulses,
rendering the quantum simulator universal in the Markovian limit. Finally, the strength of dis-
sipation and non-Markovianity can be engineered independently from each other by combining
two Zeno pulses and carefully tuning their amplitudes as shown in Fig. 5.10. One pulse is then
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used to truncate the Hilbert space and to induce memory effects, while the other pulse introduces
dissipation in the Zeno subspace.

The proposed scheme can be customised in multiple ways. We have mainly discussed the
implementation using one or two Zeno pulses at the same time to control the dynamics in a two-
dimensional subspace of the harmonic oscillator. Generalisation to more pulses allows for the
implementation of additional decay channels. It would, however, be interesting to investigate
more complex control sequences, for instance by alternating different Zeno pulses or changing
their strength as a function of time. Moreover, the timings of the measurements could be chosen
to be non-equidistant or according to a waiting time distribution in order to emulate a random
renewal process [103]. The population of the harmonic oscillator could further be controlled by
sending “wiper” or “emitter atoms” through the cavity which selectively absorb or emit excita-
tions. If allowed by the experimental setup, it would also be interesting to consider the effect of
letting the same meter interact with the system several times in order to store information and
bring it back at a much later time.

The proposed quantum simulator is very general and can be employed in various different
experimental platforms. We have based the model on a harmonic oscillator being subject to re-
peated measurements by an anharmonic three-level systems. This choice was inspired by cavity
quantum electrodynamics (QED), where the harmonic oscillator can be identified with a pho-
tonic mode of a microwave cavity, and the three-level system with three adjacent circular states
of a Rydberg atom – highlighting yet another application of Rydberg atoms for quantum tech-
nologies. However, our model is in fact much more general as has been discussed in the end of
Sec. 5.3.



6
SCATTERING OF RYDBERG ATOMS AND POLAR MOLECULES

Until this point in the thesis, we have only considered the interaction between Rydberg atoms
and light. The large coupling between Rydberg atoms and microwave fields allows for studying
the light-matter interaction at the level of single quanta [9]. It can be exploited for engineering
various quantum technologies, such as quantum sensors and simulators [18], as has also been
discussed in previous chapters of this thesis. However, there are reasons to go beyond the study
of single atoms and their interaction with light. For instance, the study of the strong interaction
between two Rydberg atoms is currently of high interest [20]. Depending on the initial states
of the atoms, they either couple via dipole-dipole or van-der-Waals interaction. The two cases
differ in their scaling with the principal quantum number n and the particles’ distance. This
tunable long-range interaction is an important tool for mimicking a Hamiltonian of choice – a
major prerequisite for quantum simulation – rendering Rydberg atoms one of the most popular
platforms for quantum simulation and quantum computing [17].

The interaction of Rydberg atoms with other systems, such as polar molecules, opens different
possibilities. The large dipole moments of both systems allow for interactions over macroscopic
distances which can, for instance, be used for manipulation of the molecule. Examples cover the
cooling of external and internal molecular degrees of freedom [146, 147], the implementation of
effective spin-spin interactions [148], and the readout and detection of molecular states [149, 40].
Also for quantum technologies a hybrid molecule-Rydberg-atom system would prove useful, for
instance for the implementation of quantum gates in molecules [150]. However, most studies
to date have approximated both the molecule and the Rydberg atom as dipoles, thus restricting
themselves to dipole-dipole interactions. This approximation is questionable due to the large size
of Rydberg orbitals, and accurate simulations of the scattering process including higher order
interaction terms are still missing.

Here, we study the interaction between Rydberg atoms and polar molecules beyond the
dipole-dipole approximation. We build a bridge from theoretically modelling the scattering pro-
cess ab initio to predicting the scattering cross-section for a representative experiment. To this
end, we start by outlining the theoretical framework for modelling polar molecules in Sec. 6.1.
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Inspired by the experiment in Ref. [151], we consider ammonia molecules which can be mod-
elled as symmetric top rotors with an additional inversion mode. Collisions between rubidium
Rydberg atoms and the inversion mode of ammonia have already been studied successfully in
several experiments [151, 152, 153]. Afterwards, in Sec. 6.2, we present our model for describ-
ing the scattering process between Rydberg atoms and polar molecules. Finally, we provide a
prediction for the outcome of a realistic experiment when controlling the cross-section using the
Stark effect of the Rydberg atom in Sec. 6.3. In the subsequent Chapter 7, we provide a thorough
analysis of the multipolar character of the scattering process and discuss its application for the
non-destructive detection of polar molecules.

6.1 Theory of polar molecules

We start by outlining the theoretical framework for describing polar molecules as presented for
instance in Refs. [37, 38, 154]. A similarly concise summary can also be found in Ref. [155]. We
start from the complete Hamiltonian of the molecule and present the reduction to the relevant
degrees of freedom, namely the rotation of a rigid rotor, in Sec. 6.1.1. We then continue by pre-
senting the eigenstates and matrix elements of symmetric top molecules in Sec. 6.1.2. Lastly, we
discuss the inversion vibration mode of ammonia in Sec. 6.1.3 which plays the major role when
considering their interaction with Rydberg atoms later.

6.1.1 The molecular Hamiltonian

Molecules are composed of several atoms and as such, their Hamiltonian is more complex than
the atomic one. In general terms, it can be written as

Ĥmol = T̂e + T̂n + V̂ee + V̂nn + V̂en, (6.1)

where T̂ and V̂ are the kinetic and potential energy, respectively, and the subscripts declare the
nuclear or electronic part. The three potentials describe the Coulomb interactions between elec-
trons, nuclei, and between electrons and nuclei. Spin-dependent interactions as given by the
(hyper)-fine structure are neglected. Depending on the kind of molecule, this Hamiltonian can
include many particles and becomes unfeasible to handle quickly. In the following, we invoke
several approximations to reduce the problem to the degrees of freedom that play a role in the
interaction with Rydberg atoms.

First, the Born-Oppenheimer approximation [156] consists of the assumption that the elec-
trons’ movement is fast enough to respond almost instantaneously to a displacement of the nu-
clei. As a result, the electronic and nuclear motion can be separated and a product ansatz for the
eigenfunctions of the Hamiltonian can be employed as

Ψ(re, rn) = ψe(re, rn)ψn(rn), (6.2)
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where re and rn are the generalised coordinates of the electrons and nuclei in the space-fixed
frame, and ψe,n their wave functions. The electronic wave functions ψe(re, rn) take the positions
of the nuclei as a parameter, not a variable, as the electrons follow the nuclei adiabatically. Us-
ing Eq. (6.2), the Schrödinger equation of the full problem in Eq. (6.1) can be separated into an
electronic part,

Ĥe |ψe〉 =
(
T̂e + V̂ee + V̂nn + V̂en

)
|ψe〉 = Ee(rn) |ψe〉 , (6.3)

where Ee(rn) is the energy of the electronic state which depends parametrically on the position
of the nuclei rn, and a nuclear part,

Ĥn |ψn〉 =
(
T̂n + Ee(r̂n)

)
|ψn〉 = En |ψn〉 . (6.4)

The energy of the electronic state therefore acts as an effective potential for the nuclear motion.
The kinetic energy, in turn, can be written as

T̂n =
1

2

∑

α

mα

(
˙̂rn

)2

α
, (6.5)

where α runs over all the nuclei and the dot denotes the time derivative. In general, the nuclei
can be displaced from their equilibrium position, e.g., due to vibrational motion. In more general
terms, the position of each nucleus can be expressed as

(r̂n)α = r̂c + Ŝ−1
(
q̂0
α + ∆q̂α

)
, (6.6)

where r̂c is the centre-of-mass position, q̂0
α is the equilibrium position of the α-th nucleus in the

molecule-fixed frame, and ∆q̂α its displacement from that position. The origin of the molecule-
fixed frame is set to the centre of mass r̂c such that

∑
αmαq̂

0
α = 0. The rotation matrix Ŝ has

dimension 3× 3 and connects the molecule-fixed axes a, b, c (coordinates q̂) with the space-fixed
axes X,Y, Z (coordinates r̂); an overview over the notation differences between the molecule-
and spaced-fixed frame is given in Tab. 6.1. Using Eulerian angles (ϑ, ϕ, χ), it can be written
as [37]

S(χ, θ, φ) = Rc(χ)RY ′(θ)RZ(φ), (6.7)

where Ri are rotation matrices. The X ′ axis is given by the intersection of the XY and cZ axis.
Equation (6.7) is composed of three rotations: (1) the rotation of X and Y by an angle φ about Z
into X ′ and Y ′, (2) the rotation of X ′ and Z by an angle θ about Y ′ into X ′′ and c, (3) the rotation
of X ′′ and Y ′ by an angle χ about c into a and b. If r is a vector in the space-fixed frame and q is
a vector in the molecule-fixed frame, they are connected via q = Sr.
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frame axes indices proj. op. proj. q. ladder op. dipole

molecule-fixed abc αβγ Ĵc K Ĵ± µ̂

space-fixed XY Z ijk ĴZ M Ĵ± d̂

Table 6.1: Overview about the notation used to declare the space- and molecule-fixed axes. “proj.
q.” and “proj. op.” stand for the projection quantum number and the corresponding operator,
respectively. “ladder op.” are the operators which change the corresponding projection by one.
“dipole” is the dipole moment operator.

There are two constraints resulting from Eq. (6.6). The left-hand side has 3N degrees of free-
dom. On the right-hand side, there are three constraints contained in the centre-of-mass position
r̂c and three implicitly in the rotation matrix Ŝ. This reduces the number of degrees of freedom
for the displacement ∆q̂α to 3N − 6 (3N − 5 for linear molecules). The necessary constraints
are imposed by the Eckart conditions [157]. The first condition,

∑
αmα∆q̂α = 0, requires that

the centre of mass does not change during the displacement. The second,
∑

αmαq̂
0
α ×∆q̂α = 0,

excludes a change in angular momentum. When inserting Eq. (6.6) into Eq. (6.5) and employing
these conditions, the kinetic energy can be written as

T̂n =
1

2
ω̂T Îω̂ +

1

2

∑

α

mα( ˙̂qα)2 +
∑

α

mαω̂ ·
(

∆q̂α ×∆ ˙̂qα

)
, (6.8)

where ω̂ is the angular velocity given by (Ŝ
˙̂
S−1)jk = −εijkω̂i, and Î the moment of inertia ten-

sor with Îij =
∑

αmα(δij(q̂
0
α,k)

2 − q̂0
α,iq̂

0
α,j) where i, j, k indicate the spatial coordinates x, y, z in

the molecule-fixed frame. The first term of Eq. (6.8) describes the rotational energy of the rigid
molecule, the second the kinetic energy of its vibrations, and the third the vibration-rotation in-
teraction. Typical rotational frequencies are of the order of 108 to 1012 Hz, vibrational frequencies
1012 to 1013 Hz [154]. As we are interested in coupling the molecules to transitions between dif-
ferent Rydberg states which lie in the microwave range (tens of Gigahertz), vibrational transition
and vibration-rotation interactions can be neglected to a good approximation [37]. The remaining
term is the rotational kinetic energy which can be written as

T̂rot =
1

2
ĴT Î−1Ĵ , (6.9)

with the molecule-fixed, rotational angular momentum Ĵi = ∂T̂k/∂ω̂i = Îijω̂j . If the symmetric
matrix Îij is diagonalised, the rotation of a rigid molecule can be described by

T̂rot =
1

2

(
Iaω̂

2
a + Ibω̂

2
b + Icω̂

2
c

)
= AĴ2

a +BĴ2
b + CĴ2

c , (6.10)

where a, b and c denote the principal axes of the inertia tensor, and the principal rotational
constants are A = 1/(2Ia) and accordingly for B and C. We assume that they are ordered as
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Figure 6.1: Rotational energy levels of the oblate symmetric top rotor exemplary for the ammonia
molecule as a function of M (a) and K (b) for J ≤ 3. The line colour indicates the value of J and
the line style the |K| value. All but K = 0 levels show a weak inversion splitting (barely visible
on this scale).

A ≥ B ≥ C. The essence of the rigid-rotor approximation is that A, B and C are constants which
results from neglecting variations due to vibrational motion [37].

In the following, we describe the energy levels and eigenstates of the rotational Hamiltonian.
We assume the molecule to be in its electronic and vibrational ground state. As mentioned be-
fore, the energy needed to induce transitions in electronic and vibrational degrees of freedom is
much larger than the ones we consider in the following (∼ 1014 − 1015 Hz and 1012 − 1013 Hz,
respectively) [154] and can hence be neglected.

6.1.2 Symmetric top molecules

Depending on the relative size of the rotational constants, molecules can be classified into one of
four main categories:

1. Linear molecules: Ia = Ib = 0

2. Spherical top: Ia = Ib = Ic

3. Symmetric top: (a) prolate: Ia < Ib = Ic (cigar shaped)

(b) oblate: Ia = Ib < Ic (saucer shaped)

4. Asymmetric top: Ia < Ib < Ic

Since we chose to consider the interaction between Rydberg atoms and ammonia molecules,
which are oblate symmetric tops (3b), we focus on this kind in the following. All results can
be generalised to prolate symmetric and asymmetric tops without difficulties. In case of oblate
symmetric tops, the rotational Hamiltonian from Eq. (6.10) can be written as

Ĥobl = B
(
Ĵ2

a + Ĵ2
b

)
+ CĴ2

c = BĴ2 + (C −B) Ĵ2
c , (6.11)
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where Ĵc is the projection of the angular momentum Ĵ onto the molecular symmetry axis. For
ammonia, the rotational constants are B = 293.681 GHz and C = 190.403 GHz [158]. The eigen-
values of the Hamiltonian in Eq. (6.11) can be derived to be [37]

Erot
JK = BJ(J + 1) + (C −B)K2, (6.12)

corresponding to the energy of the eigenstates |JK〉. Here, J is the quantum number associated
with Ĵ and K is the projection quantum number on the molecular symmetry axis associated
with Ĵc. The energies are shown in Fig. 6.1 for the case of ammonia. Note that symmetric top
eigenstates with ±K are degenerate resulting from the square in Eq. (6.12).

So far, we have considered the angular momentum and its projection in the molecule-fixed
frame which leads to the quantum numbers J and K, respectively. However, it is also possible
to treat the problem in the space-fixed coordinate system. Equivalently to the transformation of
coordinates in Eq. (6.6), the rotation matrix Ŝ transforms operators from the molecule-fixed to
the space-fixed frame, e.g. Ĵα = ŜĴi. Note that we employ Greek letters α, β, γ to indicate the
molecule-fixed frame while Latin indices i, j, k indicate the space-fixed frame (cf. Tab. 6.1). It can
be shown [37] that the two angular momenta commute with each other,

[
Ĵi, Ĵα

]
= 0, and with

Ĵ2. Therefore, the eigenstates of the oblate symmetric top1 Hamiltonian can be characterised by
the complete set of commuting observables Ĵ2, Ĵc and ĴZ. They can be written as |JKM〉 and
fulfil

Ĵ2 |JKM〉 = J(J + 1) |JKM〉 , (6.13a)

Ĵc |JKM〉 = K |JKM〉 , (6.13b)

ĴZ |JKM〉 = M |JKM〉 , (6.13c)

Ĵ± |JKM〉 =
√

(J ∓K)(J ±K + 1) |JK ± 1M〉 , (6.13d)

Ĵ± |JKM〉 =
√

(J ∓M)(J ±M + 1) |JKM ± 1〉 , (6.13e)

where Ĵ± = Ĵa ± iĴb changes the molecule-fixed projection quantum number K by one, and
Ĵ± = ĴX ± iĴY changes the space-fixed projection quantum number M by one. Finally, the
molecules have to obey parity conservation in free space, as the Hamiltonian is invariant under
this symmetry operation (as can be seen more easily in spatial representation given in e.g. [38]).
While the states |JKM〉 are no parity eigenstates, the superpositions of degenerate eigenstates

|ψ±J |K|M 〉 =
1√
2

(
|J |K|M〉 ± |J -|K|M〉

)
(6.14)

are eigenstates of opposite parity. When considering the dipole matrix elements, it follows that
transitions are only allowed between states of opposite parity, |ψ±J |K|M 〉 ↔ |ψ

∓
J |K|M 〉 [38].

1For prolate symmetric tops, Ĵc is replaced by Ĵa.
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J ′ = J + 1 J ′ = J J ′ = J + 1

〈J ||Ŝ||J ′〉 1

(J + 1)
√

(2J + 1)(2J + 3)

1

J(J + 1)

1

J
√

(2J + 1)(2J − 1)

〈JK|sc|J ′K〉
√

(J +K + 1)(J −K + 1) K
√

(J +K)(J −K)

〈JK|s±|J ′K ± 1〉 ∓
√

(J ±K + 1)(J ±K + 2)
√

(J ∓K)(J ±K + 1) ±
√

(J ∓K)(J ∓K − 1)

〈JM |sZ |J ′M〉
√

(J +M + 1)(J −M + 1) M
√

(J +M)(J −M)

〈JM |s∓|J ′M ± 1〉 ∓
√

(J ±M + 1)(J ±M + 2)
√

(J ∓M)(J ±M + 1) ±
√

(J ∓M)(J ∓M − 1)

Table 6.2: Matrix elements of the symmetric top states for the evaluation of Eq. (6.18) [37]. The
first row shows the reduced matrix element independent of K and M , the next two rows show
the matrix elements regarding the molecule-fixed frame with s± = sa± isb, and the last two rows
show the matrix elements regarding the space-fixed frame with s∓ = sX ∓ isY .

Due to the pyramidal shape of ammonia, it possesses a permanent electric dipole moment µ̂
(in the molecule-fixed frame) oriented along its symmetry axis, i.e. the c-axis. In order to calculate
the interaction of ammonia (or any other polar molecule) with Rydberg atoms, we require the
dipole matrix elements in the space-fixed frame, 〈ψ|d̂|ψ〉. To this end, the total molecular wave
function is written as a product of the electronic part, |ψe〉, and the nuclear part, which can again
be written as a rotational and a vibrational part, |ψn〉 = |ψvib〉 |ψrot〉. The expectation value of the
dipole moment can then be expressed as

〈ψ|d̂|ψ〉 = 〈ψrot|d̂ev|ψrot〉 (6.15)

with d̂ev = 〈ψeψvib|d̂|ψeψvib〉. The dipole moment operator in the molecule-fixed frame, µ̂, is
connected to the one in the space-fixed frame via

d̂ev = Ŝµ̂. (6.16)

In the basis |JKM〉, the matrix elements of the i-th component of d̂ can be evaluated as

〈JKM |d̂ev,i|J ′K ′M ′〉 =
∑

α

µα 〈JKM |Ŝαi|J ′K ′M ′〉 . (6.17)

The matrix elements of the rotation matrix are given by the Wigner-Eckart theorem,

〈JKM |Ŝαi|J ′K ′M ′〉 = 〈J ||Ŝ||J ′〉 〈JK|sα|J ′K ′〉 〈JM |si|J ′M ′〉 . (6.18)

The matrix elements on the right-hand side can be calculated analytically [37] and are listed in
Tab. 6.2. The resulting selection rules are ∆J = 0,±1, ∆K = 0,±1 and ∆M = 0,±1. For oblate
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Figure 6.2: Inversion of ammonia. (a) Pyramidal shape of the ammonia molecule in its two
orientations. (b) Double-well potential of the inversion vibration mode. The red levels indicate
the first inversion mode.

symmetric tops, the dipole moment is oriented along the c axis, i.e. µa = µb = 0. As a result, the
elements with α = a and b vanish. From 〈JK|ŝc|J ′K ′〉, which is vanishing unless K = K ′, we
obtain the selection rule ∆K = 0 for symmetric top molecules.

Incidentally, if a DC field along the Z axis is applied, FDC = FDCeZ , the molecules show a
Stark splitting. The quantisation axis of the space-fixed frame is then defined by the DC field
and only matrix elements with i = Z survive. Oblate symmetric top molecules show a linear
Stark shift which is proportional to the matrix element 〈JKM |ŜcZ |JKM〉. Higher orders can
be calculated using perturbation theory. The existence of a linear Stark shift is correlated to the
non-vanishing permanent electric dipole moment of symmetric top molecules. For FDC = 1 V

cm

and J = K = 1, the Stark shift of ammonia is of the order of 100 kHz [37]. It is thus three orders
of magnitude smaller than for Rydberg atoms and can be neglected.

6.1.3 Inversion of ammonia

Ammonia is an oblate symmetric top molecule constituted of three hydrogen atoms and one
nitrogen atom arranged in a pyramidal shape as shown in Fig. 6.2 (a). Due to this arrange-
ment, the molecule has a threefold axis of symmetry, meaning that rotations by 2π/3 around the
symmetry axis leave the Hamiltonian unchanged. The same is true for space inversion (trans-
forming (x, y, z) into (−x,−y,−z)) and interchange of two hydrogenic nuclei. The eigenstates
of the molecule should therefore be unaltered under these symmetry operations (up to a global
phase). The basis states of symmetric top molecules, |JKM〉, however, do not fulfil this condi-
tion. It turns out that the superposition of

∣∣ J |K|M
〉

and
∣∣ J -|K|M

〉
(i.e. |ψ±J |K|M 〉 in Eq. (6.14))

does not lead to eigenstates of the symmetry operations either. Rather, it is necessary to consider
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the nuclear spin states. As a result, the eigenstates can be written as [159]

|ψεJ |K|M 〉 =
1√
2

(∣∣ J |K|M
〉
⊗
∣∣∣ψ|K|H3

〉
+ ε
∣∣ J -|K|M

〉
⊗
∣∣∣ψ-|K|
H3

〉)
(6.19)

with ε = ±1 (ε = +1 for K = 0). The state
∣∣∣ψ±|K|H3

〉
is a superposition of the spin states of

the three hydrogen atoms involving all possible permutations. |K| appears as a phase factor
which guarantees that |ψεJ |K|M 〉 is an eigenstate of the symmetry operations. The specific form of∣∣∣ψ±|K|H3

〉
is not relevant here (but can be found e.g. in [159]), as we are only interested in calculating

the dipole matrix elements which do not depend on the nuclear spin.

In addition to the threefold axis of symmetry modifying the rotational states, ammonia shows
another relevant property. The nitrogen atom can be located on either side of the base of the pyra-
mid, which is constituted of the hydrogen atoms (cf. Fig. 6.2 (a)). This results in the nitrogen atom
seeing a double-well potential as shown in Fig. 6.2 (b) where each well corresponds to the nitro-
gen atom being on either side of hydrogenic plane. This movement is a vibrational mode and
is called the inversion, or “umbrella inversion”, of nitrogen, as the molecule is flipped “inside
out”. If the potential barrier was infinitely high, the two states would be degenerate. When the
potential barrier is finite, however, the nitrogen atoms can tunnel through the plane, resulting in
an inversion of the molecular structure as shown in Fig. 6.2 (a). The two non-stationary states
of nitrogen being left or right of the hydrogenic plane couple and lead to a splitting of the en-
ergy level for a sufficiently low barrier. The two lowest lying vibrational states are given by the
symmetric and antisymmetric superposition of the nitrogen atom being left or right of the barrier
(red levels in Fig. 6.2 (b)). The antisymmetric state, which we label |ν−〉, lies above the symmetric
state, |ν+〉. The mean frequency of the inversion mode, ω0

inv = 23.786 GHz [38], and its transition
dipole moment, dinv = 1.468 D [160], were measured experimentally. One consequence of the in-
version is that the molecule no longer has a permanent dipole moment. This can be understood
intuitively as the nitrogen atom being located on both sides of the hydrogenic plane “at the same
time”. Instead, the transition dipole moment between the two inversion states plays a crucial
role, which becomes apparent in the next section. Different from symmetric top molecules with-
out inversion splitting, ammonia thus does not possess a linear Stark shift [161]. If a strong DC
field is employed, the inversion states mix such that the nitrogen atom is located primarily left or
right of the hydrogenic plane [38].

Experiments reveal that the inversion spectrum is very rich showing many spectral lines in
the microwave regime (see Ref. [162] and references therein). It turns out that the inversion
mode shows a fine structure which depends on the rotational quantum numbers J and K [163].
This can be understood qualitatively using classical arguments. The rotation of the molecule
induces a centrifugal force proportional to the square of the angular momentum about this axis,
i.e. K2, which flattens the potential and increases the inversion splitting. Rotations around the
axis perpendicular to the symmetry axis, however, elongate the molecule, increasing the potential
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Figure 6.3: (a) Inversion splitting as a function of J and K as given in Eq. (6.20). (b) Rotation-
inversion energy levels of ammonia and allowed dipole transitions for J ≤ 3. Blue arrows indi-
cate transitions within one inversion doublet, red arrows between inversion states with different
J values. The label next to the states indicate the inversion level, ν±, and the ε value (±1) used in
Eq. (6.19). Dashed lines indicate missing states. The inversion splitting is not to scale.

barrier and decreasing the inversion splitting proportional to J(J + 1) − K2. When combining
both effects, the inversion splitting can be written as [38]

ωinv = ω0
inv − a

(
J(J + 1)−K2 + bK2

)
, (6.20)

where higher orders O(J4, J2K2,K4) have been neglected [163]. The values of a = 151.5 MHz

and b = 59.9 MHz were determined experimentally [38]. The dependence of ωinv on J and K is
shown in Fig. 6.3 (a).

If we now combine the inversion mode |ν±〉 and rotations |ψεJ |K|M 〉, the eigenstates of ammo-
nia can be written as a tensor product, |ν±〉 ⊗ |ψεJ |K|M 〉. It can be shown that for fermionic nuclei
(such as hydrogen for ammonia), the eigenstates have to fulfil [159]

ν± ε (−1)J = −1 (6.21)

with ν± = ±1 characterising the inversion, i.e. +1 for the symmetric state |ν+〉 and −1 for the
antisymmetric state |ν−〉. It follows that if J is odd (even), the symmetric inversion state |ν+〉
goes with ε = +1 (ε = −1) and the antisymmetric inversion state |ν−〉 with ε = −1 (ε = +1), see
Fig. 6.3 (b).

Finally, the matrix elements of the eigenstates of ammonia shall be calculated, similar to the
general symmetric top molecules shown in Eq. (6.18). The two factors 〈J ||Ŝ||J ′〉 and 〈JM |si|J ′M ′〉
are not affected by the properties of ammonia discussed above. As ammonia is an oblate sym-
metric top, the dipole moment is oriented along the c axis and we obtain the selection rules
∆J = 0,±1 and ∆K = 0 (cf. end of Sec. 6.1.2). From Tab. 6.2, it can quickly be seen that the



CHAPTER 6. SCATTERING OF RYDBERG ATOMS AND POLAR MOLECULES 135

matrix elements fulfil

〈JK|ŝc|JK〉 = K = −〈J -K|ŝc|J -K〉 , (6.22a)

〈JK|ŝc|J + 1K〉 =
√

(J +K + 1)(J −K + 1) = 〈J -K|ŝc|J + 1 -K〉 . (6.22b)

When now evaluating
〈
ν± ψεJ |K|M |ŝc|ν±′ ψε′J ′|K|′M ′

〉
, we find the selection rules

∆J = 0,±1, ∆K = 0, M = 0 6↔M ′ = 0, ν± ↔ ν∓, (6.23)

where↔ indicates allowed and 6↔ forbidden transitions. The dipole allowed transition for am-
monia are shown in Fig. 6.3 (b). For simplicity, we denote the states by |ν±JKM〉 ≡ |ν±〉 ⊗
|ψεJ |K|M 〉with K = |K| > 0 from now on. The value of ε is implicitly given by Eq. (6.21).

6.2 Modelling the scattering between polar molecules and Rydberg
atoms

We develop in this section a suitable model to describe the scattering of polar molecules by
Rydberg atoms. The general idea is to consider the particles approaching each other: the po-
lar molecule interacts with the charge distribution of the Rydberg atom, and the strength of this
interaction increases as the particles approach. If the particles are (close to) resonance and in suit-
able states, they interchange energy without emitting radiation. After the collision, the Rydberg
atom contains information on the molecule and vice versa. As we discuss later, the energy trans-
fer can serve as a witness for detecting the presence and measuring the state of the molecule. In
this section, we develop a model for simulating the scattering process and computing the cross-
section; we apply the model to a concrete example in the subsequent Sec. 6.3.

We assume the scattering process between rubidium Rydberg atoms and ammonia molecules1

and consider a single scattering event only, i.e. one Rydberg atom interacting with one molecule,
which is justified if the medium is sufficiently dilute. However, we account for ensemble effects
by performing a statistical average over several initial scattering parameters later on. Further,
a DC field is applied to induce the Stark effect in the Rydberg atom2. The full Hamiltonian can
then be written as

Ĥ(t) = Ĥ
(0)
ryd + V̂ DC

ryd + Ĥ
(0)
mol + V̂int(t), (6.24)

where Ĥ(0)
ryd is the Hamiltonian of the Rydberg atom, V̂ DC

ryd is the interaction of the Rydberg atom

with the DC field, Ĥ(0)
mol is the Hamiltonian of the molecule, and V̂int(t) is the interaction between

the two particles. The latter describes the interaction of the molecule’s electric dipole moment
with the charge distribution of the Rydberg electron.

1Generalisation to other species is straight-forward.
2The Stark effect of the molecule is neglected as discussed in Sec. 6.1.2.
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Ĥ
(0)
ryd is diagonal in the spherical basis |ψryd〉 = |n`,m`〉 (using the spectroscopic notation)

introduced in Sec. 2.2.2 with eigenenergies as given by Eq. (2.6) (including quantum defects but
neglecting spin-orbit coupling). V̂ DC

ryd is given by Eq. (2.19) and gives rise to the Stark effect which
can be treated as described in Sec. 2.2 and 3.1.1. In presence of a DC field, the spherical basis is
not the eigenbasis of the Rydberg atom. However, low-angular-momentum states, which possess
a large quantum defect, can still be labelled by |n`,m`〉 for small DC field values, FDC < 5 V

cm .
Ĥ

(0)
mol is diagonal in the basis |ψmol〉 = |ν±JKM〉 with eigenenergies Erot

JK ± Einv/2 (as given by
Eqns. (6.12) and (6.20)). The combined system of Rydberg atom and molecule can be described
in the product basis,

|Ψ〉 = |ψryd〉 ⊗ |ψmol〉 , (6.25)

where the subscripts label the state of the Rydberg atom and molecule, respectively.
The remainder of this section is organised as follows. We start by discussing the interaction

potential V̂int(t) between the Rydberg atom and the polar molecule in more detail and derive its
multipole expansion in Sec. 6.2.1. Afterwards, in Sec. 6.2.2, we elaborate on how to simulate the
scattering process between the two particles. Finally, in Sec. 6.2.3, we chose suitable subspaces
of the Rydberg atom and molecule in order to study their interaction, and show how to calculate
the scattering cross-section numerically.

6.2.1 Multipole expansion of the interaction potential

We model the interaction potential V̂int(t) as a dipole d̂ (the polar molecule) interacting with the
field induced by a charge distribution (the orbital of the Rydberg atom’s valence electron),

V̂int(t) =
d̂ ·
(
r̂ryd − rmol(t)

)
∣∣r̂ryd − rmol(t)

∣∣3 . (6.26)

We take d̂ to be the transition dipole moment of the inversion mode of ammonia in the space-
fixed frame but it could equally be the permanent dipole moment of a polar molecule. r̂ryd is
the position operator of the Rydberg electron. rmol(t) is the distance from the molecule to the
ionic core of the Rydberg atom. We treat this distance classically as discussed in more detail in
Sec. 6.2.2.

Evaluating the matrix elements of the full interaction potential is challenging, which is why
we perform a multipole expansion. This comes with the additional advantage that contribu-
tions of different order can be identified and analysed systematically. The first order term of the
multipole expansion corresponds to the well-known dipole-dipole interaction as can be found in
textbooks [164]. Nevertheless, we repeat its derivation for completeness and expand the potential
beyond what can be found in standard textbooks to third order in the following.
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For simplicity, we omit the operator hats in the derivation1 and write the potential as

V (r) =
d · r
r3

, (6.27)

with r ≡ rryd − rmol and r = |r|. We carry out the multipole expansion in Cartesian coordinates
and thus calculate the Taylor expansion of V (r) for rryd � rmol, i.e. we assume the distance
between the Rydberg atom and the molecule rmol to be much larger than the size of the Rydberg
atom, rryd. With T f(r;a) being the Taylor expansion of a function f(r) about a point a, we can
write the multipole expansion of the interaction potential as

T V (r;−rmol) = V (−rmol) +
∑

α=x,y,z

Vα(−rmol) rryd,α

+
1

2

∑

α,β=x,y,z

Vαβ(−rmol) rryd,α rryd,β

+
1

6

∑

α,β,γ=x,y,z

Vαβγ(−rmol) rryd,α rryd,β rryd,γ + . . . (6.28a)

≡V0(−rmol) + V1(−rmol) + V2(−rmol) + V3(−rmol) + . . . , (6.28b)

where we have used a = −rmol (since r = −rmol for rryd = 0) and r − a = rryd. In Eq. (6.28a),
we have defined the components of vectors as r = (rx, ry, rz)

T and the partial derivatives as

Vα(−rmol) =
∂V (r)

∂rα

∣∣∣∣
−rmol

, Vαβ(−rmol) =
∂2V (r)

∂rα∂rβ

∣∣∣∣
−rmol

, Vαβγ(−rmol) =
∂3V (r)

∂rα∂rβ∂rγ

∣∣∣∣
−rmol

.

(6.29)

In Eq. (6.28b), we have further defined Vn(−rmol) as the n-th order contribution of the multipole
expansion. The matrix elements of each order can most easily be evaluated in the product basis
of Eq. (6.25), as the partial derivatives in Eq. (6.29) depend only on molecular degrees of freedom,
while the components of rryd refer to the Rydberg atom. For example, the first order contribution
can be written as

〈Ψ′|V1(−rmol)|Ψ〉 =
∑

α=x,y,z

〈ψ′ryd|rryd,α|ψryd〉 〈ψ′mol|Vα(−rmol)|ψmol〉 , (6.30)

and equivalently for higher orders. The matrix elements of the position operator of the Rydberg
atom can be calculated using spherical tensors as explained in Sec. 2.1.3 and Appendix B. The
molecular part ultimately only requires the calculation of matrix elements of the dipole operator
d̂ as we show in the following by evaluating the explicit form of the multipole contributions up
to third order.

1As a reminder: the dipole moment d̂ of the molecule and the position r̂ryd of the Rydberg electron are operators,
the position rmol of the molecule is a classical vector.
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The zeroth-order term corresponds to the monopole contribution and is equal to

V0(−rmol) = V (−rmol) = −d · rmol

r3
mol

. (6.31)

This term describes the interaction of the molecular dipole with the Rydberg electron located
at the origin. As the total charge of the Rydberg atom is zero, however, we would expect the
monopole contribution to vanish. It turns out that a non-vanishing monopole contribution is
a relict of having neglected the interaction of the molecular dipole with the ionic core of the
Rydberg atom. The two terms cancel out exactly, as the ionic core and the electron have opposite
charge. We hence neglect the monopole term without invoking any approximation.

The first order term describes the dipole contribution. When using

∂

∂rα

1

r3
= −3rα

r5
,

the partial derivative of the potential from Eq. (6.29) equals

Vα(−rmol) =
dα
r3

mol
− 3d · rmol rmol,α

r5
mol

, (6.32)

which depends on the molecule only. The matrix elements of the α component of the dipole
operator, d̂α, can be calculated as described in Sec. 6.1, resulting in the selection rules of Eq. (6.23).
The Rydberg part, r̂ryd,α, requires the evaluation of a rank-one tensor T (1)

q (cf. Eq. (2.13)), i.e.
matrix elements of x̂, ŷ, and ẑ. This leads to the well-known dipole selection rules for the Rydberg
atom

∆` = ±1, ∆m` = 0,±1 (6.33)

as explained in Appendix B.1. When combing both, i.e. evaluating the sum over α in Eq. (6.28a),
we arrive at the well-known formula for the dipole-dipole-interaction

V̂1(−rmol) =
d̂ · r̂ryd

r3
mol

−
3
(
d̂ · rmol

)(
r̂ryd · rmol

)

r5
mol

, (6.34)

where we have added the operator hats for clarity and which scales as r−3
mol as expected.

The second order term contains the quadrupole contribution of the Rydberg atom’s charge
distribution. The molecular part can be calculated to be

Vαβ(−rmol) =
3

2

(
d · rmol δαβ + 2dmol,αrmol,β

r5
mol

− 5d · rmol rmol,αrmol,β

r7
mol

)
, (6.35)

which again only requires the calculation of the dipole moments matrix elements similarly as for
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the dipole case. For the Rydberg part, we need to evaluate matrix elements of rank-two tensors
T

(2)
q , i.e. matrix elements of the products x̂x̂, x̂ŷ, and so forth. The resulting quadrupole selection

rules for the Rydberg atom are

∆` = 0,±2, ∆m = 0,±1,±2, (6.36)

as discussed in Appendix B.2. Inserting Eq. (6.35) into Eq. (6.28a) gives the formula for the dipole-
quadrupole interaction,

V̂2(−rmol) = −3

2




2
(
d̂ · r̂ryd

) (
r̂ryd · rmol

)
+
(
d̂ · rmol

)
r̂2

ryd

r5
mol

−
5
(
d̂ · rmol

) (
r̂ryd · rmol

)2

r7
mol


 ,

(6.37)

which scales as r−4
mol.

Lastly, we consider the next higher order, namely the octupole contribution. The molecular
part can be calculated to be [5]

Vαβγ(−rmol) =
1

2

(
−3 dα δβγ

r5
mol

+
15
(
d · rmol rmol,α δβγ + dα rmol,β rmol,γ

)

r7
mol

−
35d · rmol rmol,α rmol,β rmol,γ + 105 dα

(
r3

mol,α rmol,γ δαβ − r4
mol,α δαβγ

)

r9
mol


 , (6.38)

which scales as r−5
mol. For the Rydberg part, we need to evaluate matrix elements of rank-three

tensors T (3)
q , i.e. the products x̂x̂x̂, x̂x̂ŷ, and so forth, as discussed in Appendix B.3. The octupole

selection rules for the Rydberg atom result in

∆l = ±1,±3, ∆m = 0, . . . ,±3. (6.39)

The formula for the dipole-octupole interaction, V̂3(−rmol), is not required for computing the
matrix elements of the potential, since Eq. (6.38) in combination with Eq. (6.28a) is sufficient.
As V̂3(−rmol) is moreover very complex and does not provide any further insight, we do not
calculate it explicitly.

Using these equations, we are able to evaluate the matrix elements of the interaction potential
up to third order in the multipole expansion. This allows for simulating and studying the dipole-
dipole, dipole-quadrupole and dipole-octupole interaction between Rydberg atoms and polar
molecules.
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Figure 6.4: (a) Classical scattering trajectory between the molecule (blue) and the Rydberg atom
(red) if the molecule flies in Z-direction as given in Eq. (6.41). The parameters are explained in
the main text. (b) Direction of the trajectory rϑmol(t) of Eq. (6.40) for different angles ϑ between
the trajectory and the Z-axis; from ϑ = 0 (dark blue, corresponding to the trajectory shown in (a))
to π/2 (light blue). The green circle indicates the impact parameter b which gives the minimal
distance between the two dipoles.

6.2.2 Scattering process

We now turn to the description of the scattering process itself and consider a single scattering
event only, as pointed out above. To this end, we assume the two particles to be initially infinitely
far apart; they approach each other and finally move away from each other again. The process can
be separated into two parts: the external degrees of freedom, i.e. the movement of the particles
in space which we describe classically, and the internal degrees of freedom which we describe
quantum mechanically.

We start with the classical scattering trajectory, see Fig. 6.4 (a). We set the origin of the coor-
dinate system to the position of the ionic core of the Rydberg atom. Furthermore, we assume the
molecule to perform a uniform motion with constant velocity v. This corresponds to neglecting
any change in direction or magnitude of the molecule’s translational motion caused by its inter-
action with the Rydberg atom. However, the electrostatic interaction between the two particles
should deflect the molecule from its straight trajectory, especially if the impact parameter b is
small. The influence of our approximation can be estimated as follows. As the potential V̂int(t) is
time-dependent, the energy of the internal degrees of freedom is not necessarily conserved dur-
ing the scattering process. The energy expectation value changes if the particles exchange energy
despite having different transitions frequencies. In a quantum description of the scattering pro-
cess, the total energy is conserved and any internal change in energy causes a change in kinetic
energy and vice versa. For most scattering parameters, we find the expected change in kinetic
energy to be below 1%, meaning that the deflection is small. As we ultimately average the out-
come of the simulation over many initial scattering parameters in order to account for ensemble
effects, we expect the fluctuations in kinetic energy to average out. Moreover, as explained in the
next section, we exclude very small impact parameters from the calculation of the cross-section,
which lead to the largest change in kinetic energy.
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The equation of motion for uniform motion is simply given by v(t) = v0 with |v0| = v. Its
solution can be written as rmol(t) = v0t+ r0. We define the impact parameter b to be the minimal
distance between the two particles and we set the zero of time such that rmol(t = 0) = r0 = b.
What is left to be determined is the orientation of the trajectory with respect to the quantisation
axis defined by the direction of the DC field. In the most general case, the trajectory can be
defined by three angles and the impact parameter b. If we imagine a sphere of radius b around
the ionic core of the Rydberg atom, the contact point between the trajectory of the molecule and
that sphere can be parametrised by two angles φ and θ in standard spherical coordinates. In
addition to that, the velocity vector, which determines the direction of the trajectory, can rotate in
the tangent plane to the sphere at the contact point which determines the angle χ.

In the following, we limit ourselves to a special case while generalisation to other cases is
straight-forward. Namely, we assume the scattering plane to be the XZ plane of the coordinate
system, i.e. we set the azimuthal angle φ = 0 and the tangent angle χ = 0. The trajectory of the
molecule, as depicted in Fig. 6.4 (a), can then be written as

rϑmol(t) = v0t+ r0 = vt



− sinϑ

0

cosϑ


+ b




cosϑ

0

sinϑ


 , (6.40)

where ϑ is the angle between v0 and the Z-axis1 as shown in Fig. 6.4 (b). For ϑ = 0, the molecule
flies in Z-direction, i.e. parallel to the quantisation axis as shown in Fig. 6.4 (a), leading to

r0
mol(t) = vt eZ + b eX . (6.41)

For ϑ = π/2, it flies in −X-direction and the trajectory is perpendicular to the quantisation axis,
i.e. rπ/2mol(t) = (−vt, 0, b)T . Note that every angle ϑ corresponds to a different experimental setup.
If the beam of molecules (or Rydberg atoms) is directed, the orientation of the trajectory can
be controlled in the experiment and it is sufficient to consider one specific value of ϑ. If not,
for instance when dealing with clouds of particles, averaging over some or all angles might be
required.

We now turn to the internal degrees of freedom. They are described by the full Hamiltonian
of Eq. (6.24) and treated quantum mechanically. The classical trajectory rmol(t) of Eq. (6.41) is in-
serted into the different orders of the multipole expansion of the potential presented in Sec. 6.2.1.
This effectively renders them time-dependent. For large distances, the dipole-multipole interac-
tion is very small while it is strongest at t = 0, where the separation between the two particles is
minimal. The Schrödinger equation under the full Hamiltonian is then solved numerically using
the Newton propagator (cf. Sec. 3.1.2) as implemented in the QDYN library [62].

1In other words: ϑ is the polar angle θ in spherical coordinates for the special case of an azimuthal angle φ = 0 and
an tangent angle χ = 0.



142 CHAPTER 6. SCATTERING OF RYDBERG ATOMS AND POLAR MOLECULES

45d

46p

m` =−2 −1 0 1 2 0 100 200 300 400 500
FDC [V/m]

23.5
24.0
24.5
25.0
25.5
26.0

ω
ry

d
[G

H
z]

23.60

23.65

23.70

Figure 6.5: Hilbert space of the Rydberg atom at the chosen dipole transitions 46p to 45d (a) and
their Stark splitting (b). The line style indicates the different transitions. Note that all arrows
indicate dipole-allowed transitions except for the dotted red one which is dipole-forbidden. The
solid, horizontal grey line in (b) indicates the transition frequency at zero field (23.626 GHz), the
dashed line indicates the inversion splitting of ammonia for J = K = 1 (ωinv = 23.694 GHz). The
Stark map is symmetric in±m`. The inset shows a zoom to FDC = 50 to 170 V

m where the Rydberg
transitions are in resonance with the ammonia inversion mode.

While ideally, we would assume the two particles to be infinitely far apart at the beginning
and in the end of the scattering process, we have to assume finite values for the numerical sim-
ulation. More specifically, we choose the initial time of the process, −t0 < 0, such that V̂int(−t0)

is negligible. The initial distance |rmol(−t0)| should therefore be much larger than the impact pa-
rameter, |rmol(−t0)| � b, and the radius of the Rydberg atom, |rmol(−t0)| � 100 nm. In our simu-
lations, we find a value of |rmol(−t0)| = 2µm to be suitable and determine t0 from t0 ≈ v/rmol(t0).
The final time is set to +t0.

6.2.3 Calculation of the cross-section

Ultimately, we aim to study the influence of the scattering on the particle’s internal degrees of
freedom. If the two particles possess resonant transitions from their respective initial state, we
expect them to exchange energy. The likelihood of a transition event to occur is described by
the cross-section σ which, in classical terms, can be interpreted as the effective size of the scat-
tering centre b2. In the following, we present numerical calculations of the cross-section for the
scattering between Rydberg atoms and polar molecules.

First, we identify suitable initial states of the Rydberg atom and molecule such that an energy
exchange between them can occur. Regarding the molecule, we consider the inversion mode
of ammonia which has a transition frequency around ω0

inv = 23.786 GHz. Note that the exact
inversion splitting ωinv depends on J and K as given in Eq. (6.20). We consider a subspace with
fixed values of J and K since transitions in J are highly off-resonant (and transitions in K are
forbidden for oblate symmetric tops, cf. Eq. (6.23)). The molecular Hilbert space |ν±JKM〉 ≡
|ν±M〉JK has a dimension of 2(2J + 1) due to the degeneracy in M . We thus need to identify
transitions in the Rydberg atom which are near-resonant to the selected inversion mode.
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For clarity, we define the splitting between two Rydberg levels with energy E0 and E1 as

ωryd = E0 − E1. (6.42)

The detuning between molecular and Rydberg transitions is quantified by

∆ = ωryd − ωinv. (6.43)

A suitable transition in the Rydberg atom is the dipole transition from 46p to 45d shown in Fig. 6.5
inspired by the experiment in [151]. At zero field, all transitions between the upper (45d corre-
sponding to E0) and lower (46p corresponding to E1) states, as indicated by the arrows in (a),
are degenerate with a frequency of 23.626 GHz. They are therefore close to resonance with the
ammonia inversion mode (e.g. ∆ = −68 MHz for J = K = 1). Transitions to higher or lower
Rydberg states are sufficiently detuned and can be neglected. In other words, it is sufficient to
constrain our analysis to the subspace 46p to 45d and we introduce the notation

|↑,m`〉 ≡ |45d,m`〉 with |m`| ≤ 2, (6.44a)

|↓,m`〉 ≡ |46p,m`〉 with |m`| ≤ 1. (6.44b)

As the DC field is switched on, each state experiences a different Stark shift thus lifting the de-
generacy between states with different |m`| values. As a result, the transition frequencies ωryd

between the lower and upper manifold diverge as shown in panel (b). The Stark shift of the Ryd-
berg states therefore tunes the energy mismatch ∆ between the Rydberg atom and the molecule.

It is important to notice that the product Hilbert space can become very large when describing
both particles. Each state of the Rydberg atom (molecule) consists of 2`+1 (2J+1) sub-levels due
to the projection quantum number m` (M ). To reduce the numerical cost during the simulations,
we remove states with only off-resonant transitions from the Hilbert space similarly to a RWA
in light-matter interactions [9]. Taking the example of two two-level systems, the particles only
interact significantly if one particle is in the lower state |↓〉 and the other one in the upper state
|↑〉. Transitions from the initial states |↑↑〉 or |↓↓〉, on the other hand, are highly off-resonant
and no energy transfer takes place. We therefore remove these states from the Hilbert space.
In our model, neither the molecule nor the Rydberg atom are merely two-level systems. More
specifically, we remove the product states |↑,m`〉 ⊗ |ν−M〉JK and |↓,m`〉 ⊗ |ν+M〉JK , as they
correspond to both the Rydberg atom and the molecule being in the higher or lower energy level,
respectively1. We have tested numerically that removal of these states does not affect the outcome
of the simulations.

We now consider one exemplary scattering event to provide some intuition on the dynamics
during the scattering process. We assume the molecule to be initially in the upper inversion state
|ν−,M = 0〉J=1,K=1 (the subscript is omitted in the following discussion for clarity). For J = 1

1Note that the symmetric inversion state |ν+M〉JK has a lower energy than the antisymmetric state |ν−M〉JK .
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Figure 6.6: (a) Time evolution of the initial state |Ψ0〉 = |↓,m` = 0〉⊗|ν−,M = 0〉11 (solid red line)
for FDC = 0 V

cm , v = 100 m
s and b = 250 nm. The line colour indicates the population in different

product states as given by the legend (the subscript 11 of the molecular states has been omitted
for simplicity). Dashed lines indicate that the two particles exchanged excitation. The lines for
positive and negative projection quantum numbers (as indicated by the± sign) lie on top of each
other. Other product states are populated with less than 2% at any time and are not specified in
the legend. (b) Transition probability Pex for different initial states |Ψ0〉 as given by the legend as
a function of the impact parameter. The remaining parameters are identical to (a).

and K = 1, the inversion splitting equals ωinv = 23.694 GHz. Due to selection rules, we expect
dipole-dipole interaction to be dominant but we consider all three orders of the multipole expan-
sion in the simulations. We choose as an initial Rydberg state |↓,m` = 0〉 (using the definition of
Eq. (6.44)). We do not employ a DC field, i.e. we set FDC = 0 V

cm , such that all Rydberg transi-
tions are degenerate and equal to 23.626 GHz (cf. Fig. 6.5 (b)). Moreover, we set the velocity to
v = 100 m

s and the impact parameter to b = 250 nm.

Figure 6.6 (a) shows the evolution of the populations as a function of time. It can be seen that
at the end of the interaction, the two particles have exchanged roughly half of the excitation, as
the population of the initial state (solid red line) has decreased to 54%. Conversely, the population
of states where the Rydberg atom is in the excited and the molecule in the ground state (indicated
by dashed lines) have increased. The molecular state |ν+,M = 0〉 is not populated significantly,
since the transition M = 0 ↔ M ′ = 0 is forbidden (cf. Eq. (6.23)). Note that, since we have
started in m` = M = 0, the dynamics are symmetric with respect to the sign of m` and M . As a
result, states for which both projection quantum numbers are inverted in sign (e.g. |↑,m` = 0〉 ⊗
|ν+,M = 1〉 and |↑,m` = 0〉 ⊗ |ν+,M = −1〉, purple lines) are populated almost equally, such
that the corresponding two curves lie on top of each other. The state with negative sign has
been plotted in a lighter shade of the same colour. Upon very close examination, the population
differs between the two signs by maximally 0.5 percentage points around 1.3 ns for the yellow
curve, and by 0.3 percentage points around 6 ns for the purple curve (not visible at this scale).
The slight asymmetry is caused by higher order multipole contributions.

In order to calculate the cross-section of the process, it is not the time-resolved dynamics of
a single scattering event but the final transition probability PΨ0

ex we require, where |Ψ0〉 denotes
the initial state. The transition probability can be defined as one minus the survival probability,
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PΨ0
ex = 1− P0 with P0 = |〈Ψ0|Û(∞)Ψ0〉|2 being the probability that the system is still in its initial

state |Ψ0〉 after the scattering process and Û(t) the time-evolution operator. However, we aim to
study whether the particles have exchanged their energy, i.e. if the molecule transitioned from
one inversion state to the other, instead of just checking whether it has left its initial state. In
case the molecule is initially in the upper inversion state |ν−M〉, the transition probability can be
defined as

PΨ0
ex =

∑

M ′
|〈ν+M ′|U(∞)ν−M〉|2, (6.45)

and equivalently, if the molecule is initially in the lower state |ν+M〉. The transition probability
could also be defined in terms of the Rydberg atom. However, since the combined system of
Rydberg atom and molecule is closed and since we have removed states with only off-resonant
transitions from the Hilbert space, the transition probability is equal for both particles. PΨ0

ex can
then be interpreted as the probability that the particles have exchanged their excitation during
the scattering process.

The transition probability PΨ0
ex of Eq. (6.45) depends implicitly both on internal and external

parameters of the scattering process. External parameters refer to the classical scattering trajec-
tory; namely the impact parameter b, the relative velocity v between the particles and possibly
different orientations of the trajectory with respect to the quantisation axis. Internal parameters
refer to the quantum state of both particles, such as their initial states and the detuning ∆ between
the relevant transitions.

To clarify the role of (some of) these parameters, we calculate the transition probability PΨ0
ex

for different initial states and different impact parameters b. All other parameters are unchanged
with respect to the single trajectory discussed above. Figure 6.6 (b) shows the transition prob-
ability for all possible initial states (as indicated by the line colour; the remaining combinations
follow from symmetry by inverting the sign of both projection quantum numbers) for impact pa-
rameters from bmin = 50 nm to bmax = 800 nm in steps of bstep = 1 nm. The shape of these curves
is characteristic for the scattering process. For large impact parameters, the interaction between
the two particles is very weak and no transition takes place. As b decreases and the two particles
approach each other, the transition probability increases. At some critical value of the impact
parameter, PΨ0

ex reaches its maximal value (here around b = 180 nm). If the particles come even
closer, the accumulated phase oscillates rapidly and the transition probability fluctuates around
50% for all initial states.

Finally, the cross-section can be calculated by averaging the transition probability over all
possible trajectories of the molecule with respect to the quantisation axis. If we assume the
molecule to fly in Z-direction (ϑ = 0), as defined in Eq. (6.41), it is still not possible to control
experimentally where in the XY -plane the molecule passes the Rydberg atom. Evaluation of the
cross-section thus requires integration over b and the azimuthal angle φ in standard spherical
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Figure 6.7: (a) Same as Fig. 6.4 (a) but the molecule flying in X-direction. (b) Different possible
angles ϑ̃ between the trajectory and theZ-axis from ϑ̃ = 0 (orange, corresponding to the trajectory
shown in (a)) to π/2 (white). The velocity vector points out of the plane of the page.

coordinates [45, 40]

σΨ0 =

∫ ∞

0
b db

∫ 2π

0
dφPΨ0

ex (b, φ). (6.46)

Due to the cylindrical symmetry around the Z-axis, the integral over φ can be evaluated to

σΨ0 = 2π

∫ ∞

0
b db PΨ0

ex (b). (6.47)

Note that for ϑ 6= 0, the integral cannot be evaluated as easily. If, for example, the molecule flies
in X-direction (ϑ = π/2 in Eq. (6.40)) as shown in Fig. 6.7 (a), it can cross the atom anywhere in
the Y Z-plane as shown in Fig. 6.7 (b). The Rydberg orbital is in general not symmetric around the
X-axis and the transition probability depends on the angle ϑ̃ between the trajectory and the Z-
axis in the Y Z-plane1 shown in Fig. 6.7 (b). To compute the cross-section, it is therefore required
to integrate over ϑ̃ instead of φ in Eq. (6.46).

When calculating the cross-section numerically, the integral over b in Eq. (6.47) has to be
truncated. We choose the upper bound bmax such that the transition probability converges to zero
and the lower bound bmin such that the rapid oscillations of the transition probability average
out in the integral. The parameter range of b shown in Fig. 6.6 (b) would thus be suitable for the
integration. Lastly, the state-dependent cross sections σΨ0 can be averaged over all possible initial
states to obtain the final cross-section σ. The value of σ then still depends on the relative velocity
v and the amplitude of the DC field FDC, which effectively determines the detuning between the
particles. We study these dependencies thoroughly in the next section.

It shall finally be noted that which of the scattering parameters can be tuned and which ones
must be averaged depends on the specific experimental realisation. For instance, we have as-
sumed the molecule to fly in Z-direction which is not always adjustable. Moreover, in the experi-
ment [151], for instance, it is not possible to select the initial state of the molecule, while the initial
state of the Rydberg atom can be engineered to some degree. It would therefore be required to
average over the molecular states but not over all Rydberg states.

1Analogous to ϑ, ϑ̃ is the polar angle θ in spherical coordinates for an azimuthal angle φ = π/2.
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6.3 Electric field control of the scattering cross-sections

In this section, we utilise our model for simulating the scattering cross-section. We use the Stark
effect to tune the energy mismatch ∆ between Rydberg atom and molecule. The resulting electric
field controlled cross-sections correspond to the signal measured in an experiment and provide
insight into the dynamics during the scattering process. For simplicity, we assume the molecule
to fly in Z-direction (cf. Eq. (6.41)) while generalisation to other orientations is straight-forward.

As discussed before, we consider the inversion mode of ammonia together with the sub-
space of the Rydberg atom’s Hilbert space around the dipole transition 46p to 45d as presented
in Fig. 6.5. We employ the notation for the Rydberg states defined in Eq. (6.44). The Rydberg
atom can easily be prepared in either state in realistic experiments. As the DC field is switched
on, the states experience different Stark shifts as shown in Fig. 6.5 (b). Since the Stark effect lifts
the degeneracy between states with different values of |m`|, the Rydberg atom possesses several
resonance frequencies for each molecular inversion mode. Beyond that, the states get mixed by
the field such that ` is not a good quantum number any more. However, since the considered
states have a large quantum defect, they are well-separated from neighbouring states and their
mixing is comparatively small (for instance as compared to states within the Stark manifold). We
therefore still label the states by their ` value.

Regarding the molecule, we consider two different scenarios. In Sec. 6.3.1, we assume the
initial state of the molecule to be within one subspace with fixed values of J and K. In Sec. 6.3.2,
we consider a thermal ensemble of molecules, where multiple rotational states are populated
initially according to the Maxwell-Boltzmann distribution.

6.3.1 State-selected molecules

We start by assuming that the rotational state of the molecule can be selected in the experi-
ment, e.g. |ν±,M〉J=1,K=1. For example, state-selective preparation of molecular states can be
achieved using time-varying inhomogeneous electric field as shown for the upper inversion state
|ν−, |M | = 1〉J=1,K=1 in Refs. [165, 166].

We follow the steps laid out in the previous section and calculate the state-dependent cross-
sections numerically for all significant1 initial states |↓,m`〉⊗|ν−,M = 0〉K=1,J=1 using Eq. (6.47).
We omit the subscript of the molecular state in the following discussion. We assume that the
initial energy level of the Rydberg atom can be prepared selectively and therefore focus on the
atom being initially in 46p while considering different values of m`. Consequently, it is sufficient
to consider initial states of the molecule being in the upper inversion level, as energy exchange is
highly off-resonant if both particles are in their lower energy level. All other parameters, i.e. the
considered range of impact parameters and the time-grid, are given in Tab. A.9 in Appendix A.3.

1”Significant” refers to the states shown in Fig. 6.6 (b), since all other possible initial states follow by symmetry
arguments.
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Figure 6.8: Cross-section for different initial states (solid lines, same colour code as in Fig. 6.6 (b))
as a function of the DC field FDC for the 46p to 45d-transition and four different velocities. The
vertical lines indicate the resonances (same line style as in Fig. 6.5). The red shaded area indicates
the cross-section averaged over all initial states with m` = 0 corresponding to the red and purple
lines, and the blue shaded area for m` = 1 corresponding to the blue, green and yellow lines,
respectively. Note the different scales of the x-axis in the left- and right-hand column. The scale
of the y-axis changes by a factor of 1

2 as the velocity increases.

Figure 6.8 shows the state-dependent cross-section for different initial states (indicated by the
line colours) and four different velocities: 10, 20, 50 and 100 m

s . These range roughly between
the lowest and highest relative velocity that are conceivable in experiments with cold atoms and
molecules [167]. It can clearly be seen that the cross-sections are larger around the resonances
indicated by vertical lines. The positions of the resonances correspond to the intersection between
the field dependent Rydberg transition frequencies ωryd and the inversion splitting of ammonia
in Fig. 6.5 (b). Moreover, it is visible on first sight that lines increase in width and decrease in
amplitude as the velocity increases (note the changing scale of the x- and y-axis). The broader
line width can be understood qualitatively as a decreased energy resolution as the particles move
faster and is a direct consequence of the time-energy uncertainty relation. The peak value of
the cross-section decreases with velocity since the particles are close to each other for a shorter
amount of time, thus having less time to interact.

We now consider the case of v = 10 m
s in more detail, as the low velocity reveals the clearest

line structure. It is noticeable that different initial states (i.e. lines with different colours) behave
rather differently around the various resonances. Roughly speaking, states where the Rydberg
atom is initially in m` = 0 (red and purple line, red shade) are more affected by resonances
relating to 46p,m` = 0 (red vertical lines), while states with the Rydberg atom initially in m` = 1
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Figure 6.9: Same as Fig. 6.8 but when neglecting dipole-quadrupole and dipole-octupole contri-
butions. The plots for v = 10 and 20 m

s look qualitatively the same as shown in Fig. 6.8 and are
therefore omitted.

(blue, green and yellow line, blue shade) are more affected by resonances relating to 46p,m` = 1

(blue vertical lines). This makes sense since the states which possess resonant transitions with
the molecule are populated initially. However, even within a group of states, there are striking
differences which cannot be explained as easily. When considering the right-most resonance
(dotted blue vertical line), it is apparent that the blue and green line behave very similarly and
show a clear resonance peak, while the yellow line shows a deep dip. We study this observation
thoroughly in the next chapter using a simplified model in order to explain the line shape around
the resonance.

Even in experiments where it is not possible to engineer the initial state of the molecule
and the Rydberg atom precisely (i.e. to control m` and M ), it is reasonable to assume that the
initial state of the Rydberg atom can be prepared up to the sign of m`, i.e. |↓, |m`|〉. The en-
ergy splitting between 45d and 46p is sufficiently large to allow for selective excitation and the
value of |m`| can be tuned by the polarisation of the excitation laser [151] (and equivalently for
|↑, |m`|〉). Consequently, we average the state-dependent cross-sections accordingly, taking the
weight of the different initial states into account. That is, all states shown in Fig. 6.8 except for
|↓,m` = 0〉 ⊗ |ν−,M = 0〉 (red) have a weight of two, as the system is symmetric with respect
to the magnetic quantum number. For instance, the initial states |↓, 0〉 ⊗ |ν−,±1〉 lead to the
same results. The coloured shades thus indicate the cross-sections for the averaged initial states
|↓, 0〉⊗ |ν−,M〉 (red) and |↓,±1〉⊗ |ν−,M〉 (blue). At very low velocities, such as 10 and 20 m

s , the
two different cases |m`| = 0 and 1 can be distinguished very well. At higher velocities, the peaks
broaden significantly which impedes the resolution of single transitions. However, until roughly
50 m

s , differences between the two cases can be resolved in particular around the two right-most
transition (dashed red and dotted blue). At even higher velocities, such as 100 m

s , the two spectra
look qualitatively almost the same and only differ in amplitude. We would thus expect that an
experiment is able to distinguish the two initial Rydberg states for relative velocities up to 50 m

s .
This is well within the limits of the current experimental capabilities [167].
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Lastly, we investigate the influence of higher order multipole contributions, namely dipole-
quadrupole and dipole-octupole interactions, on the electric field controlled cross-sections. To
this end, we repeat the calculation without considering quadrupole and octupole contributions.
For low velocities, v < 50 m

s , the spectra do not change significantly. Only for higher veloci-
ties such as 50 and 100 m

s do the two cases deviate as shown in Fig. 6.9. For high fields, the
cross-sections of the m` = 0 states goes down to zero when only the dipole-dipole interaction is
considered (red shade on right-most edge in both panels in Fig. 6.9). When considering all three
orders, on the other hand, they are non-vanishing (cf. Fig. 6.8). This can be explained as follows.
As can be seen from the Stark map in Fig. 6.5 (b), the transition 46p,m` = 0 ↔ 45d,m` = 2 (red
dotted) experiences a weaker Stark shift than all the other levels. This transition is forbidden
in the dipole case as ∆m` = 2 and forbidden in the quadrupole case as ∆` = 1. However, in
the presence of a strong electric field, the states do not only experience an energy shift but they
also get mixed with adjacent states. When computing the expectation value of the angular quan-
tum number of the field-dressed state closest to 45d,m` = 2, we obtain a value of 〈`〉 = 2.08 at
FDC = 400 V

m . This value is larger than 2 which would have been the result for a pure d states. It
can be deduced that a fraction of the state actually fulfils the ∆` = 2 selection rule that is required
for quadrupole transitions to occur from 46p,m` = 0. As the detuning of this transition from the
molecular inversion splitting is comparatively small, high velocities with broad lines allow the
transition to occur. Accordingly, the effect is more pronounced for v = 100 m

s , as the lines are
broader and the detuning less significant than for 50 m

s or even lower velocities.

In summary, there are two competing effects which allow or prevent non-vanishing cross-
sections at high fields: (1) the Stark effect mixes states with different ` values and enables quasi-
forbidden transitions, and (2) the Stark shift increases the detuning and prevents transitions from
occurring. At high fields around 400 V

m and v = 100 m
s , the two effects are balanced enough to

allow for a transition, leading to the non-vanishing cross-section around 400 V
m for m` = 0. For

m` = 1, on the other hand, the cross section vanishes with and without higher-order contribu-
tions, as the only possible transition with ∆m` = 2, 46p,m` = −1 ↔ 45d,m` = 1, is too far
detuned (blue dashed line in Fig. 6.5, note that the Stark shift is independent of the sign of m`).
The non-vanishing cross-section at large DC fields could be observed in an experiment by com-
paring the measurement results when starting with a Rydberg atom inm` = 0 and 1, respectively.

6.3.2 Thermal ensemble of molecular states

So far, we have assumed the molecule to be in the rotational state J = K = 1. In the following, we
estimate how the cross-section depends on the J and K value of the molecule. Most importantly,
the inversion splitting of ammonia depends on J and K as given in Eq. (6.20). Since we expect
energy transfer to occur only if the two transitions systems are approximately resonant, it is
possible to reduce the relevant number of states. As can be seen from Fig. 6.3 (a), the only states
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Figure 6.10: Cross-section as a function of the DC field FDC for the 46p to 45d-transition for differ-
ent initial molecular states |ν−,M〉KM for v = 10 m

s . The Rydberg atom is initially in |↓,m`〉. Solid
lines show cross-sections averaged over all M values of the molecule for m` = 0, dashed lines
for m` = ±1. The shaded regions indicate their sums. The resonances depend on the inversion
splitting and are thus different for different values of J and K as indicated by their line colour.

which contribute to the cross-section for small J are the ones with K = J 1. This assumption
was confirmed by numerical tests with K < J . The Rydberg atom is still assumed to be initially
in |↓,m`〉 and the velocity was chosen to be v = 10 m

s . For simplicity, we assume a pure dipole-
dipole interaction and neglect higher order multipole-contributions.

Figure 6.10 shows the cross-section of the dipole transition from 46p to 45d for initial molecu-
lar states |ν−M〉JK with different values of J = K. It is apparent from the figure that the density
of resonances decreases towards higher field values. This is due to the Stark splitting of the Ryd-
berg atom which increases the spacing between different transitions (cf. Fig. 6.5 (b), when the
lines diverge towards high field strengths).

The dependence of the height and width of the peaks on J can be investigated most easily
when comparing peaks corresponding to the same Rydberg transition. For instance, peaks in-
dicated by the solid vertical lines (i.e. at 107, 127, 206, 307 and 434 V

m ) correspond to resonances
of the inversion mode for J = K = 1 . . . 5, respectively, with the 46p,m` = 0 ↔ 45d,m` = 1

transition. It can be seen that their height increases and their width decreases with J . This can
be explained as follows. It can be shown by analytical approximations2 [40] that the line width
of a transition induced by dipole-dipole interaction scales as 1/

√
dryddmol with dryd and dmol

being the dipole matrix elements of the Rydberg atom and molecule, respectively. The matrix
elements dmol scale as K/

√
J(J + 1) (cf. Tab. 6.2) such that we expect the line width to scale as

∆σ ∼ 4

√
J+1
J for K = J . In other words, the lines become more narrow as J increases. The maxi-

1”Small” refers to J < 7. For J ≥ 9, the inversion mode of rotational states with K = J − 1 become resonant
to the Rydberg transition. However, high rotational states only get populated at high temperatures such that their
contribution is small and we neglect them.

2We elaborate these approximations in Sec. 7.2.4.
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Figure 6.11: (a) Boltzmann distribution of the occupation of rotational eigenstates |JK〉 of the
molecule for three different temperatures. (b) Thermally averaged cross-section as a function of
the DC field FDC for the 46p to 45d-transition for three different temperatures at v = 10 m

s . The
y-axis was normalised to the maximal value of σmax = 2.16 · 10−10 cm2, such that σ̃ = σ/σmax.
The vertical dashed lines show the resonances with the line colour as given in Fig. 6.10.

mal cross-section, on the other hand, is expected to scale as dryddmol [40] which can be seen from
the dipole-dipole interaction potential of Eq. (6.34). This causes the cross-section peaks to scale as

max(σ) ∼
√

J
J+1 for K = J ; the height of the lines thus increases with J . These approximations

match the observations in Fig. 6.10 perfectly.

One consequence of this observation is that most of the lines are sufficiently narrow and
distant from each other to be properly resolved; the only exception being the area of high line
density around 100 V

m . The situation is qualitatively similar for higher velocities. However, the
lines broaden significantly for higher velocities as shown in Fig. 6.8. As a result, it might not be
possible to distinguish as many resonances for high velocities. We provide a thorough discussion
of the scaling of the transition lines with the velocity in Sec. 7.2.4.

If it is not possible to selectively prepare the initial state of the molecule in an experiment, the
rotational states are likely to be populated thermally. The occupation of the molecular eigenstates
|ν±M〉JK at a non-zero temperature is given by the Maxwell-Boltzmann distribution,

fJK(T ) =
g

N
e
−E

rot
JK
kBT , (6.48)

see also Fig. 6.11 (a), with kB being the Boltzmann constant, T the temperature, and Erot
JK the

energy of the rotational eigenstates as given in Eq. (6.12). N is a normalisation factor such that∑∞
J=0

∑J
K=0 fJK(T ) = 1. Lastly, g is the statistical weight of the state g = 2(2J + 1), except for

K = 3n with n ≥ 1 where g = 4(2J + 1), since these states have twice the statistical weight
due to the three-fold symmetry axis of the molecule [38]. Figure 6.11 (b) shows the thermally
averaged spectra for three different temperatures. Note that all initial Rydberg and molecular
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states have been averaged. It can clearly be seen that even around room temperature, T = 300 K,
it is possible to resolve most of the resonances and assign them to different initial molecular
states. Given a measured spectrum, it would thus be possible to determine the composition of
the initial molecular state from the resonances and their relative heights in the data. Note that
we have assumed a constant relative velocity of v = 10 m

s between the two particles here. The
situation would change drastically if also the velocity would be thermally distributed. At room
temperature, the particles would possess a mean velocity of 600 m

s which would broaden the lines
massively and render the resolution of single resonances impossible.

6.4 Summary

We have provided in this chapter a model for simulating the scattering process between rubidium
Rydberg atoms and ammonia molecules. While many studies to date approximate the interaction
between the dipole moment of the molecule and the charge distribution of the Rydberg atom as
a dipole-dipole interaction, we have expanded the interaction potential to third order, thus ac-
counting for dipole-dipole, -quadrupole and -octupole contributions between the two particles.
The relative motion has been assumed to be uniform and classical. We have focused on one ex-
emplary orientation, namely the molecule moving along the direction of the quantisation axis,
considering different relative velocities. However, generalisation to other orientations as speci-
fied by the experimental setup is straight-forward. We have calculated the cross-section of the
scattering process numerically, considering as an example the 46p to 45d transition of the Ryd-
berg atom coupled to the inversion mode of ammonia. The particles exchange energy if the tran-
sitions are in resonance predominantly due to the dipole-dipole interaction between them. We
have shown that the cross-section can be controlled using the electric field by means of the Stark
shift of the Rydberg energy levels. Effectively, the electric field thus tunes the energy mismatch
between the particles.

We have studied two different scenarios corresponding to different experimental setups: state-
selected molecules and a thermal ensemble of molecular states. In the first case, the cross-section
peaks around the resonances as shown in Fig. 6.8; the plot serves as a prediction for the out-
come of realistic experiments. We understood the occurrence and absence of peaks for different
initial states by considering the Stark map of the transitions. Most importantly, we found that
the initial state of the Rydberg atom, more specifically its initial magnetic quantum number m`,
affects the cross-section significantly. Moreover, we found a strong broadening of the transitions
with the relative velocity and estimated that resonances can be resolved up to values about 50 m

s

which is well within experimental capabilities. Lastly, we have identified and explained features
of dipole-quadrupole transitions for high electric fields, thus demonstrating the importance of
higher order multipole contributions for the cross-section.

In the second case, we have assumed the molecule to be initially in a thermal state which
is composed of several rotational states with different J and K quantum numbers. Due to the
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resonance conditions, we could restrict the number of relevant inversion modes to 7. We found
that the resulting cross-sections (shown in Fig. 6.11) show a rich line structure. Most importantly,
it is possible to resolve most of the resonances even at high temperatures of 300 K. Since the final
cross-sections depend on the composition of rotational states in the molecular ensemble, cross-
sections measured in an experiment could be used to deduce the composition of the molecule’s
rotational state, i.e. the relative population of different J = K-states.

Despite having obtained first, valuable insights into the dynamics and having provided pre-
dictions for experiments, we have not been able to explain all observations. For instance, we
could not explain which resonances lead to dips or peaks in the cross-sections as a function of
the electric field for different initial states. We therefore turn to a more theoretical analysis of the
different orders of the interaction potential in the next chapter. This will allow for a thorough
understanding of the scattering process and the role of higher order multipole contributions.



7
MULTIPOLAR CHARACTER OF FÖRSTER RESONANCE ENERGY

TRANSFER

In the previous chapter, we have studied the collision of two particles and found that they ex-
change energy without emitting radiation. This well-known process is called Förster resonance
energy transfer (FRET) [41], sketched in Fig. 7.1. Typically, FRET is defined as the non-radiative
transfer of energy from a donor to an acceptor mediated by the resonant dipole-dipole interaction
between the two particles. It can be summarised as

D∗ +A→ D +A∗, (7.1)

where D denotes the donor, A the acceptor, and the asterisk the excitation. First experimental
observations of this effect date back to 1922 [168] in the dissociation of hydrogen with mercury.
The exchange of energy was found to be mediated by dipole-dipole coupling between the parti-
cles and Theodor Förster was the first to develop a successful theoretical treatment [169]. Today,
FRET has found many applications, most prominently in molecular biology as a spectroscopic
technique [41], for example using quantum dots for the study of biomolecular interactions [170].

Figure 7.1: Sketch of the Förster resonance energy transfer (FRET) between a polar molecule (am-
monia, blue) and a Rydberg atom (red), approximated by two-level systems. If the two systems
are in resonance, they can exchange energy during the scattering process.
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One excellent platform to observe, study and utilise FRET are Rydberg atoms due to their
large dipole moments [171, 172]. For example, the strong coupling and Stark tunability make
FRET an attractive tool for implementing quantum gates and for quantum simulation [173]. The
basic prerequisite for the observation of FRET is the existence of resonant dipole transitions in the
two particles. This cannot only be found in Rydberg-Rydberg systems, but also when a Rydberg
atom interacts with a polar molecule [174] which is a particularly suitable system as particles
possess large (transition) dipole moments. In the 1970s, first experiments of collisions between
polar molecules and Rydberg atoms were conducted, demonstrating the conversion of rotational
to electronic energy in collisions [175]. Later, experiments studied the collision of rubidium Ryd-
berg atoms and ammonia molecules considering transitions between different inversion levels of
ammonia [152, 153].

Moreover, FRET can serve as a mechanism for the non-destructive detection of polar molecules
via Rydberg atoms [149, 40]. Methods for detecting polar molecules are rare and often limited to
special molecular species, see Ref. [40] and references therein. The resonant interaction of FRET
imprints a strong enough signature of the molecular state onto the Rydberg atom which can be
utilised for its detection. In the spirit of an indirect measurement, similar as discussed in Chap-
ter 5, the Rydberg atom serves as a meter for extracting information on the state of the molecule.
As only the Rydberg atom is detected, the molecule itself will not be destroyed and can be used
for further experiments.

All of the aforementioned studies have only considered the dipole-dipole interaction between
two particles and also Förster’s original theory explicitly relies on the electric dipole approxima-
tion. There are, however, cases when this approximation is not fit to describe the dynamics of a
system adequately. When considering experiments with Rydberg atoms, for instance, the dipole
approximation seems highly questionable as Rydberg orbitals can measure up to microns in di-
ameter. As the reaction partners approach, the Rydberg electron’s charge distribution can no
longer be approximated as a dipole and higher-order terms of the multipole expansion are ex-
pected to become significant. The same is true for quantum dots, which have a finite size and
are large as compared to e.g. the dye molecules they are supposed to detect [176, 177]. Only re-
cently, the dipole-quadrupole interaction has been investigated for Rydberg atoms [178] where
it has been found to allow for entanglement between electronic and rotational motion between
two atoms. In quantum dots, dipole-quadrupole contributions have been found to be domi-
nating over the dipole-dipole contributions in certain cases [176]. Another study on quantum
dots considered all multipole moments and found that the multipole contributions were non-
monotonous, indicating that any multipole expansion might be insufficient [177]. This suggests
to inspect higher-order contributions in interactions between Rydberg atoms and polar molecules
as well.

In this chapter, we continue the work presented in the previous chapter and study the mul-
tipolar character of FRET for the combined system of Rydberg atom and ammonia molecule.
While inspired by the experiment of Ref. [151], our model is not limited to simulating the out-
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come of experiments; it also provides a playground to systematically study the role of multipole
contributions to FRET from a theoretical point of view. For instance, the state-dependence of the
line shape of the cross-section as a function of the DC field for dipole-dipole interactions which
we have observed in Sec. 6.3 is still not fully understood. Other, more general open questions
relate to the significance of higher-order contributions, for instance in view of the particle dis-
tance which, in a scattering process, can be controlled indirectly via tuning their relative velocity.
Moreover, higher-order multipole contributions could alter the line width, shape or position of
transitions, or give rise to completely new peaks in the spectrum. Therefore, our goal is to es-
timate the influence and benefit of higher-order contributions; and determine when and under
which conditions the dipole approximation breaks down

The remainder of this chapter is structured as follows. In Sec. 7.1, we investigate the scatter-
ing cross-section of a simplified model, namely two two-level-systems subject to dipole-dipole
interaction. Afterwards, in Sec. 7.2, we perform a systematic study of the line shape of dipole,
quadrupole and octupole transitions independently. Finally, in Sec. 7.3, we study the multipolar
character of FRET at the example of a dipole-forbidden transition and investigate the correspond-
ing cross-section as a function of the electric field.

7.1 Dipole-dipole interaction of two-level systems

In the previous chapter, we have studied the cross-section of the 46p to 45d transition of the
Rydberg atom coupled to the inversion mode of ammonia. We have observed that the cross-
section shows a complex structure of peaks and dips as a function of the electric field (cf. Fig. 6.8).
In other words, we have seen that the efficiency of FRET depends strongly on the electric field
and the initial states of both particles. While we have been able to relate the positions of the peaks
to the resonances between the particles which occur at specific field values, the exact shape of the
lines (peaks or dips) could not be understood yet.

In the following, we tackle this problem by considering a much simpler model system. Namely,
we assume both the Rydberg atom and the molecule to be two-level systems. To this end, we se-
lect two states of the Hilbert spaces of each particle and study the dynamics during their collision.
The dipole-dipole interaction potential from Eq. (6.34) can be written for two dipoles as

V̂1(t) =
d̂1 · d̂2

r(t)3
−

3
(
d̂1 · r(t)

)(
d̂2 · r(t)

)

r(t)5
, (7.2)

where r(t) is the (classical) distance between the two particles and d̂i are their dipole moments.
We neglect higher-order contributions in this section. The distance r(t) is time-dependent as the
particles fly past each other. The trajectory can be parametrised as described in Sec. 6.2.2, where
we have assumed the molecule to perform a uniform motion, i.e. to pass the Rydberg atom in a
straight line with a constant relative velocity. Here, we assume the molecule to fly in z-direction,
v = vez , as given by Eq. (6.41).
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In order to evaluate the matrix elements of the potential in Eq. (7.2), we chose the spherical
basis, (±ex + iey) and ez , to represent the operators. Due to the dipole section rules, transitions
can only occur between states with ∆m = 0,±1 (cf. Eq. (6.33) for the Rydberg atom and Tab. 6.2
for the molecule). ∆m = 0 corresponds to the matrix elements of the ẑ-operator and ∆m = ±1

to (±x̂ + iŷ). Due to the scalar products in Eq. (7.2), only three different kinds of transitions are
allowed in the combined system as shown in Fig. 7.2 (a): linear flip-flop, ∆m1 = ∆m2 = 0 (blue),
diagonal flip-flop, ∆m1 = −∆m2 = ±1 (green) and criss-cross, ∆m1 = ∆m2 = ±1 (red). In the
following, we discuss each case and the resulting dynamics separately.

7.1.1 Flip-flop transitions

We first consider the transition with ∆m1 = ∆m2 = 0 (blue), which we term the linear flip-flop
transition. Due to the dipole selection rules, the only relevant components of the dipole moments
are the ones in z-direction and we thus write dzi = 〈↑ mi|d̂i · ez| ↓ mi〉 = 〈↓ mi|d̂i · ez| ↑ mi〉 with
i = 1, 2 labelling the two dipoles. When inserting the trajectory of Eq. (6.41) into V̂1(t) from
Eq. (7.2), the dipole-dipole coupling strength

V1(t) = 〈↓ m1, ↑ m2|V̂1(t)| ↑ m1, ↓ m2〉 = 〈↑ m1, ↓ m2|V̂1(t)| ↓ m1, ↑ m2〉

takes the form

V1(t) =
dz1 d

z
2

(b2 + (vt)2)3/2
− 3 dz1 d

z
2 (b sinϑ+ vt cosϑ)2

(b2 + (vt)2)5/2
. (7.3)

The interaction strength is shown in Fig. 7.2 (b) for ϑ = 0 (v ‖ ez , first column) where we have
assumed for simplicity dz1 = dz2 = v = b = 1. It can be seen that the interaction changes sign twice
(note the weak local minimum around t = ±1) and takes its the peak value at t = 0 where the
two particles are closest to each other. The time-evolution of the two dipoles is determined by
the accumulated phase Φ(t) which, in the resonant case, can simply be written as

Φ(t) =

∫ t

−∞
V1(t′)dt′, (7.4)

shown in panel (c). Due to the time-dependence of the potential, the accumulated phase equals
exactly zero at t = 0.

The consequence of this can be seen most easily when propagating the two two-level systems
in time. To this end, we assume an initial state1 |↓,m1 = 1〉 ⊗ |↑,m2 = 1〉 ≡ |↓↑〉. Note that the
grey dotted levels shown in Fig. 7.2 (a) are not taken into account in the simulations such that
dipoles are perfect two-level systems. The time-dependent dynamics are shown in panel (d) for
which we have assumed realistic parameters with dipole moments dz1 ≈ 0.7 D (corresponding

1The opposite situation |↑,m1 = 1〉 ⊗ |↓,m2 = 1〉 leads to the same results.
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Figure 7.2: Allowed transitions in two two-level systems due to dipole-dipole coupling (a) and
corresponding quantities of the scattering process (b-e). The two left-most columns correspond to
flip-flop transitions (green and blue), and the two right-most to criss-cross transitions (red). The
value of ϑ is given on top of each column. (b) shows the interaction strength V1(t) in arbitrary
units and (c) its integrated value Φ(t). (d) shows an exemplary time propagation of the initial
state |↓↑〉 under the potential V1(t) at resonance, ∆ = 0, for v = 100 m

s and b = 160 ns, except for
the green and red lines for ϑ = π/2 for which b = 110 ns. (e) shows the normalised cross-section
σ̃ as a function of the detuning ∆ between the two transitions with σ̃ = σ/σmax and σmax =
2.733 · 10−10 cm2. No integration over φ was carried out. The data shown in (d+e) result from
numerical simulations using realistic parameters, while (b+c) are plots of analytical formulas
using arbitrarily chosen parameters.
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to ammonia), dz2 ≈ 3000 D (rubidium), b = 160 nm, and v = 100 m
s . The figure shows that the

two-level systems exchange about 10% of their excitation around t = 1, but return exactly to their
initial state at t = 0. This is due to the accumulated phase being equal to 0 at t = 0. The dynamics
are symmetric around t = 0, such that the systems return to their initial state for t→∞.

The cross-section of the process can be calculated as explained in Sec. 6.2.3 by integrating the
transition probability over the impact parameter b where we have assumed values from b = 50

to 500 nm in steps of 10 nm. We repeat this for different values of the detuning ∆ between the
two transitions. The result is shown in panel (e). Because the population always returns to its
initial state when the two transitions are in resonance, the cross-section is zero at ∆ = 0. When
introducing a non-zero detuning, on the other hand, the symmetry of the interaction potential is
broken and a non-zero phase can be accumulated for t → ∞ which ultimately results in a non-
zero cross-section. Only for large values of the detuning does the cross-section vanish again as
energy transfer becomes highly off-resonant.

The situation is very different when changing the orientation of the trajectory. As a second
example, we consider ϑ = π/2 which corresponds to the trajectory being perpendicular to the
quantisation axis, v ⊥ ez (second column of Fig. 7.2). The peak value of the coupling strength
in panel (b) at t = 0 is twice as strong as in the previous case and the local maximum around
t = ±1 is less pronounced (see inset). As a result, the absolute value of the accumulated phase (c)
is almost monotonically increasing. When evolving the system in time, the dipoles perform an
almost perfect swap (d) which results in a large value of the cross-section at resonance (e).

It can be seen, however, that the cross-section increases slightly for small detuning. This
can be explained as follows. The non-monotonicity of the phase Φ causes a small hump in the
populations at the times where the potential takes its local maxima. The population overshoots
the target, i.e. the initial state is completely depopulated shortly after t = 0 but gets slightly
repopulated directly afterwards. Since the two-level systems are failing to perform a perfect
swap, exchange efficiency is slightly less than 1 at the end of the interaction. A small detuning
compensates for the overshooting and removes the humps from the population curves. As a
result, the cross-section is slightly higher right next to the resonance, thus causing a small dip in
the centre of the line.

Next, we consider the ∆m1 = −∆m2 = ±1 transition, which we term the diagonal flip-
flop transition (green lines in Fig. 7.2). Due to the dipole selection rules, only dipole moments
in ex and ey directions contribute to these transitions. The corresponding matrix elements are
d±i = 〈↑ mi ± 1|d̂±i · (±ex + iey)| ↓ mi〉 with i = 1, 2. If the two matrix elements are of opposite
sign, i.e. d+

1 and d−2 or vice versa, the resulting selection rule is ∆m1 = −∆m2 = ±1. It is
apparent from the figure that the diagonal flip-flop (green) leads to the same results as the linear
flip-flop discussed above (blue). Only in the realistic simulations of the population dynamics and
the cross-section (d+e) do the blue curves show a larger amplitude than the green ones because
the matrix elements of the ẑ operator are larger than those of the x̂/ŷ-elements (dmol ≈ 0.5 D,
dryd ≈ 2080 D).
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Figure 7.3: Time-evolution of the initial state |↓,m1 = 0〉 ⊗ |↑,m2 = 0〉 ≡ |↓↑〉 which couples to
|↑,m1 = 1〉 ⊗ |↓,m2 = 1〉 ≡ |↑↓〉 (criss-cross transition) for ϑ = π/2, b = 110 nm and v = 100 m

s .
Same as right-most panel in Fig. 7.3 (d) but for different values of the detuning ∆. The first panel
corresponds to resonance, the second one to a slight detuning, the third to the local minimum of
the cross-section in Fig. 7.3 (d) (right-most panel), and the last one to the local maximum at larger
detuning.

7.1.2 Criss-cross transitions

We obtain a significantly different scenario if the two matrix elements are of the same sign, e.g.
d+

1 and d+
2 . In this case, we obtain the selection rule ∆m1 = ∆m2 = ±1 (red curves in Fig. 7.2)

which we term criss-cross transition. The dipole-dipole interaction strength V1(t) takes the form

V1(t) = −3 d+
1 d

+
2 (b cosϑ− vt cosϑ)2

(b2 + (vt)2)5/2
. (7.5)

The case ϑ = 0 is shown in the third column and shows similarities to the flip-flop transition
for ϑ = π/2 (second column). There is, however, an important difference. The time-dependent
potential V1(t) does not possess local maxima (panel b) and therefore, the integrated phase Φ(t)

(c) is monotonically decreasing1. For the time-evolution, we assume the initial state |↓,m1 = 0〉⊗
|↑,m2 = 0〉 ≡ |↓↑〉 which couples to |↑,m1 = 1〉 ⊗ |↓,m2 = 1〉 ≡ |↑↓〉. It can be seen (panel d) that
the population curves do not overshoot the target due to the monotonicity of the accumulated
phase. The maximal value of the cross-section can therefore be found at resonance (e) and any
detuning decreases it. As such, this case is the most intuitive of all that have been discussed.

Lastly, we consider the criss-cross transition for ϑ = π/2 (right-most column). The potential
V1(t) is always non-positive and becomes zero at t = 0. As a result, the accumulated phase Φ(t) is
monotonically decreasing and shows a saddle point at t = 0. This translates to a saddle point in
the population transfer (d) which does not prevent an efficient population transfer. Consequently,
the largest value of the cross-section can be found at resonance (e). Different from the case ϑ =

0, however, the cross-section decreases quickly as the detuning increases. Most interestingly,
the cross-section increases again after reaching a local minimum, resulting in broad “wings” in
the spectrum. This can be understood by considering the time-dependent dynamics at different
values of the detuning.

1The sign of Φ is of no significance.
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Figure 7.3 shows the dynamics of a criss-cross transition for one fixed value of b and different
detunings ∆ between the transitions. While it is required to integrate over b to obtain the cross-
section, the time-resolved dynamics provides qualitative insights which allow for understanding
the shape of the cross-section. It can be seen that a small detuning of ∆ = 36 MHz between the
two transitions diminishes the population exchange as compared to the resonant case, ∆ = 0.
The state |↑↓〉 (dashed line) is less populated than before at the end of the interaction, and the
population even decreases after having reached a local maximum around t = 2. This rebound
effect can be interpreted as the accumulated phase Φ(t) being “bend down” towards zero by the
detuning. At the value of ∆ = 179 MHz, the exchange probability is zero and the cross-section
reaches a local minimum (compare to right-most column in Fig. 7.2 (e)). This can be interpreted
as the accumulated phase being bend down to zero at the end of the interaction. If the detuning
is increased even more, however, ∆ = 376 MHz, the initial states accumulates a non-vanishing
phase Φ at the end of the interaction, such that the exchange probability and the cross-section rise.
This leads to the “wings” of the cross-section for large detuning. For even larger detuning the
energy mismatch is too strong to allow for any transfer of excitation from one two-level system
to the other.

In summary, we have studied three different transitions, the criss-cross and the linear and
diagonal flip-flop, at two exemplary values of ϑ and found very different line shapes for the
cross-section when tuning the energy mismatch ∆ between the two systems. We have found
that the line shapes can be directly related to the shape of the interaction strength V1(t). While
the linear and diagonal flip-flop, corresponding to the selection rules ∆m1 = −∆m2 = 0,±1,
lead to the same results, the criss-cross transition with ∆m1 = ∆m2 = ±1 produces significantly
different line shapes. Conversely, the shape of a transition line allows for direct conclusions on
which transitions take place in a scattering process. We can use these insights to analyse the
shape of the cross-sections as a function of the electric field of the full model for Rydberg atom
and molecule as we demonstrate in the following.

7.2 Cross-section line shapes for different order multipole contribu-
tions

After having studied the cross-section for the dipole-dipole transition in a simplified toy model
in the previous section, we now turn to investigating all three orders of the multipole expansion
derived in Sec. 6.2.1 for the full model of Rydberg atom and molecule. While in the previous
chapter we have controlled the cross-section using an electric field via the Stark effect of the Ryd-
berg atom, we now tune the inversion splitting ωinv instead and keep the DC field FDC constant.
The advantage of this method is two-fold: Firstly, it allows for disentangling the effect of tun-
ing the energy mismatch from Stark mixing. In Sec. 6.3, we have observed that quasi-forbidden
transitions can be driven due to the Stark mixing of the initial or target state with high- or low-
angular momentum states. By tuning the inversion splitting instead of the DC field amplitude
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Figure 7.4: Hilbert space of the Rydberg atom (left) and the molecule (right, the index J = K = 1
has been omitted) considered to study the dipole-dipole interaction. The arrows indicate the
dipole allowed transitions between the lower and upper manifolds. The line style for the Rydberg
transitions is the same as in Fig. 6.5. The coloured levels indicate the relevant initial states; for
instance, the red levels indicate the state |↓, 0〉 ⊗ |ν−, 0〉 (same colour code as in Fig. 6.6 (b)).

(and setting FDC = 0), we can study the influence of the detuning on the transition cross-section
while excluding Stark mixing. Secondly, at zero DC field, all the Rydberg transitions are degener-
ate such that there is only a single resonance similar to the toy model studied above. As observed
in the previous chapter, for instance in Fig. 6.8, the peaks at different resonances overlap which
renders it complicated to determine the line width of the transition. However, note that for real
ammonia molecules, this tunability is only possible to a certain extent. The inversion splitting
depends on J and K (cf. Fig. 6.3) and is thus controllable only on a coarse grained scale by select-
ing J and K carefully. However, a change in J and K is also accompanied by a modified Hilbert
space dimension and matrix elements. We disentangle this interdependence by tuning ωinv for a
given subspace of J and K directly.

This section is structured as follows. We study the role of different order multipole contribu-
tions for FRET systematically by considering the dipole-dipole, dipole-quadrupole and dipole-
octupole interaction independently from each other in Sec. 7.2.1 to 7.2.3, respectively. In each
section, we determine the maximal value max(σ) of the cross-section and the line width ∆σ of
the transition for different relative velocities v. We summarise our findings and compare them to
analytical approximations in Sec. 7.2.4.

7.2.1 Dipole-dipole transitions

We now start by studying FRET between a rubidium Rydberg atom and ammonia when consider-
ing dipole-dipole interactions only. To this end, we consider the dipole transition 46p to 45d in the
Rydberg atom (cf. Fig. 6.5) and restrict ourselves to the molecular inversion mode for J = K = 1.
The molecule is thus described as a 2(2J + 1) = 6-level system, |ν±,M = 0,±1〉J=1,K=1, degen-
erate in M . We omit the subscript in the following. The bipartite Hilbert space is depicted in
Fig. 7.4. We utilise the same notation as in the previous chapter and label the Rydberg atom by
|↑,m`〉 = |45d,m`〉 with m` = 0,±1,±2 and |↓,m`〉 = |46p,m`〉 with m` = 0,±1. We assume the
molecular inversion splitting ωinv to be freely adjustable while the splitting between the energy
levels in the Rydberg atom is given by the realistic model. The scattering is modelled as given in
Sec. 6.2.2 with the trajectory from Eq. (6.40), where we assume the molecule to fly in z-direction
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Figure 7.5: Cross-section for different initial states as indicated by the line colour for the 46p to
45d-transition and two different DC fields FDC at v = 100 m

s . (a) shows the cross-section as a
function of the detuning ∆ of the molecular inversion frequency ωinv from the Rydberg transition
ωryd = 23.626 GHz. (b) refers to ωinv as the Rydberg transitions are no longer degenerate; the
vertical lines indicate the resonances (same line style as in Figs. 6.5 and 7.4).

(corresponding to ϑ = 0 in Eq. (6.41); the following study can easily be generalised to other trajec-
tories). The cross-section can then be calculated as described in Sec. 6.2.3 by integrating over the
impact parameter b using Eq. (6.47). The range over which b was integrated numerically and the
starting time t0 of the time-evolution is given in Tab. A.11 in Appendix A.3 for different velocities.

Figure 7.5 (a) shows the cross-section σΨ0 as a function of the detuning ∆ (defined as the Ryd-
berg transition frequency minus the inversion splitting of ammonia in Eq. (6.43)) for all relevant1

initial states |↓,m`〉 ⊗ |ν−,M〉 for v = 100 m
s and FDC = 0 at which all Rydberg transitions are

degenerate with ωryd = 23.626 GHz. The lines of all initial states are centred around the resonance
and possess a width of a few hundred megahertz. However, the cross-section at resonance differs
significantly depending on the initial state. This is because for every initial state, multiple differ-
ent transitions are allowed. This has two implications. On the one hand, the amplitude of the
matrix elements, which affects the height of the peaks, depends strongly on the transition. For
the Rydberg atom, the solid red, dashed blue and dotted blue transitions in Fig. 7.4 are at least
one order of magnitude stronger than all the others, for instance. On the other hand, the charac-
ter of the transition – flip-flop or criss-cross – determines whether the cross-section shows a dip
or peak at resonance as discussed in the previous section (cf. first and third column in Fig. 7.2).

1All other combinations follow from symmetry arguments.
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The identification of the dominant transitions for each initial state, and thus the understand-
ing of the line shape, is simpler when assuming a non-zero DC field. In this case, the Rydberg
levels experience an individual Stark shift such that the lines split up into five individual ones (cf.
Fig. 6.5 (b), the dotted red line of that figure does not play a role here as it is dipole forbidden).
The resulting cross-section as a function of the inversion splitting is shown in Fig. 7.5 (b); the
resonances are indicated by the vertical lines. The similarity of this figure to Fig. 6.8 (in particu-
lar around v = 20 m

s ), which presents the cross-section as a function of the DC field, is striking.
However, the direction of the x-axes of the two figures is reversed. While larger DC fields in-
duce a larger Rydberg frequency and larger positive detuning ∆ (as defined in Eq. (6.43)), larger
inversion frequencies cause a more negative detuning.

After inversion of the x-axis, the major difference between the two figures is the distance
between the peaks. While it is possible to distinguish the different resonances at v = 100 m

s in
Fig. 7.5 (b), this is not possible in Fig. 6.8. For FDC = 300 V

m , as considered in Fig. 7.5 (b), the
separation between different Rydberg transitions is of the order of 100 MHz due to the Stark shift
as can be seen from the Stark map of Fig. 6.5. They can be brought in resonance with the inversion
mode of ammonia by tuning ωinv directly and the resonances are well-resolved at high velocities
of 100 m

s . In Fig. 6.8, the inversion splitting is fixed and in resonance with the Rydberg transitions
around DC fields of 100 V

m . At this lower field strength, the Rydberg transitions are much closer to
each other and only separated by some tens of megaherz. Resolution of this separation can only
be obtained for lower velocities around 20 m

s . Phrased differently, when controlling the cross-
section using the Stark effect, we consider intersections of the Rydberg transitions in the Stark
map with horizontal lines corresponding to one inversion mode; when controlling the cross-
section via the inversion splitting, we consider intersections of the Stark map with vertical lines
given by one value of the DC field. As a result, the outcome is qualitatively very similar and all
insights acquired on the cross-section controlled by the inversion splitting gather in the following
can be directly applied to the electric field controlled cross-section of Fig. 6.8.

We now consider the initial state |↓, 0〉 ⊗ |ν−, 0〉 (red line) of Fig. 7.5 (b) in more detail. The
peaks and dips in the cross-section are clearly related to the resonances corresponding to the
Rydberg atom being in 46p,m` = 0 (vertical red lines), while being unaffected by the others
(vertical blue lines). The strongest peak occurs at the 46p,m` = 0 ↔ 45d,m` = ±1 transition
(vertical red dashed line). As the Rydberg atom is initially in m` = 0, it apparently performs
a ∆m` = ±1 transition to 45d,m` = ±1. The shape of the peak clearly indicates a criss-cross
transition (compare to third column in Fig. 7.2 (e)) as flip-flop transitions cause dips in the cross-
section (first column in Fig. 7.2 (e)). From this, it can be followed that the molecule also performs a
∆M = ∆m` = ±1 transition. In principle, a diagonal flip-flop transition with ∆M = −∆m` = ±1

would also be allowed by the dipole selection rules. However, since this transitions leads to a dip
in the cross-section, it is overshadowed by the peak of the criss-cross transition. A linear flip-
flop transition with ∆M = ∆m` = 0, on the other hand, is forbidden by the molecular selection
rule M = 0 6↔ M ′ = 0. As a result, the state-dependent cross-section shows a strong dip at the
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46p,m` = 0 ↔ 45d,m` = 0 transition (vertical solid red line), which matches the expected line
shape of the linear criss-cross transition. The initial state |↓, 0〉 ⊗ |ν−, 1〉 (purple line) shows very
similar results as |↓, 0〉 ⊗ |ν−, 0〉 (red), since the Rydberg atom is initially in the same state.

The other three initial states correspond to the Rydberg atom being initially in m` = 1 and
thus relate to the resonances indicated by vertical blue lines. The cross-section of the initial state
|↓, 1〉 ⊗ |ν−, 0〉 (blue line) shows a strong peak at the 46p,m` = ±1 ↔ 45d,m` = ±2 transition
(vertical blue dotted line). This indicates a criss-cross transition with ∆M = ∆m` = 1. The other
diagonal transition, 46p,m` = ±1 ↔ 45d,m` = 0 (vertical solid blue line), is of the same kind
but less strong, as the corresponding Rydberg matrix elements are smaller. Finally, the linear
flip-flop transition 46p,m` = ±1 ↔ 45d,m` = ±1 (vertical dashed blue line) causes a deep dip
in the spectrum. The initial state |↓, 1〉 ⊗ |ν−,−1〉 (green line) shows a very similar behaviour
to |↓, 1〉 ⊗ |ν−, 0〉 (blue), since similar transitions are involved. Finally, the state |↓, 1〉 ⊗ |ν−, 1〉
(yellow line) deviates from the described behaviour around the 46p,m` = ±1 ↔ 45d,m` = ±2

transition (vertical dotted blue line). The molecule cannot undergo a ∆M = 1 transition as the
Hilbert space ends with M = 1. This results in the linear flip-flop transition ∆m` = ∆M = 1

being forbidden. The option with ∆m` = ∆M = −1 is allowed but the corresponding matrix
elements of the Rydberg atom are small. Instead, the diagonal flip-flop with ∆m` = −∆M = 1 is
the dominating transition, causing the strong dip in the spectrum.

The observed line shapes are thus in excellent agreement with our understanding of the
dipole-dipole transitions acquired in Sec. 7.1 from studying two two-level systems. The cross-
section depends strongly on the initial state the Rydberg atom and to a smaller degree on the
initial state of the molecule. From studying the shape of the transition lines around the different
resonances, we can deduce which transitions are the dominating ones, thus gaining understand-
ing of the underlying dynamics. It shall lastly be noted that some differences between the com-
plex system in Fig. 7.5 and the simplified model from the previous section occur. Most strikingly,
the dips in the spectrum do not go all the way down to zero in the current case. The reason is
that for multi-level systems, the dynamics cannot be limited to a single transition. For instance,
we have discussed above that the initial state |↓, 1〉 ⊗ |ν−, 1〉 (yellow state in Fig. 7.4) causes a dip
at the 46p,m` = ±1 ↔ 45d,m` = ±2 transition (vertical blue dotted line). In addition to that, a
transition to |↑, 2〉 ⊗ |ν+, 0〉 might occur (at the vertical blue dashed line) which is followed by a
transition to |↓, 1〉 ⊗ |ν−,−1〉 (green state). This state is connected to |↑, 1〉 ⊗ |ν−,−2〉 via a criss-
cross transition at the 46p,m` = ±1 ↔ 45d,m` = ±2 transition (vertical blue dotted line). The
resulting peak adds to the dip of the yellow line, rendering it less deep. All in all, we found that
the study on the isolated transition in two-level systems of Sec. 7.1 allowed for understanding
the intricate dynamics in the full system of a Rydberg atom and a molecule.

So far, we have considered a fixed relative velocity between the two particles of v = 100 m
s .

We now aim to investigate the influence of the velocity on the maximal cross-section and the
width of the lines. For this purpose, we average the cross-section over all possible initial states
and weigh them with the appropriate statistical weight (as explained in Sec. 6.3). The averaging
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Figure 7.6: Cross-section averaged over all possible initial states for different velocities for the
46p to 45d-transition for FDC = 0. The limit of the y-axis was set to the peak cross-section of
v = 100 m

s (1 m
s in the inset) despite the peak values of lower velocities being higher as shown in

the inset. Otherwise similar to Fig. 7.5.

is relevant to experiments without state selection with respect to m` or M . We determine the
cross-section σ as a function of the detuning ∆ of the Rydberg transition frequency from the
inversion mode of ammonia for four different velocities: 1, 10, 100 and 600 m

s . While 600 m
s

corresponds to the average velocity at room temperature, 10 m
s reflects the lowest velocity that

can be reached in the experiment of Ref. [167]. The result for FDC = 0 is shown in Fig. 7.6.
The figure reveals a strong decrease of the maximal cross-section max(σ) and an increase of the
line width ∆σ with the velocity. We determine both parameters quantitatively as follows. The
height max(σ) simply corresponds to the maximal value of the cross-section. The line width
∆σ can be determined as the full width of the peak at half maximum (FWHM). Other ways of
characterising the shape of the line are possible. For instance, the height could be chosen at
resonance (which is slightly smaller than max(σ) as the lines show small dips at resonance) or
the shape could be fitted using a Gaussian or a Voigt profile (convolution of a Gaussian with a
Lorentz distribution). All procedures lead to quantitatively very similar results which is why we
employ the simpler method of taking the maximum and the FWHM in the following. Table 7.1
presents the determined height and widths of the lines for the dipole-dipole interaction. We
investigate the scaling in more detail in Sec. 7.2.4.

We have already established that the cross-section as a function of the detuning presented
in this section is directly related to the cross-section as a function of the electric field presented
in Sec. 6.3.1. They merely present two different ways of tuning the energy mismatch between
the transitions of Rydberg atoms and molecule. The results obtained in this section, such as the
insights on the broadening of the lines with the velocity or the occurrence of dips and peaks in
cross-section, can directly be applied to the outcome of experiments where the cross-section is
controlled by tuning the electric field. We demonstrate this point by comparing the line width of
the cross-section as a function of the detuning given in Tab. 7.1 to the line width shown in Fig. 6.8
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v[m/s] max(σ)[cm2] ∆σ[MHz]
dip. quad. oct. dip. quad. oct.

1 1.5 · 10−7 2.7 · 10−8 5.3 · 10−9 0.42 0.96 1.28
10 1.9 · 10−8 5.5 · 10−9 1.8 · 10−9 8.8 20.8 20.8
100 2.0 · 10−9 1.3 · 10−9 5.4 · 10−10 260 440 360
600 3.1 · 10−10 3.8 · 10−10 2.0 · 10−10 3840 4800 3200

Table 7.1: Maximal value of the cross-section max(σ) and the width of the line at half maxi-
mum ∆σ determined from the numerical simulations for dipole-dipole (dip.), dipole-quadrupole
(quad.), and dipole-octupole (oct.) interactions for different velocities v.

where the electric field has been tuned. Consider the peak of the 46p,m` = 1 ↔ 45d,m` = 2

transition in Fig. 6.8 (vertical blue dotted line) for v = 10 m
s which is a good example, since it

is isolated from the remaining resonances. The peak is centred around 149 V
m with a width of

about 9 V
m at half maximum. The Stark map of this transition (shown in Fig. 6.5 (b)) reveals a rise

of the Stark shift from 64 to 72 MHz between 144 and 154 V
m . Tuning the electric field from 144

to 154 V
m thus corresponds to tuning the Rydberg transition by 8 MHz. This matches the value

in Tab. 7.1, 8.8 MHz, perfectly, given the rough approximation we have just conducted. This
comparison could be repeated and refined for other transitions in the same fashion. However, as
most transitions overlap for a non-zero DC field, it is difficult to determine the width of single
transitions when tuning the DC field. In particular, it would be impossible to determine the line
width of a single transition at high velocities of 100 m

s or more using this method. This highlights
the main advantage of tuning the energy mismatch at zero DC field instead, as it allows us to
determine the line width and height for different initial states and velocities accurately.

7.2.2 Dipole-quadrupole transitions

We now go one step further and study the multipolar character of FRET. To this end, we consider
another subspace of the Rydberg transition which displays quadrupole and octupole transitions.
Namely, we chose 50p as an initial state as shown in Fig. 7.7. It is located in a distance of about
23 GHz above the n = 47 Stark manifold, which we denote by 47`, containing states with ` ≥ 3.
Quadrupole and higher transitions would thus be possible. The dipole transition to 49d, on the
other hand, is highly detuned from the ammonia inversion mode with a transition frequency of
18.142 GHz. As we have to consider three significant Rydberg states, we label them for clarity in
ascending order of energy (cf. Fig. 7.7),

|2,m`〉 ≡ |49d,m`〉 with |m`| ≤ 2, (7.6a)

|1,m`〉 ≡ |50p,m`〉 with |m`| ≤ 1, (7.6b)

|0,m`〉 ≡ |47f,m`〉 with |m`| ≤ 3. (7.6c)
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|47, ` ≥ 3〉 ≡ |0(∗)〉

|50p〉 ≡ |1〉

|49d〉 ≡ |2〉

|47, ` ≥ 3〉 ≡ |0(∗)〉
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dipole

Figure 7.7: Hilbert space of Rydberg atom around 50p which has a dipole allowed transition
(yellow) to the 49d state with 18.142 GHz, and quadrupole (orange) and octupole (dashed red)
allowed transitions towards the 47` manifold. The quadrupole transition couples 50p to the 47f
state with a transition frequency of 23.490 GHz, and the octupole couples to 47g with 22.698 GHz.

As explained in Sec. 6.2.3 for the dipole transition from 46p to 45d, we remove states with only off-
resonant transitions from the Hilbert space to reduce the numerical cost during the simulations.
We thus remove the states |2〉 ⊗ |ν−M〉JK and |0〉 ⊗ |ν+M〉JK from the Hilbert space as they
correspond to both particles being the highest and lowest energy state, respectively. Moreover,
states with ` > 4 can be neglected as only transitions with ∆` = 0, . . . , 2 are allowed when
considering interactions up to second order in the multipole expansion. Note that we do not
remove the state |2,m`〉 entirely despite its large detuning ∆ from the molecular transition as we
found it to affect the dynamics as will be shown later.

We start by performing simulations under consideration of the first two orders of the mul-
tipole expansion, i.e. dipole-dipole and dipole-quadrupole contributions. As an initial Rydberg
state, we choose one state of the 50p manifold, i.e. |1,m`〉, and consider the average over Ryd-
berg states with the same absolute value |m`| later. We expect quadrupole transitions to occur
to |0,m`〉 (47f ) due to the ∆` = 2 selection rule. Additionally, dipole transitions are allowed
towards |2,m`〉 (49d) with ∆` = 1. We assume the molecule to be initially in J = K = 1, i.e.
|ν±,M〉with M = 0,±1, just as before.

Since the initial state has both dipole and quadrupole allowed transitions, we can compare
them directly by calculating the cross-section of two different transitions at otherwise equal cir-
cumstances. For the same reasons outlined above, we vary the inversion splitting ωinv instead
of the electric field. First, we scan the inversion splitting ωinv around the quadrupole transition,
ωinv ∼ 23.490 GHz, and consider the initial state of the molecule to be |ν+,M〉. As a result, the
Rydberg atom transfers its excitation to the molecule by means of dipole-quadrupole coupling.
Second, we scan the inversion frequency around the dipole transition, ωinv ∼ 18.142 GHz, and
set the initial state of the molecule to |ν−,M〉, such that it transfers its excitation to the Rydberg
atom by means of dipole-dipole coupling. The opposite choices, i.e. scanning the initial state
|1,m`〉 ⊗ |ν+,M〉 around 18.142 GHz or |1,m`〉 ⊗ |ν−,M〉 around 23.490 GHz, do not allow for
any energy transfer as they are highly off-resonant. Fig. 7.8 (a) shows the cross-section as a func-
tion of the inversion splitting for v = 100 m

s ; the parameters for the time-grid and the range of
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Figure 7.8: (a) Cross-section averaged over all possible initial states |1,m`〉⊗|ν±M〉 for v = 100 m
s

as a function of the inversion frequency ωinv. The yellow peak corresponds to the dipole transition
|1〉 ↔ |2〉 with the molecule being initially in |ν−〉, and the orange peak to the quadrupole tran-
sition |1〉 ↔ |0〉 with the molecule initially in |ν+〉 using the labels defined in Eq. (7.6). (b) Cross-
section for different initial states |1,m`〉⊗|ν+M〉 for v = 600 m

s . The vertical dashed lines indicate
the resonances from 50p to 49d (|1〉 ↔ |0〉, yellow), 47g (red) and 47f (|1〉 ↔ |2〉, orange).

impact parameter are given in Tab. A.12 in Appendix A.3. The peaks corresponding to the two
resonances are very pronounced and, most strikingly, the quadrupole peak is about half as high
as the dipole peak, corroborating our conjecture that quadrupole contributions are relevant for
the study of FRET.

To further study the dipole-quadrupole interaction, we calculate the cross-section as a func-
tion of the detuning between the Rydberg transition and the molecular inversion mode for four
different velocities: 1, 10, 100 and 600 m

s , similar to the dipole-dipole case in Fig. 7.6. We focus
on the quadrupole transition and thus assume an initial state of |1,m`〉 ⊗ |ν+,M〉 (with different
values of m` and M ). The qualitative picture is very similar as for the dipole transition shown
in Fig. 7.6 and we use the same procedure to extract the maximal value of the cross-section and
the line width as before; the exact values of the line width and height are listed in Tab. 7.1. As an
example, consider the case of v = 600 m

s in more detail, as shown in Fig. 7.8 (b). It can be seen that
the cross-section is maximal around the resonance of the quadrupole transition (vertical orange
line). There is no peak around the octupole transition (vertical red line) as we did not include
dipole-octupole interactions. There is also no peak at the dipole transition (vertical yellow line)
as the molecule is in the lower energy state and cannot provide energy to excite the Rydberg
atom to 49p. The shape of the individual lines depends on the specific initial state similarly as
for the dipole-dipole case discussed above. Equivalently as conducted in Sec. 7.1 for the dipole-
dipole case, it is possible to study the isolated transitions for the dipole-quadrupole case in order
to understand the occurrence of peaks in dips in the cross-section. The strategy is completely
analogous and will therefore not be discussed here in further detail.

Upon closer inspection, the cross-section in Fig. 7.8 (b) reveals an interesting feature: it is not
symmetric with respect to ∆ = 0. This can most clearly be seen in σ approaching zero for ∆ > 0

but showing a significant offset for ∆ < 0. A non-vanishing cross-section at large detuning can in
fact be explained by the presence of the dipole transition |1〉 ↔ |2〉with a resonance frequency of
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18.142 GHz. As the molecule is initially in the lower inversion level |ν+〉, it cannot transfer energy
to the Rydberg atom and cannot excite it from |1〉 to |2〉. However, the states |1,m`〉⊗|ν−,M〉 and
|2,m`〉⊗|ν+,M〉 get strongly coupled if the inversion splitting of ammonia is around 18.142 GHz.
In a process which resembles STIRAP, a strong dressing of the Rydberg states |1〉 and |2〉 induced
by the inversion mode of ammonia allows for a population transfer from |1〉 to |0〉 despite the
direct |0〉 ↔ |1〉 transition being strongly detuned from the ammonia inversion. In the end of
the interaction, some of the Rydberg atom’s population is in |0〉 (∼ 4% for b = 100 nm) while the
highest state |2〉 never gets populated. The upper inversion level of the molecule, on the other
hand, is significantly populated when the two particles are closest (∼ 20%) while equally only
a small fraction survives at the end of the interaction (also ∼ 4%). For this effect to occur, the
line of the transition has to be sufficiently broad to overlap with the resonance frequency of the
dipole. As a result, the asymmetry only appears for very high velocities; the other lines at 1, 10,
and 100 m

s are symmetric around the resonance.

7.2.3 Dipole-octupole transition

We now employ the potential in the multipole expansion up to third order and thus include
dipole-octupole terms into the simulations. We consider a similar part of the Rydberg Hilbert
space as discussed above for the dipole-quadrupole interaction. However, due to the octupole
selection rule ∆` = 3, transitions from 50p to 47g with an energy splitting of 22.698 GHz are
allowed. We thus have to include 47g into the simulations and denote it by

|0∗,m`〉 ≡ |47g,m`〉 with |m`| ≤ 4. (7.7)

The following simulations were conducted by Cornelius Hoffmann as part of his Bachelor’s thesis
under my co-supervision [5]. Here, we give an overview of the main results. The cross-section
when considering only dipole-octupole interactions (thus neglecting dipole-dipole and dipole-
quadrupole interactions) has been calculated for different velocities equivalently to the dipole-
dipole and -quadrupole case above. The initial state of the molecule is the same as before. The
parameters of the simulation are listed in Tab. A.13 in Appendix A.3, the resulting line widths
and heights in Tab. 7.1.

Since the transition frequencies of the quadrupole and octupole transitions are in close prox-
imity, interesting features appear in the spectrum when considering all three orders of the mul-
tipole expansion in the calculation of the cross-section. To study the mutual influence of the
quadrupole and octupole contributions, Fig. 7.9 shows the cross-section as a function of the de-
tuning for different velocities for three different scenarios: considering all three orders of the
multipole expansion (solid blue line), considering the dipole-octupole interaction only (red dot-
ted lines), and considering only dipole-dipole and dipole-quadrupole interaction, thus neglecting
the octupole terms (orange dashed lines). It can be seen that for none of the considered velocities,
the blue line is merely the sum of the orange and red lines.
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Figure 7.9: Cross-section averaged over all possible initial states |1,m`〉⊗|ν+M〉 for three different
velocities as a function of the inversion frequency ωinv when considering only dipole-dipole and
dipole-quadrupole interactions (orange dashed), only dipole-octupole interactions (red dotted),
or all three orders together (blue solid). The vertical lines indicate the resonances |1〉 ↔ |2〉
(dipole, yellow), |1〉 ↔ |0∗〉 (octupole, red) and |1〉 ↔ |0〉 (quadrupole, orange). Note the different
scales of the x- and y-axis.

For v = 10 m
s , the lines corresponding to the quadrupole and octupole transition of the Ryd-

berg atom (vertical orange and red lines, respectively) are very narrow and thus do not overlap.
However, it can be seen that the cross-section does not go to zero in between the two peaks when
considering all three orders of the potential (blue) even though the independent contributions
(orange and red) vanish. For v = 100 m

s , the influence is even more striking. The peak of both
the quadrupole and octupole contribution is shifted inwards when considering all three orders
of the multipole expansion. Especially the quadrupole peak around the vertical orange line be-
comes strongly asymmetric and acquires a small hump left of the resonance. For even higher
velocities, v = 600 m

s , where the peaks of the quadrupole and octupole transitions strongly over-
lap, the quadrupole peak is the dominant contribution. The octupole terms modify the shape of
the transition by introducing a small asymmetry and increasing the peak amplitude. Remark-
ably, the blue curve is much smaller than the sum of the orange and red curves. Moreover, the
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cross-section does not vanish at large detuning when considering all three orders of the potential
(blue). The orange line is identical to Fig. 7.8 (b) when averaging over the initial states; the cross-
section is therefore non-vanishing for small inversion frequencies due to the dipole transition as
discussed above. This, however, does not explain the comparatively large cross-section at strong
detuning on both sides of the resonance. To this end, similar arguments as employed before are
required: an increased set of accessible states due to the larger number of allowed transitions,
and interference between different paths allowing to perform far off-resonant transitions. The
thorough discussion of the dipole-octupole transition is content of the Bachelor thesis of Ref. [5].

7.2.4 Velocity-dependence of multipole transition line shapes

We now summarise the finding of the last section regarding the maximal cross-section max(σ)

and the line width ∆σ of the dipole-multipole transitions as a function of the detuning between
the Rydberg and molecular transition. We first determine the scaling of both quantities with the
velocity v by analytical approximations and compare them to our numerical simulations after-
wards. These insights will shed light on the breakdown of the dipole approximation in FRET. The
analytical derivations loosely follow the argument conducted in Ref. [40] for dipole transitions
but we extend it to higher-order contributions.

For the following approximations, we assume for simplicity the Rydberg atom and molecule
to consist of two energy levels |↑ / ↓〉 only. An energy transfer occurs only if one particle is in the
ground state while the other one is in the excited state, i.e. |↑〉 ⊗ |↓〉 ≡ |↑↓〉 or |↓〉 ⊗ |↑〉 ≡ |↓↑〉.
The other two combinations are off-resonant and can be neglected just as before. We write the
Hamiltonian in the product basis { | ↑↓〉, | ↓↑〉 } as

Ĥn =

(
0 Vn(t)

Vn(t) ∆

)
, (7.8)

where ∆ is the energy mismatch between the two-level systems (cf. Eq. (6.43)). Vn(t) is the n-th
order multipole expansion term from Sec. 6.2.1 which scales as r−(n+2). The interaction is time-
dependent as the distance between the particles changes over time. In case of resonance, ∆ = 0,
their time-evolution can be solved easily and the states accumulate a relative phase of Φ(t) as
given in Eq. (7.4).

The value of the cross-section at resonance can be approximated by considering the interac-
tion strength between the two particles as follows. The interaction is strongest when the particles
are closest to each other. They feel the interaction over a distance r ∼ b and thus interact approx-
imately during a time T ∼ b

v assuming uniform motion. In order to achieve a significant transfer
of excitation from one system to the other, the phase accumulated during this time has to be of
the order of one, Φ ≈ VnT ∼ 1; too small phases lead to a negligible population transfer while
too large phases induce fast oscillations which average out. Combining these equations results
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Figure 7.10: Maximal value of the cross-section, max(σ) and width of the line at half maximum
∆σ as a function of the velocity v for dipole, quadrupole and octupole transitions. The points
indicated the values extracted from the simulations (cf. Tab. 7.1), the dashed lines are fits of the
expected scaling behaviour.

in an approximation for the critical value of b at which the accumulated phase is of order one,

Φ = VnT ∼
1

bn+2

b

v
=

1

vbn+1
∼ 1

⇒ b∗ = v−1/(n+1).

Finally, we estimate that the scattering cross-section σ, which can be interpreted as the effective
size of the scattering centre, is roughly of the size b2. This leads us to the approximate scaling of
the cross-section as,

σ ∼ v− 2
n+1 . (7.9)

For a dipole transition in the Rydberg atom, n = 1, we thus expect a scaling of 1/v; for a
quadrupole 1/v2/3 and for a octupole 1/

√
v. The proportionality factor depends on the specific

transition that is considered and on the dipole matrix elements of both particles. For instance,
we have seen in Sec. 7.1, that a diagonal flip-flop (dipole-dipole) transition together with ϑ = 0

leads to a vanishing cross-section at resonance, meaning that the proportionality constant is zero
in that case. The scaling of the cross-section with v, however, is the same for all transitions and
orientations of the trajectory, as the dipole-multipole potential from Sec. 6.2.1 always scales as
r−(n+2).

Figure 7.10 (a) shows the maximal cross-sections obtained from the simulations of the pre-
vious sections (given in Tab. 7.1) together with fits of Eq. (7.9). The exponent was set to the
predicted value given by Eq. (7.9) and only the proportionality factor was fitted. It can be seen
that all three orders follow the predicted scaling perfectly. The fits show a relative standard error
of about 5%. As mentioned in Sec. 7.2.1, the fit does not depend strongly on whether we con-
sider the maximal value of the cross-section, the cross-section at resonance, or the peak value of
the cross-section when fitting it with a Gaussian or a Voigt profile, since we are averaging over
multiple initial states.
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In order to derive the scaling of the peak intensity of the cross-section with the velocity, we
have assumed the mismatch between the two systems to be vanishing. However, we have clearly
observed significant cross-sections for non-zero detuning in the previous simulation. As a result,
the cross-section as a function of the detuning describes a peak with a specific width. This line
width ∆σ can be approximated as follows [40]. A non-adiabatic transition occurs at non-zero ∆ if
the coupling Vn(t) (the off-diagonal elements in Eq. (7.8)) is roughly equal to the energy mismatch
∆ (diagonal element). The transition occurs at a critical distance r∗ between the particles which
is defined by the point where ∆ = Vn with Vn ∼ 1/(r∗)n+2. Solving for r∗ yields r∗ ∼ ∆−1/(n+2).
The particles require a time of approximately t ∼ r∗/v to cover the critical distance. According
to the Landau-Zener theory [179], a transition occurs if the accumulated phase ∆t is larger than
one, or in other words, if the transition rate v/r∗ is larger than the energy mismatch ∆. Inserting
the critical radius r∗ into ∆σ ∼ v/r∗ and solving for ∆σ yields the scaling of the line width with
the velocity,

∆σ ∼ v
n+2
n+1 . (7.10)

This results in v3/2 for dipole, v4/3 for quadrupole and v5/4 for octupole transitions. Fig. 7.10 (b)
shows the line width of the cross-sections obtained from the simulations of the previous sections
as given in Tab. 7.1 together with a fit of the expected scaling behaviour. All three orders seem to
follow the expected behaviour perfectly. The relative standard errors of the line width’s fit vary
between 0.5% for the quadrupole, 4% for the octupole, and 11% for the dipole. The deviations
can be explained by the simplified analytical approximation. While we have assumed pure two-
level systems in the derivations, the realistic model is more complex which affects the line shape
and width and discussed in the previous sections.

On a more fundamental level, Fig. 7.10 gives an estimate of when the multipole expansion
breaks down. It can be seen that for velocities v > 100 m

s , the cross-sections of all three orders
are of the same order of magnitude. For 600 m

s , the dipole peak is of even lower amplitude
than the quadrupole one. As it is at the heart of the multipole expansion that higher-orders
decrease in significance, the validity of the expansion clearly breaks down for high velocities
of approximately v > 100 m

s . Note that the velocity implicitly reflect the distance between the
particles. For the calculation of the cross-section, we have to integrate the transition probability
over the impact parameter (cf. Eq. (6.46)) and the transition probability takes a peak value close to
one at some critical impact parameter b. This critical value decreases as the velocity increases. For
100 m

s , this value is approximately reached at b = 200 nm, which is about twice the radius of the
Rydberg orbital. To predict the outcome of the scattering process accurately at room temperature,
corresponding to a mean velocity of 600 m

s , for instance, it would thus be necessary to consider the
full interaction potential. On the other hand, we have found that isolated transitions, such as the
dipole transition from 46p to 45d, which does not experience a strong mixing with other states
and which is sufficiently detuned from other transitions, is not strongly affected by including
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higher-order terms into the potential. We conclude that the multipole expansion still offers a
viable approximation to the realistic behaviour for isolated transitions, i.e. those which do not
experience a strong Stark mixing.

The systematic study of the line width and height of the cross-section as a function of the
detuning between the Rydberg and molecular transition for different orders of the multipole
expansion conducted in this chapter can be utilised to generate predictions for the outcome of
experiments. For example, we can generalise the results of Sec. 6.3, where we have simulated
the cross-section as a function of the electric field for the Rydberg transition 46p ↔ 45d, to other
cases. For dipole-dipole transitions, we can combine the scaling laws of Eqns. (7.9) and (7.10)
with the scaling of the line width and height with K and J obtained in Sec. 6.3.2. We recall that
we found the line width to scale as ∆σ ∼ 1/

√
dryddmol while the maximal cross-section scales as

max(σ) ∼ dryddmol with dmol ∼ K/
√
J(J + 1). The scaling of the cross-section of dipole-dipole

transitions and J = K can thus be summarised as

∆σ ∼ v3/2
4
√
J(J + 1)√

K
, max(σ) ∼ 1

v

K√
J(J + 1)

. (7.11)

Using these, it is possible to estimate by how much transition lines broaden or narrow when
changing the velocity v, the K or J value. In other words, they allows for predicting cross-
sections at essentially arbitrary velocities without performing additional simulations.

Consider for example the cross-sections for a thermal ensemble of molecules presented in
Figs. 6.10 and 6.11. In that case, the cross-section was determined at a fixed relative velocity
of v = 10 m

s . We conclude from Fig. 6.10 that it should still be possible to resolve most of the
resonances if the lines are no more than twice or thrice as broad, corresponding to velocities of
about 20 m

s (compare as an example the cross-sections of v = 10 m
s and 20 m

s for J = K = 1

in Fig. 6.8). As the resonances are further separated for higher values of J and K, individual
peaks might be well-isolated for velocities up to 50 m

s . Beyond that, most of the lines overlap
strongly and it will most likely not be possible any more to resolve single resonances from the
cross-sections. This qualitative discussion can be refined by changing the width and height of the
resonance peaks using the exact scaling laws of Eq. (7.11). Our thorough analysis thus provides
the necessary tools for approximating the cross-section as a function of the DC field without
performing additional numerical simulations.

7.3 Electric field control of a quadrupole transition

In the previous section, we have studied the cross-section as a function of the inversion split-
ting of ammonia in order to systematically investigate the scaling of the transition line width
and height with the relative velocity between the two particles. Now, we return to controlling
the cross-section via the electric field, which serves as a prediction for the outcome of realistic
experiments. The goal is to study the multipolar character of FRET at the example of the 50p to
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Figure 7.11: Stark map of the Hilbert space of the Rydberg atom shown in Fig. 7.7 for m` ≤ 3 as
indicated by the line colour. (a) shows the absolute energies E where the zero of energy was set
to the circular state of the n = 47 manifold. (b) shows the detuning ∆ of the Rydberg transition
frequencies from the to the molecular inversion mode for J = K = 1. The dashed lines assume
the reference state 50p, m` = 0 and the solid lines m` = 1.

47` Rydberg transition, similarly as conducted in Sec. 6.3 for the dipole transition. Most impor-
tantly, we can use our insights about the cross-section from the previous section to understand
the electric field controlled cross-section of higher order multipole transitions more easily.

We expect the difference between the electric field controlled and the inversion frequency
controlled cross-section to be more substantial in the present case, as compared to the dipole
transition from 46p to 45d from Sec. 6.3 and 7.2.1, for the following reason: Tuning the inversion
splitting had the advantage of disentangling the tunability of the energy mismatch between the
Rydberg and molecular transition from Stark mixing of the Rydberg atom. However, when con-
sidering the Rydberg transition 50p to 47` (cf. Fig. 7.7), the influence of Stark mixing is immense
as 47` constitutes the Stark manifold once an electric field is established. Figure 7.11 (a) displays
the Stark map of the Rydberg subspace from 47` to 49d. It can be seen that the Stark shift of the
states within the Stark manifold (47`) is about one order of magnitude larger than the shift of
states with a large quantum defect (e.g. 50p and 49d). In addition to that, the states in the Stark
manifold mix strongly such that ` is not a good quantum number any more. As a result, there
is not “one” f (or g) state any more – once the DC field is employed, almost all states have a
certain amount of f (or g) character mixed in. When tuning the cross-section by the electric field,
instead of by the inversion splitting, it can therefore be expected that many quadrupole transi-
tions occur from 50p to states within the Stark manifold which have a fraction of ` = 3 mixed in.
Dipole transitions, on the other hand, are highly unlikely as states ` = 2 (such as 49d) are strongly
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Figure 7.12: Cross-section for different initial states (solid lines) as a function of the DC field FDC
for the 50p to 47`-transition for three different velocities. The vertical lines indicate the resonances
of the 50p to 47f Rydberg transition with the J = K = 1 inversion mode of ammonia. The red
shaded area indicates the cross-section averaged over all initial states withm` = 0 corresponding
to the red and purple lines, and the blue shaded area for m` = 1 corresponding to the blue, green
and yellow lines, respectively.

detuned from the transition frequency of the inversion mode. We thus expect this transition to
be dominated by dipole-quadrupole interactions. In this section, we therefore study the electric
field controlled cross-section when considering the Rydberg transition 50p to 47` and all three
orders of the multipole expansion.

We assume the Rydberg atom to be initially in 50p and the molecule to be in the lower inver-
sion state with J = K = 1, i.e. |50p,m`〉⊗ |ν+M〉K=1,J=1. During the simulations, we consider all
states within 47` with ` = 3 . . . 46 (instead of limiting the number of states by using the selection
rules as has been done in Sec. 7.2.2 and 7.2.3), as they all get mixed by the Stark effect. Note
that this increases the size of the Hilbert space immensely and renders the numerical simulations
more expensive. All other parameters are given in Tab. A.10 in Appendix A.3. Figure 7.12 shows
the cross-section as a function of the DC field strength for three different velocities. We only in-
vestigate the cross-section up to fields of FDC = 400 V

m as for higher fields, the reference state 50p
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gets significantly mixed with the Stark manifold and a clear addressing would be complicated
(see Stark map in Fig. 7.11). Already at first glance, the spectrum of this transition looks much
richer than the one of the dipole transition discussed in Sec. 6.3. The reason is the aforementioned
mixing of the states due to the Stark effect.

To gain further insight, we start by discussing the lowest velocity, v = 10 m
s , in more detail.

The spectrum reveals a regular peak structure which can in fact be attributed to the structure of
the Stark manifold: Figure 7.11 (b) shows the detuning ∆ (cf. Eq. (6.43)) of the Rydberg transitions
ωryd = E0 − E1 (as defined in Eq. (6.42) with 50p corresponding to E0 and 47` to E1) from the
molecular inversion mode with J = K = 1. By comparing Fig. 7.11 (b) to Fig. 7.12 at v =

10 m
s , it can clearly be seen that each peak in the cross-section corresponds to the inversion mode

matching one Rydberg transition from 50p to a state within the Stark manifold. For instance,
around 300 V

m , we observe an isolated, broad peak when the Rydberg atom is initially in 50p,m` =

1 which corresponds to a transition to the DC dressed states which touch on the resonance at the
same field strength (solid lines in the Stark map). The strong peaks around 25 V

m (indicated by
the vertical black lines) corresponds to the resonance of 50p to 47f transition1 with the inversion
mode. Measurement of the cross-section as a function of the electric field thus allows for direct
conclusions about the Hilbert space of the Rydberg atom and observation of the Stark manifold.

When considering other velocities, it can be seen that the pattern of the Stark manifold can be
observed for velocities up to about 40 m

s . At higher velocities, the peaks get too broad to resolve
individual transitions and no substructure can be resolved in the spectrum except for the initial
resonance to 47f (indicated by the vertical black lines). For even higher velocities, 600 m

s , not
even the main resonance is resolved any more and the cross-section appears almost completely
flat (data not shown).

In order to estimate which contributions of the multipole expansion play a major role, we
repeat the simulations with only selected contributions to the interaction potential at velocities of
100 m

s . We start by considering only dipole-dipole interactions and investigate both possibilities
of the molecule being initially in the upper or lower inversion state. The resulting transfer prob-
abilities are vanishingly small and the cross-sections three to six orders of magnitudes smaller
(data not shown). The dipole-quadrupole interaction is thus the dominating contribution for the
spectrum shown in Fig. 7.12 and no transitions to the higher lying state 49d take place. This is not
surprising as it high highly detuned with ωryd = 18.142 GHz. Moreover, initial states where the
molecule is in the upper state do not play a major role for any order of the multipole expansion
and we find deviations of maximally 1% when neglecting them.

When truncating the multipole expansion after the second order, i.e. when neglecting the
dipole-octupole interaction, the spectrum looks almost identical to the one presented in Fig. 7.12.
The only difference is a minor offset: the curves without the dipole-octupole interaction have a
minimally smaller amplitude. This difference is not even visible on the scale of the plot shown

1To be exact, ` is not a good quantum number at non-vanishing DC field. We label by 47f the state with the largest
overlap with the state |n = 47, ` = 3〉 in the spherical basis.
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above. We conclude that the dipole-quadrupole interaction is dominating this process and tran-
sitions mostly occur from 50p to 47f due to the ∆` = 2 selection rule of quadrupole transitions.
In principle, octupole transitions with ∆` = 3 from 50p to 47g are also allowed. However, 47g

already joins the Stark manifold at very small DC fields and therefore gets strongly mixed with
other states. This decreases the transition probability as every DC dressed state has only a small
fraction of the g-state mixed in. Due to this and the lower amplitude of octupole transitions in
general, they do not contribute significantly to the spectrum in Fig. 7.12.

If the goal is to observe an isolated octupole transition, equivalently to having observed an
isolated quadrupole transition above, one could change the initial state to be a d state below the
Stark manifold. Fig. 7.11 shows that the state 48d is located 25.4 GHz below the Stark manifold.
This transition frequency, however, is detuned by about 2 GHz from the ammonia inversion mode
for J = K = 1. By moving to lower principal quantum numbers, the transition frequency can be
reduced and the two particles can again be brought into resonance.

Lastly, we discuss the influence of the admixture of higher rotational states, J,K > 1, onto
the spectrum of this transition. Most of the arguments from Sec. 6.3.2 on the dipole transition
46p to 45d can be applied to this case in a similar fashion. Some differences must be considered.
Firstly and most importantly, the 50p to 47`-transition has a richer spectrum with more narrowly
spaced lines as we are driving transitions into the Stark manifold. Most of the resonances might
therefore be placed very closely to each other, rendering it more difficult to distinguish them.
Secondly, the quadrupole and octupole lines are broader as the dipole ones which lowers the
velocity at which they might be distinguished. This has been shown in Fig. 7.10 (b). Thirdly,
the scaling of the line width and height with J and K for a fixed velocity has to be reconsidered
when assuming dipole-quadrupole or dipole-octupole interactions as given in Eqns. (6.37) and
(6.38). While the scaling of the interaction strength with the dipole element of the Rydberg atoms
changes as compared with dipole-dipole coupling, the interaction strength still scales linearly
with the dipole moment of the molecule in higher orders of the multipole expansion. As a result,
the line width and height scale the same way with K and J as for the dipole-dipole interaction
(cf. Eq. (7.11)).

Taking these points together, the only lines which might be possible to resolve when including
higher rotational states in Fig. 7.12 are the ones at fields higher than 100 V

m as they are fairly well
separated. This prediction can be tested by determining the resonances between the Rydberg
transitions and the inversion mode of ammonia for higher values of J and K, and plotting them
into Fig. 7.12. The width of the peaks can be approximated by assuming the scaling laws derived
above. As discussed in Sec. 6.3.2 for the dipole transition, it would be possible to determine the
population of different rotational states in a molecular ensemble by comparing the spectroscopic
measurements of an experiment to the simulated spectra. The Rydberg atom would thus serve
as a probe of measuring the population of different J and K states of the molecule.



CHAPTER 7. MULTIPOLAR CHARACTER OF FÖRSTER RESONANCE ENERGY TRANSFER 181

7.4 Summary

In this chapter, we have presented a thorough analysis of different order multipole contributions
to the Förster resonance energy transfer (FRET) between Rydberg atoms and ammonia molecules.
We have studied the dipole-dipole interaction considering two states in each system only, and
were able to explain the complex structure of peaks and dips in the electric field controlled cross-
section by means of the interaction potential. We found that the initial states of the systems and
the orientation of the trajectory strongly affect the line shape of the cross-section. Our obser-
vations could be tested experimentally by preparing the Rydberg atoms in different |m`| levels
before scattering them off molecules and determining the spectrum afterwards.

Afterwards, we have studied different orders of the multipole expansion independently and
determined the scaling of the resulting maximal cross-section and its line width with the relative
velocity between the two particles. We have found a scaling of both quantities with the rela-
tive velocity of the particles which is in excellent agreement with an analytical approximation as
shown in Fig. 7.10. Using these data, we have estimated the breakdown of the dipole approxi-
mation to occur at a relative velocity between the two particles of 100 m

s which can be interpreted
as a distance of about 200 nm between them. Moreover, we have observed interference of higher-
order contributions giving rise to features in the cross-section as a function of the inversion split-
ting of ammonia which cannot be explained when considering different orders independently.
We attribute those effects to an increased set of accessible states due to the larger number of al-
lowed transitions, and interference between different paths which allow for driving off-resonant
transitions. Lastly, we have investigated a dipole-forbidden transition in the Rydberg atom and
found strong signatures of FRET, thus highlighting the importance of dipole-quadrupole inter-
actions. The cross-section has been tuned as a function of the electric field and displayed a rich
structure of peaks which reflects the structure of the Rydberg atom’s Stark manifold. The simu-
lations serve as a direct prediction for the outcome of experiments, when recording the state of
the Rydberg atoms after their collision with ammonia molecules when tuning the electric field.

Beyond studying the breakdown of the multipole expansion, the thorough investigation of
the transition lines allows for predicting the spectrum of the cross-section for different initial
states or velocities without performing additional simulations. Conversely, the shape of a experi-
mentally measured spectrum allows for drawing conclusions about the state of the molecule. On
the one hand, FRET transfers population in the Rydberg atom to another energy level; detection
of the atom in this state is thus a clear indicator for the presence and density of molecules. On
the other hand, the peak structure of the cross-section as a function of the DC field serves as an
indicator for which rotational levels |JK〉 of the molecule are populated, and their relative hight
reveals the population of these levels. The Rydberg atom thus acts as a sensor providing infor-
mation about the molecular state which is the first step towards a non-destructive measurement
of polar molecules as proposed recently [40].
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All of our simulations can be generalised to other initial states, transitions or even atomic or
molecular species easily. The main requirement is the existence of a (near-)resonant transition in
two particles with large dipole (or n-pole) matrix elements. The striking advantage of utilising
Rydberg atoms for FRET is, in addition to large dipole moments, their rich spectrum which allows
for tuning the transition frequencies by choosing the principal quantum number n in addition to
a fine-tuning using the Stark effect. This allows for combining them with essentially arbitrary
molecular transitions in the MW-range. Moreover, the simulations can be adapted to various
experimental conditions, such as thermally distributed velocities or trajectories with arbitrary
or undetermined orientations. The most important consequence of increasing the number of
parameters over which to average is an increased computation time. In some cases, however,
a few sampling points are sufficient to estimate the effect of an average. For instance, three to
four sampling points for the velocity v are sufficient to reveal the general scaling behaviour of
the cross-section. If the velocity is not selected accurately but, for instance, given by a Gaussian
distribution, the only effect that is to be expected is a broadening of the lines.

As mentioned above, several features that have been found in the simulations could be com-
pared directly to the outcome of experiments. It would be most insightful to study the predicted
features related to higher-order effects, such as the non-vanishing cross-section for large detun-
ing (cf. Fig. 6.8) or quadrupole transitions into the Stark manifold (cf. Fig. 7.12). As a next step
regarding the simulations, it would be interesting to study the final state of the molecule after the
interaction. One question would be if it is possible to selectively prepare states in molecules by
means of their interaction with Rydberg atoms; one example being the orientation of a molecu-
lar ensemble along the quantisation axis. The preparation of the Rydberg atoms in well-chosen
initial states offers a degree of freedom in this scenario.

The simulated cross-sections as a function of the DC field could be compared to spectroscopic
measurements of experiments to gauge the accuracy of the model. If deviations between the
theoretical predictions and the experimental measurements were detected, there are several op-
tions to improve and generalise the model. For instance, the simple approximation of a classical
trajectory and the molecule being in uniform motion could be lifted and replaced by a more in-
volved simulation of the particles’ motion. This might be necessary especially for experiments
with very low relative velocities between the two particles, as we assumed the change in internal
energy caused by the collision to be small compared to the kinetic energy of the particles. Also,
the multipole expansion of the interaction potential could be replaced by numerically solving
the Schrödinger equation under the full interaction potential. This would increase the cost of the
numerical simulations significantly but also increase the accuracy of the simulations. More pre-
cisely, it would be possible to simulate the cross-section for arbitrary velocities and also if higher
order multipole transitions are involved. In summary, the model we have presented and studied
in the last two chapters serves as a starting point and playground for investigating the multipolar
character of FRET and collisions between Rydberg atoms and polar molecules.
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SUMMARY AND OUTLOOK

In this thesis, I have presented multiple ways of using Rydberg atoms in different fields of quan-
tum technology. I have developed new ways to employ Rydberg atoms in novel settings, im-
prove established methods, use them as ancillas for the study of open quantum system dynam-
ics, and study their interaction with other particles. All of these projects are linked in their cen-
tral endeavour: controlling Rydberg atoms for quantum technologies. To this end, I went from
quantum metrology to quantum sensing; from isolated, single Rydberg atoms – both alkali and
alkaline-earth – over light-matter interaction and open quantum system dynamics, to the scatter-
ing process between Rydberg atoms and molecules. All these results show both the versatility of
Rydberg atoms as well as the employed methods.

Fast Navigation in the Stark manifold

I have started by studying single alkali Rydberg atoms and their control using electromagnetic
radiation. The accurate preparation of specific target states is a vital task for essentially every
quantum technology. The difficulty often lies in the required accuracy, speed or even sheer pos-
sibility to prepare the desired states. In Chapter 3, I have demonstrated by means of two selected
examples that all of these problems can be tackled using optimal control theory. I have started
by deriving optimised RF pulse shapes for preparing circular states of Rydberg atoms both fast
and accurately under experimental constraints on pulse amplitude and bandwidth. In collabora-
tion with experimentalists from Laboratoire Kastler Brossel (LKB) at Collège de France, Paris, we
showed that the circularisation can be performed within∼ 100 ns with an excellent fidelity of 99%

in the simulations and 96% in the experiment. This is a great improvement in speed, as compared
to adiabatic methods which take a few microseconds, and in fidelity, as compared to a simple π-
pulse with 80% efficiency. Beyond merely improving existing protocols, we have also shown that
optimal control theory can be used to prepare non-trivial superposition states for which no in-
tuitive preparation method was known beforehand. We have demonstrated the preparation of a
Schrödinger-cat like state, i.e. a superposition of two states at opposite poles of the Bloch sphere,
within 150 ns with a fidelity of 99% in the simulations and 93% in the experiment.
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The results of that chapter serve as a proof-of-principle for the preparation of almost arbitrary
states in the Stark manifold of Rydberg atoms using optimal control theory. Most importantly,
the method can be generalised to an essentially arbitrary number of control pulses with arbitrary
polarisation. The method is moreover not limited to a small subspace of the Stark manifold, as
we have used in our examples, but can be extended to controlling the dynamics within the full
Stark manifold. One interesting application would be the preparation of a superposition of oppo-
site circular states (i.e. circular states with |m` = n− 1〉 and |m` = −n+ 1〉) using RF pulses only
[58, 1]; or similarly the preparation of a superposition between states on the upper and lower
edge of the Stark manifold (i.e. between extremal elliptic states with |m` = 0, µ = −n+ 1〉 and
|m` = 0, µ = n− 1〉). While the former would serve as an excellent sensor for magnetic fields [58],
the latter would do the same for electric fields [47]. Also a combination of optimal control the-
ory with quantum Zeno dynamics seems interesting, as MW pulses can be used to truncate the
Hilbert space [180], thus enabling new control strategies which would have been challenging
otherwise due to the high symmetry within the Stark manifold. All in all, our study paves the
way for preparing highly complex, non-classical states of Rydberg atoms under experimental
conditions, which can advance many fields of quantum technology.

Improved modelling of alkaline-earth atoms

Afterwards, we have extended our model from alkali to alkaline-earth atoms. The second va-
lence electron will leave the ionic core optically active and will thus further increase the versa-
tility of Rydberg atoms for quantum technologies. In order to apply optimal control theory to
alkaline-earth atoms efficiently, an accurate model is a major requirement. In Chapter 4, we have
therefore studied Stark maps of strontium to improve the modelling of alkaline-earth atoms. We
have started from the single-active electron (SAE) model proposed in literature and found sig-
nificant discrepancies between experimental and simulated data. Based on the acquired insights
and physical understanding, we have developed an improved model which reproduces the ex-
perimental data with high fidelity. First tests suggest that fast and accurate circularisation of
strontium using optimal control is possible under experimental conditions, albeit more challeng-
ing than for rubidium.

Optimal control of alkaline-earth atoms would prove useful in many fields of quantum tech-
nology as the existence of two valence electrons opens the possibility to combine different tasks:
while the inner electron can be used to trap, cool or image the atom, the outer electron can be
used for quantum technology applications. One very promising example are Rydberg atom
quantum simulators which can be used to study many-body physics [94]. A major prerequi-
site for this technology is the accurate trapping of atoms in a lattice as demonstrated for alkali
Rydberg atoms in low-angular-momentum states in three dimensions using ponderomotive bot-
tle beam traps [101]. Low-angular momentum Rydberg states, however, possess a comparatively
short lifetime in the 100µs range, thus significantly limiting the time during which the simulator
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can perform simulations. Circular Rydberg atoms, on the other hand, have much longer intrin-
sic lifetime around 50 ms for n = 50. While trapping of circular states of alkali atoms has been
demonstrated in two-dimensions [181], their control is generally more challenging as they are
impervious to visible light. Strontium atoms in circular states could solve these problems by pro-
viding an optical transition of the core electron and the remarkable properties of circular Rydberg
atoms (like a long lifetime) at the same time. While the preparation of circular Rydberg states of
strontium has already been demonstrated in the experiment [182], the current fidelity is limited
to about 85% which is not sufficient for quantum simulation. The presented work thus paves
the way for fast an accurate circularisation of strontium Rydberg atoms and, ultimately, optical
manipulation of circular Rydberg atoms.

Quantum simulation of open quantum systems

In the previous two projects, the Rydberg atoms have been assumed to be free of dissipation.
This was possible as the total duration of the experiment was much shorter than the excited
state’s lifetime. The fast protocol times achieved via optimal control allow for the preparation
of even intricate superpositions faster than decoherence could destroy them. In addition to that,
the carefully engineered control pulses with limited bandwidth and amplitude proved to be very
stable against other sources of noise, such as field fluctuations. However, it is not always pos-
sible to avoid decoherence on the relevant time scales. It is therefore of utmost importance for
the engineering of quantum technologies, which require highest precisions, to study open quan-
tum systems. Quantum simulation, itself one pillar of quantum technology, provides a suitable
tool for this objective. In Chapter 5, I have therefore presented a quantum simulator for open
quantum system dynamics in which dissipation strength and non-Markovianity can be tuned in-
dependently from each other. In the Markovian limit, the dynamics of the open quantum system
can be described by a Lindblad master equation.

The proposed simulator uses the quantum Zeno effect to enable the controlled, experimental
study of dissipation, memory effects, and their interplay in open quantum system dynamics. In
particular, it will allow for classifying the role of memory effects for the controllability of open
quantum systems [30]. In more detail, it is constructive to combine two experimental protocols:
a specific control protocol (to prepare a desired state or implement a quantum gate) and the
measurement-based open system simulator. Changing the type and strength of dissipation in the
open system simulator will allow for assessment whether or not, and how well, the control proto-
col’s figure of merit can be optimised. In the same spirit, such a combination of quantum control
and tunable dissipation allows for investigating how memory effects alter control strategies for
open quantum systems and their relevance for applications in quantum technology.
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Multipolar character of FRET in the scattering of Rydberg atoms and polar molecules

The quantum simulator capitalises on the strong interaction between Rydberg atoms and light
caused by their large dipole moment. For the same reason, Rydberg atoms are ideal for combi-
nation with other systems. These so-called quantum hybrid systems hold great interest for quan-
tum technologies as they promise to unify the advantages of their constituents. When combining
Rydberg atoms with molecules, for instance, the high level of control achievable for atoms can be
transferred to molecules. As a concrete example, the strong dipole-dipole coupling between Ryd-
berg atoms and polar molecules can be exploited for a novel, non-destructive detection method
of the latter where the Rydberg atoms serve as meters. To this end, I have studied the scattering
process between the two species in Chapter 6. I have modelled the scattering process from first
principles assuming their interaction to be that of a dipole (the molecule) with a charge distri-
bution (the Rydberg electron) and expanded the potential up to third order, thus accounting for
dipole-dipole, -quadrupole and -octupole contributions. I have calculated the cross-section of
the scattering process numerically and presented predictions for the outcome of realistic experi-
ments. Moreover, the measured spectrum was found to provide information on the composition
of the rotational states of the molecule.

If the particles possess a resonant transition, they exchange energy without emitting radiation
in a process known as Förster resonance energy transfer (FRET). FRET is usually treated in the
dipole-dipole approximation which is expected to break down if the size of one of the particles
becomes comparable to their separation. In Chapter 7, I have studied the first three orders of
the multipole expansion independently and investigated their influence on FRET. This allows for
understanding the state-dependence of the cross-section around the resonances between the Ryd-
berg transitions and the inversion mode of ammonia. Different orders of the multipole expansion
were found to interfere causing, for instance, non-vanishing cross-sections for large detuning of
the particles’ transitions. Furthermore, I compared the scaling of the maximal cross-section and
the transition line width of the cross-section as a function of the detuning to analytical approx-
imations and found an excellent agreement. This allows for estimating the breakdown of the
dipole-dipole approximation at relative velocities of approximately v > 100 m

s due to the large
size of the Rydberg orbitals. Lastly, the cross-section of a dipole-quadrupole transition in the
Rydberg atom was simulated as a function of the DC field, revealing strong signatures of the
Stark manifold which can be resolved until velocities of approximately 40 m

s .

The results of these two chapters can easily be generalised to other atomic or molecular
species and promise advances in predominantly two directions: the development of a non-
destructive detection method of polar molecules via Rydberg atoms, and the systematic study
of the multipolar character of FRET. In combination, several interesting question arise: What
spectroscopic possibilities open up in detection methods when the full interaction potential (i.e.
higher order multipole contributions) is taken into account? What role does the angular depen-
dence, i.e. the orientation of the trajectory, play? Can the final state of the molecular ensemble
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be engineered? The presented work has only scratched the surface of these questions but the
model allows for investigating them in detail. FRET is the basis for prominent spectroscopic
techniques for molecular systems and regularly employed with quantum dots [41, 170]. The ben-
efit of improving the understanding of this method and exploiting its full potential is therefore
formidable.

Control of Rydberg atoms for quantum technologies

Lastly, let us take a step back and consider the results of this thesis in a bigger context. I have
presented methods for controlling the dynamics in high-dimensional Hilbert spaces, optimis-
ing unknown model parameters, simulating an environment, truncating Hilbert spaces, simulate
scattering and study resonant energy transfer. While all projects involved Rydberg atoms, gen-
eralisations to other systems is straight-forward in all cases, as the Hamiltonian can easily be
adjusted or replaced in theoretical simulations. I have thus presented a comprehensive toolbox
for controlling and simulating quantum dynamics. Of course, all these efforts were supported by
prior work in the group and the QDYN library [62].

Quantum technology has received major public attention due to immense public funding
programs or investments by multinational companies, such as Google, IBM and Intel [15]. Quan-
tum control cuts every pillar of quantum technology as laid out in the Quantum Technologies
Roadmap of the European Community [15]. In this thesis, I have specifically addressed two of
these pillars – quantum metrology and simulation – and presented great achievements. However,
fast and accurate control, as demonstrated in Chapter 3, is a vital task for all areas of quantum
technology, including quantum computing, which is without question the most prominent effort
and challenge the community aims to achieve. The results on navigating the Stark manifold of
Rydberg atoms serve as a clear example of how to tackle this challenge. Beyond this, improv-
ing the convergence between theory and experiment is one of the main obstacles for realising
quantum technology [15]. Our joined work with experimentalists from the LKB demonstrates
the great performance of optimised pulse shapes in an experiment. The insights gained in the
process will most certainly be valuable when moving to different applications in other expe-
rimental platforms. The Roadmap further names the study of fidelity limits in the presence of
noise in the Markovian and non-Markovian regime as a major challenge – a study which is clearly
facilitated by the proposed quantum simulator. Its great versatility allows for exploring the in-
fluence of different kinds of environments in various experimental platforms. The combination
of the quantum simulator with selected control schemes allows for investigating the detriments
and perhaps even benefits of an environment with given properties. In conclusion, the study of
quantum control can bring the whole field of quantum technology forward as “it is control that
turns scientific knowledge into technology” [27].
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A
PARAMETERS OF THE SIMULATION

In the following, we present all the parameters we used for the theoretical simulations of Ryd-
berg atoms and their interaction with molecules. We start by listing the model parameters for
describing rubidium atoms in Sec. A.1, followed by the parameters for strontium in Sec. A.2. In
Sec. A.3, we list the parameters employed for simulating the scattering trajectories of rubidium
and ammonia.

A.1 Rubidium

We assume experiments with the alkali atom 85Rb which have a nuclear charge of Z = 37 and a
dipole polarisability of αc = 9.0760 [183]. Furthermore, we have assumed the following quantum
defects as listed in [52].

L J δ0 δ2

0 (s) 1/2 3.131145 0.195 [184]
1 (p) 1/2 2.65486 0.280 [184]

3/2 2.64165 0.318 [184]
2 (d) 3/2 1.34807 −0.603 [184]

5/2 1.34642 −0.545 [184]
3 (f) 5/2 0.0165192 −0.085 [185]

7/2 0.0165437 −0.086 [185]
4 (g) 7/2, 9/2 0.004 0 [186]
5 (h) 9/2, 11/2 0.001 0 [186]
6 (i) 11/2, 13/2 0.0006 0 [186]
7 (j) 13/2, 15/2 0.0003 0 [186]

Table A.1: Quantum defects of rubidium.
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A.2 Strontium

In our simulation with alkali-earth atoms, we now consider strontium atoms. We start by listing
the employed quantum defects in Sec. A.2.1, followed by the parameters for the single-active
electron (SAE) model in Sec. A.2.2. Afterwards, we list the experimental data points which we
have used to perform the fit of the model parameters at zero DC field in Sec. A.2.3. Finally, in
Sec. A.2.4, we present a summary of the optimised model parameters.

A.2.1 Quantum defects

In the following tables, we list the quantum defects for the singlets (S = 0) and triplets (S = 1)
separately. The reference is [114] unless noted otherwise. The values in the tables are the initial
ones we used before performing any optimisation and which have been used to generate Fig. 4.1.

L δ0 δ2 δ4

0 (s) 3.26896 -0.138 0.9
1 (p) 2.7295 -4.67 -157
2 (d) 2.3807 -39.41 -1090
3 (f) 0.08707 [115] -2 0 [115]
4 (g) 0.038 [115]
5 (h) 0.0134759 [115]

Table A.2: Quantum defects of the strontium singlets.

L J δ0 δ2 δ4

0 (s) 3.371 0.5

L− 1 2.8866 0.44 -1.9
1 (p) L 2.8824 0.407 1.3

L+ 1 2.8719 0.446 -1.9

L− 1 2.658 3 -8800
2 (d) L 2.636 -1 -9800

L+ 1 2.63 -42.3 -18000

3 (f) 0.111867 [115] -2.2 [115] 120

4 (g) 0.03844 [115]

5 (h) 0.0134759[115]

Table A.3: Quantum defects of the strontium triplets.
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A.2.2 SAE parameters

In our simulations, we have employ the `-dependent potential in the SAE approximation [32] as
given in Eq. (4.4) with the effective charge from Eq. (4.5) where Z = 38. We employed modified
polarisability from Eq. (4.6) with αc = 7.5. The parameters have been taken from [32] and take
the following values:

` = 0 1 2 ≥3

α`1 3.36124 3.28205 2.155 2.1547
α`2 1.3337 1.24035 1.4545 1.14099
α`3 5.94337 3.78861 4.5111 2.1987
r`c 1.59 1.58 1.57 1.56

Table A.4: SAE model parameters of strontium.

A.2.3 Experimental data at zero field

In the following, we list the experimental data at zero DC field as recorded by our experimental
collaborators [115], which we have used in Sec. 4.2.2 to fit optimise the model parameters. The
following three tables give the position of the ` = 3, 4 and 5 levels separately.

n s j E [MHz]

48 1 2 -217966.3301
48 1 3 -217928.4631
48 1 4 -217880.4551
48 0 3 -216395.7901

49 0 3 -158400.9931

50 1 3 -105210.2536
50 1 4 -105167.8101
50 0 3 -103856.7001

51 0 3 -52494.51309

52 1 3 -5264.001086
52 1 4 -5226.288086
52 0 3 -4071.646086

53 0 3 41631.86691

54 0 3 84816.08591

Table A.5: Experimentally determined position of the energy levels of ` = 3 (f ) at zero DC field
where the zero of energy was set to the centre of the n = 52 manifold.
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n s j E [MHz]

49 1 3 -155727.8551
49 1 4 -155721.4251
49 1 5 -155703.7251
49 0 4 -155683.5201

51 1 4 -50116.23589
51 0 4 -50082.61309

53 1 4 43752.30091
53 0 4 43782.27891

Table A.6: Experimentally determined position of the energy levels of ` = 4 (g) at zero DC field
where the zero of energy was set to the centre of the n = 52 manifold.

n E [MHz]

48 -212054.4201
48 -212049.4601

50 -100009.2621

52 -653.6000865
52 -649.5700865

54 87869.36191
54 87872.92591

Table A.7: Experimentally determined position of the energy levels of ` = 5 (h) at zero DC field
where the zero of energy was set to the centre of the n = 52 manifold. Note that the labels singlet
and triplets are not longer valid for h states
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A.2.4 Summary of the optimised model parameters

In this section, we briefly summarise the optimised parameters of the modified SAE model de-
rived in Sec. 4.2.2. We optimised the states with 3 ≤ ` ≤ 5 (f , g, and h) and found the following
parameters.

` n δ1
0 δ1

2 δ3
0 δ3

2

3 (f )
{

48, 50, 52
50, 52

}
0.087369 -1.549

{
0.1110
0.1097

} {
2.63
5.95

}

4 (g) 48 0.0383956461906433 0 0.0388678805351258 0
5 (h) 48,52,54 0.013975 -0.158 δ1

0 0

` n ΩnL [MHz] ωn` [MHz]

3 (f ) 48,50,52 105.826 n−3 0
4 (g) 48 -0.0195797509096735 2.7204884613256435
5 (h) 48,52,54 0 104.703 n−3

Table A.8: Optimised quantum defects (upper panel) and spin-orbit couplings (lower panel) for
the f to h states. δ1

0,2 and δ3
0,2 denote the zero-th and second order quantum defects (subscript 0

or 2) for singlets and triplets (superscript 1 or 3). The n-column denotes the n-values that were
considered during the fit. The only exception are the quantum defects for the singlets for which
the value n = 48, . . . , 54 were taken into account. For the quantum defect of the f triplets, two
different fits are presented considering different n-values (indicated by the curly brackets).

A.3 Scattering

As explained in Sec. 6.2.2 of Chapter 6, the calculation of the cross-section requires first, the
propagation of the combined system from some initial time −t0 to some final time t0 which we
assume to be t0 ≈ v/rmol(t0). Second, the transition probability has to be integrated over the
impact parameter, which is discretised from bmin to bmax in steps of bstep. In the following, we list
the parameters that have been used to generate the figures in Chapter 6 and 7.
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v[m/s] t0[ns] bstart[nm] bstop[nm] bstep[nm]

10 200 200 2000 10
20 100 100 1000 6
50 40 100 1000 6
100 20 50 1000 5

Table A.9: Parameters for the determination of the cross-section in Fig. 6.8 for the 46p to 45d-
transition. For each velocity, the considered grid of the impact parameter is given, determined
by bstart and bstop and bstep. The time-propagation was conducted from −t0 to t0.

v[m/s] t0[ns] bstart[nm] bstop[nm] bstep[nm]

10 200 60 700 20
40 50 60 600 20
100 20 50 400 10

Table A.10: Parameters for the determination of the cross-section in Fig. 7.12 for the 50p to 47`-
transition. Otherwise same as Tab. A.9.

v[m/s] t0[ns] bstart[nm] bstop[nm] bstep[nm] max(σ)[cm2] ∆σ[MHz]

1 2000 500 5500 50 1.5 · 10−7 0.42
10 200 200 2000 20 1.9 · 10−8 8.8
100 20 50 800 10 2.0 · 10−9 260
600 3 50 300 5 3.1 · 10−10 3840

Table A.11: Parameters for the determination of the dipole line shape in Sec. 7.2.1. For each
velocity, the considered grid of the impact parameter is given, determined by bstart and bstop and
bstep. The time-propagation was conducted from −t0 to t0. The resulting maximal value of the
cross-section max(σ) and the width of the line at half maximum ∆σ were determined from the
simulations.

v[m/s] t0[ns] bstart[nm] bstop[nm] bstep[nm] max(σ)[cm2] ∆σ[MHz]

1 2000 200 2000 100 2.7 · 10−8 0.96
10 200 200 1000 50 5.5 · 10−9 20.8
100 20 50 500 10 1.3 · 10−9 440
600 3 10 250 10 3.8 · 10−10 4800

Table A.12: Same as Tab. A.11 but for the quadrupole transitions in Sec. 7.2.2.

v[m/s] t0[ns] bstart[nm] bstop[nm] bstep[nm] max(σ)[cm2] ∆σ[MHz]

1 2000 50 1000 50 5.3 · 10−9 1.28
10 200 50 550 25 1.8 · 10−9 20.8
100 20 50 500 10 5.4 · 10−10 360
600 3 30 400 10 2.0 · 10−10 3200

Table A.13: Same as Tab. A.11 but for the octupole transitions in Sec. 7.2.3.
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SPHERICAL TENSORS

In this appendix, we summarise the most important relations for spherical tensors up to rank
k = 3 which are used to calculate the matrix element of Rydberg atoms. The tensors of rank 1,
Sec. B.1, can be used to evaluate the dipole matrix elements which are necessary to determine the
coupling between Rydberg atoms and external fields, or to evaluate the dipole-dipole coupling
between Rydberg atoms and molecules. Higher order tensors serve to calculate higher order
multipole elements to investigate the multipolar character of FRET.

B.1 Dipole

To give a complete overview, we also repeat the most important relations for spherical tensors of
rank k = 1 here. The components are defined as [45]

T
(1)
0 = z, (B.1a)

T
(1)
±1 = ∓ 1√

2
(x± iy), (B.1b)

and they are proportional to spherical harmonics with ` = 1,

T (1)
q =

√
4π

3
rY m

1 . (B.2)

From the properties of the spherical harmonics (cf. Eq. (2.18)), we can deduce the dipole selection
rules ∆` = ±1 and ∆m = 0,±1. By inverting the system of equations in Eq. (B.1), we can compute

VII
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the transformation from spherical to Cartesian components as

x =
1√
2

(
T

(1)
−1 − T

(1)
1

)
,

y =
i√
2

(
T

(1)
−1 + T

(1)
1

)
,

z = T
(1)
0

(B.3)

which allows to calculate the matrix elements of the Cartesian components x, y and z.

The angular part of the dipole matrix elements ,
〈
`m
∣∣ r̂
r

∣∣ `′m′
〉

as given in Eq. (2.11), can most
easily be evaluated by first rewriting the Cartesian coordinates into spherical ones,

x± iy = r sinϑe±iϕ,

z = r cosϑ.

It is then possible to evaluate the overlap integrals as (taking for example the ẑ element)

〈
`′m′

∣∣∣∣
ẑ

r

∣∣∣∣ `m
〉

=

∫
sinϑdϑ

∫
dϕ (Y m

` )∗(ϑ, ϕ) cosϑY m
` (ϑ, ϕ). (B.4)

The non-vanishing elements of the dipole operator in the spherical basis can be derived analyti-
cally to be [43]

〈
`m

∣∣∣∣
ẑ

r

∣∣∣∣ `+ 1,m

〉
=

√
(`+ 1−m)(`+ 1 +m)

(2`+ 1)(2`+ 3)
, (B.5a)

〈
`m

∣∣∣∣
ẑ

r

∣∣∣∣ `− 1,m

〉
=

√
(`−m)(`+m)

(2`+ 1)(2`− 1)
, (B.5b)

〈
`m

∣∣∣∣
x̂± iŷ
r

∣∣∣∣ `+ 1,m± 1

〉
= ±

√
(`±m+ 2)(`±m+ 1)

(2`+ 1)(2`+ 3)
, (B.5c)

〈
`m

∣∣∣∣
x̂± iŷ
r

∣∣∣∣ `− 1,m± 1

〉
= ∓

√
(`∓m)(`∓m− 1)

(2`+ 1)(2`− 1)
, (B.5d)

from which we can read the well-known dipole transition selection rules ∆` = ±1 and ∆m =

0,±1. Alternatively, the full matrix elements (i.e. including the radial part) can also be evaluated
in the parabolic basis to [49, 52]

〈nm1m2 | ẑ |nm1m2〉 =
3n

2Z
(m1 −m2), (B.6a)

〈nm1 ± 1m2 | x̂± iŷ |nm1m2〉 =
3n

2Z

√
(n± 2m1 + 1)(n∓ 2m1 − 1), (B.6b)

〈nm1m2 ± 1 | x̂± iŷ |nm1m2〉 = − 3n

2Z

√
(n± 2m2 + 1)(n∓ 2m2 − 1). (B.6c)
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B.2 Quadrupole

To compute the spherical components of a symmetric matrix in Cartesian coordinates, (xixj)xi,xj=x,y,z ,
we can use the relation Eq. (2.15) to construct the tensor product of two spherical tensors of rank
1 (cf. Eq. (B.1)). The only non-vanishing elements are [46]

T
(0)
0 = − 1√

3

(
x2 + y2 + z2

)
, (B.7a)

T
(2)
0 =

1√
6

(
2z2 − x2 − y2

)
, (B.7b)

T
(2)
±1 = ∓xz − iyz, (B.7c)

T
(2)
±2 =

1

2

(
x2 − y2 ± 2ixy

)
. (B.7d)

By comparing them to the spherical harmonics, we can deduce the relation

T
(0)
0 = −

√
4π

3
r2Y 0

0 , (B.8)

T (2)
q =

√
8π

15
r2Y m

2 . (B.9)

By inverting the system of equations in Eq. (B.7), we can compute the transformation from spher-
ical to Cartesian components as [46]
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with xy = yx and so forth due to the symmetry of the matrix. Note that the spherical tensor of
rank 0 is required for the transformation because the tensor (xixj)xi,xj=x,y,z is not traceless. From
the transformation and the properties of the spherical tensors, we can deduce the quadrupole
selection rules as explained in the main text just after Eq. (2.18). The result is ∆m = 0,±1,±2 and
∆` = 0,±2.
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The matrix element of zz, for instance, can be calculated as

〈
`m
∣∣∣ zz
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〉
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16π
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2

∣∣ `′m′
〉
.

The matrix elements of spherical harmonics can then be calculated using Eq. (2.18).

B.3 Octupole

We repeat same procedure for the next order, (xixjxk)xi,xj ,xk=x,y,z with 27 components. The
number of distinct elements is given by the urn problem in statistics where we draw k = 3 times
out of an urn with n = 3 elements while putting the elements back in the urn after being drawn
and neglecting the order of the elements,

N =

(
n+ k − 1

k

)
= 10. (B.11)

To compute the spherical components of the tensor of rank 3, we use Eq. (2.15) with tensors of
ranks k1 = 1 and k2 = 2. We obtain1

T
(1)
0 = −

√
4

15
zr2, (B.12a)

T
(1)
±1 = ±

√
4

15

1√
2

(x± iy)r2, (B.12b)

T
(3)
0 =

1√
10

(
2z3 − 3x2z − 3y2z

)
, (B.12c)

T
(3)
±1 =

1
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√
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10

(
±x3 + ix2y ± xy2 + iy3

)
−
√

6

5

(
±xz2 + iyz2

)
, (B.12d)

T
(3)
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√
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4

(
x2z ± 2ixyz − y2z

)
, (B.12e)

T
(3)
±3 =

1

2
√

2

(
∓x3 − 3ix2y ± 3xy2 + iy3

)
(B.12f)

1The following relations were derived in collaboration with Cornelius Hoffmann [5].
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By comparing them to the spherical harmonics, we can deduce the relation

T (1)
q = −

√
16π

45
r3Y m

1 , (B.13)

T (3)
q =

√
8π

35
r3Y m

3 . (B.14)

By inverting the system of equations in Eq. (B.12), we can compute the transformation from
spherical to Cartesian components as
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with xxy = xyx = yxx and so forth due to the symmetry of the matrix. The tensor Q(2) =

(xixjxk)xi,xj ,xk=x,y,z is not traceless and the trace

Tr
{
Q(2)

}
=


 ∑

i,j=x,y,z

Q
(2)
i,j,kδi,j



k

(B.16)

is of rank 1. Therefore, the spherical tensor of rank 1 is needed for the transformation in Eq. (B.15).
From this transformation and the properties of the spherical tensors, we can deduce the quadrupole
selection rules as explained in the main text just after Eq. (2.18). The result is ∆m = 0, . . . ,±3 and
∆` = ±1,±3.
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C
TECHNICAL DETAILS REGARDING STRONTIUM

This appendix is dedicated to technical details regarding the modelling of strontium in Chapter 4.
We first give details on the evaluation of the matrix elements of l̂1 · ŝ1 which is the basis for the j1-
coupling. Afterwards, we elaborate on the attempted optimisation of the radial part in App. C.2.
Lastly, in App. C.3, we show and discuss the Stark map around the 503F triplets in order to
estimate the effectiveness of our model regarding triplet states.

C.1 Calculating the matrix elements of l̂1 · ŝ1

A spin-orbit coupling which is proportional to l̂1 · ŝ1, as given in Eq. (4.24), describes the coupling
of the outer electron’s spin to its orbital angular momentum. The difficulty in evaluating the
matrix elements lies in the choice of basis. While we have chosen the LS basis |JMJLS〉 as the
computational basis, the matrix elements of l̂1 · ŝ1 can only be evaluated in the uncoupled basis.
The main task is thus to calculate the transformation from the coupled to the uncoupled basis
which describes the two electrons independently, which we will present in the following.

We first recall that upper case operators refer to the two-electron system and lower case oper-
ators to single electrons. We label the inner electron with an index 2 and the outer electron with
an index 1. We furthermore assume the inner electron to be in the ground state, `2 = m`2 = 0.
Since we are dealing with electrons, we have s1 = s2 = 1

2 and ms1 = ms2 = ±1
2 . The first step

of the basis transformation is to uncouple the total angular momentum Ĵ to the orbital angular
momentum L̂ and the spin Ŝ, or in other words, to go from the |JMJLS〉 to the |LMLSMS〉 basis.
This works equivalently to Eq. (4.26) and can be written as

|JMJ〉 =
∑

MLMS

CJMJ
LMLSMS

|LMLSMS〉 , (C.1)

where CJMJ
LMLSMS

is a Clebsch-Gordan coefficient.

XIII
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Next, we have to uncouple L̂ to l̂1 and l̂2, and Ŝ to ŝ1 and ŝ2, i.e. go to the uncoupled basis
|`sm`ms〉1 ⊗ |`sm`ms〉2 = |`1s1m`1ms1 , `2s2m`2ms2〉 = |`1`2m`1m`2〉 ⊗ |s1s2ms1ms2〉,

|LML〉 =
∑

m`1m`2

CLML
`1m`1`2m`2

|`1m`1`2m`2〉 (C.2a)

|SMS〉 =
∑

ms1ms2

CSMS
s1ms1s2ms2

|s1ms1s2ms2〉 . (C.2b)

The assumption that the inner electron is in the ground state leaves only one option in Eq. (C.2a),
L = `1 and ML = m`1 , such that all but one Clebsch-Gordan coefficients are vanishing. Plugging
Eq. (C.2) into Eq. (C.1) results in

|JMJLS〉 =
∑

MLMS

∑

ms1ms2

CJMJ
LMLSMS

CSMS
s1ms1s2ms2

|`1m`1s1ms1〉 ⊗ |`2m`2s2ms2〉 . (C.3)

Next, we couple l̂1 + ŝ1 = ĵ1,

|`1m`1s1ms1〉 =
∑

j1mj1

C
j1mj1
`1m`1s1ms1

|j1mj1`1s1〉 . (C.4)

and insert this into Eq. (C.3),

|JMJLS〉 =
∑

MLMS

∑

ms1ms2

∑

j1mj1

CJMJ
LMLSMS

CSMS
s1ms1s2ms2

C
j1mj1
`1m`1s1ms1

|j1mj1`1s1〉 |`2m`2s2ms2〉 . (C.5)

In order to calculate a matrix elements between two states, we have to repeat these steps for the
second state |J ′M ′JL′S′〉. The matrix element between them is then given by

a 〈J ′M ′JL′S′|l̂1 · ŝ1|JMJLS〉 =
a

2

∑

j1mj1

(
j1(j1 + 1)− `1(`1 + 1)− s1(s1 + 1)

)
C
j1mj1
`1m`1s1ms1

∑

M ′LM
′
S

∑

m′s1m
′
s2

∑

MLMS

∑

ms1ms2

CJMJ
LMLSMS

C
J ′M ′J
L′M ′LS

′M ′S
CSMS
s1ms1s2ms2

C
S′M ′S
s′1m

′
s1
s′2m

′
s2

〈j1mj1 l
′
1s
′
1|j1mj1 l1s1〉 〈l′2m′l2s′2m′s2 |l2ml2s2ms2〉 , (C.6)

where a is a constant. This expression can be simplified by considering the physics of the prob-
lem. We know that for electrons s1 = s2 = s′1 = s′2 = 1

2 . The first scalar product therefore leads
to the selection rule L = l1 = l′1 = L′ as we assumed `2 = m`2 = 0. This assumption naturally
leads to `2 = `′2 and m`2 = m′`2 . We could furthermore couple the second angular momentum to
ĵ2 = l̂2 + ŝ2 and afterwards couple both angular momenta together, Ĵ = ĵ1 + ĵ2. This would still
allows us to calculate the expectation value of l̂1 · ŝ1. In the basis |JMJj1j2〉 we see directly that
J = J ′ and MJ = M ′J . Lastly, we have to check if ms2 = m′s2 to determine the value of the second
scalar product. We know that mj1 + mj2 = MJ = M ′J = m′j1 + m′j2 = mj1 + m′j2 from which
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follows mj2 = m′j2 . From m`2 = 0 follows that ms2 = mj2 . When combining both, we see that
ms2 = mj2 = m′j2 = m′s2 . The second scalar product is therefore always equal to one. Next, we
investigate the range of the double sums. Since ML and MS are linked, the corresponding sum
runs from MS = −S, . . . , S with ML being fully determined by ML = MJ −MS . The sum over
ms1 only runs over the two values ms1 = ±1

2 with ms2 being determined by ms2 = MS −ms1 .
The same applies to the primed state. Combining everything, we can write Eq. (C.6) as

a 〈JMJLS
′|l̂1 · ŝ1|JMJLS〉 ≡

a

2

∑

j1

C(j1)
(
j1(j1 + 1)− `1(`1 + 1)− s1(s1 + 1)

)
, (C.7a)

C(j1) =
∑

mj1

C
j1mj1
`1m`1s1ms1

∑

M ′S

∑

m′s1

∑

MS

∑

ms1

CJMJ
LMLSMS

CJMJ

LM ′LS
′M ′S

CSMS
s1ms1s2ms2

C
S′M ′S
s1m′s1s2m

′
s2
. (C.7b)

If we further set ωn` = a
2 , we arrive at the expression given in Eq. (4.29). The constant a can be

identified with the radial part and the pre-factors given in Eq. (4.24), a = α2Z
2 〈r̂−3〉where α is the

fine-structure constant.

C.2 Optimisation of the radial part

To further improve the agreement between theoretical simulations and experiment for the Stark
map from 501F3,mj = 2 to 49g for mj = 1, . . . , 3 discussed in Sec. 4.2.3, we have tried to not only
optimise the exchange energy and spin-orbit coupling, which influence the energies at zero DC
field, but also the radial part of the matrix elements directly. The idea behind this is motivated by
multichannel quantum defect theory (MQDT) which considers linear combinations of scattering
channels. If the approximation of the inner electron being the ground state does not hold, the
outer electron will equally be influenced by it. As a result, the potential seen be the single active
electron will be modified and the radial matrix elements will be different. Our approach is thus
to optimise the radial matrix elements

Rnj`s,n′j′`′s′ =
〈
nj`s

∣∣ ẑ
∣∣n′j′`′s′

〉
(C.8)

directly. Note that the matrix elements depend on j and s as the quantum defects change the
energy of the respective eigenstates at zero field. The radial matrix elements do not depend
on the DC field but they are used to calculate the Stark map at different DC fields as given in
Eq. (4.25). At zero field, on the other hand, the matrix elements do not play a role but the position
of the energy levels is fully determined by the quantum defects (and the spin-orbit couplings ωn`
and ΩnL in our extended model).

The optimisation procedure is as follows: instead of evaluating the fidelity of the simulations
at zero DC field, we consider experimental points at higher DC field. As a first test, we start with
a comparatively low value of 50.4 V

m . We match the theoretical Stark lines of the Stark map shown
in Fig. 4.8 (b) to the corresponding experimental data point manually, resulting in 11 experimental
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Figure C.1: Stark map from 501F3,mj = 2 to 503F for mj = 0, . . . , 4 before (grey lines in the
background) and after (coloured lines) the radial optimisation using the points at 50.4 V

m . The
inset shows a zoom as indicated by the red rectangle. The line colour indicates the expectation
value of m`, the grey crosses indicate the experimental measurements. The grey lines show the
same Stark map as Fig. 4.8 (b).

points we optimise at the same time. We then optimise all radial elements that couple to 49g

or 50f which fulfil n = 48, 49, 50 and ` = 2, . . . , 5. In total, that leaves 176 matrix elements.
We have stopped the optimisation after about 3400 iterations when the error has dropped from
35 MHz2 to 1.25 MHz2. The result of the optimisation is shown in Fig. C.1. It can be seen that
the optimisation was successful as the coloured lines, which represent the optimised Stark map,
match the experimental measurements better as the grey ones indicating the old Stark map (note
in particular the highest line in the inset). Upon investigation of the optimised matrix element,
we find only about two dozen parameters which have been changes significantly.

The Stark maps shows, however, that theory and experiment still deviate significantly at
higher field strengths. We therefore proceed by optimising two field strengths at the same time,
namely 50.4 and 72 V

m which adds another 7 points to the optimisation. We have stopped the
optimisation after 2700 iterations when the error has dropped from 308 MHz2 to 160 MHz2. The
result of the optimisation is shown in Fig. C.2. It can be seen that the points around 72 V

m improve
at the expense of those at 50.4 V

m (see e.g. the pink line in the middle of the insets). Moreover,
the overall increase of fidelity was less striking as before. This can clearly be attributed to the
increased difficulty of the optimisation due to the higher number of sampling points and the
overall very large number of optimisation parameters.

We have tried different methods to improve the fidelity of the optimisation. We assume the
major problem to be the large number of optimisation parameters as parameter optimisation is
usually conducted with a handful of parameters only. The first approach was thus to include
only those matrix elements in the parameter optimisation which have changed significantly in a
previous optimisation attempt. However, we could not identify a small number of “necessary”
matrix elements that needed optimisation as the significantly optimised matrix elements change
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Figure C.2: Same as Fig. C.1 but after optimisation using the points at 50.4 and 72 V
m . The insets

show a zoom as indicated by the coloured rectangles.

depending on the initial parameters and the pre-selection that was performed. Moreover, we
have tried to scale the experimental points to account for a possible malcalibrated DC field, or
to omit the exchange energy in the potential of Numerov, as the singlets and triplets should see
the same core potential. The latter approach reduces the number of matrix elements as they no
longer depend on j and s, Rn`,n′`′ . However, all these approaches did not prove to be fruitful.

In order to reduce the number of optimisation parameters more systematically, we have
changed the approach. Instead of optimising all radial matrix elements in Eq. (C.8) directly, we
scale the radial wavefunction of each state with a factor,

R̃nj`s,n′j′`′s′ =
〈
nj`s

∣∣ εnj`sẑεn′j′`′s′
∣∣n′j′`′s′

〉
, (C.9)

such that each state always experiences the same correction. This reduces the number of optimi-
sation parameters to 48. The correction factors were limited to values between 0 and 2. Using this
method, we could achieve much lower errors of 7 MHz2 (with an initial error of 308 MHz2) which
is much lower than before. The result is shown in Fig. C.3. It can be seen that the agreement
between theory and experiment as increased significantly at the selected DC fields of 50.4 and
72 V

m (red and blue inset, respectively). On the other hand, the agreement decreases within the
Stark manifold (green inset) as we did not include those points into the optimisation. We have
tried to remove more and more parameters from the optimisation to distil the relevant scaling
factors that are necessary to improve the optimisation without destroying the match of the Stark
manifold but did not find promising results. The optimisation was significantly less successful
when including the points in the Stark manifold into the optimisation and we always lose fidelity
at higher fields where we did not include the points into the optimisation.

We conclude that the optimisation of the radial part, may it be directly (cf. Eq. (C.8)) or
through state-dependent scaling factors (cf. Eq. (C.9)), does not lead to fruitful results. The main
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Figure C.3: Same as Fig. C.1 but after optimisation using the points at 50.4 and 72 V
m using

Eq. (C.9). The insets show a zoom as indicated by the coloured rectangles.

problem seemed to be the large number of optimisation parameters when optimising the matrix
elements directly which lead to slow or no convergence of the optimisation within a few thou-
sand iterations. When reducing the number of parameters by using state-dependent optimisation
parameters, on the other hand, we could improve the fidelity at the field that has been considered
during the optimisation, but lost at higher fields. In both cases, the optimised parameters did not
allow for any fruitful insights which matrix elements needed optimisation. It might be possible
to improve the optimisation if more experimental data was available, especially at much higher
fields when the g state has joined the Stark manifold and thus follows a smooth line similar to ru-
bidium or hydrogen. It might also be beneficial if we had access to absolute energies since all the
considered Stark maps show the transition frequencies between two states such that their values
depends on two states. If absolute energies were available it would be possible to optimise both
states independently, hence deducing which of the two states leads to the deviation in the Stark
map.

In order to estimate if further optimisation is even necessary for our goal of controlling the
dynamics within the Stark manifold, we test the influence of the radial optimisation on an ex-
emplary propagation. In the main text, we have made the conjecture that we merely fail to
reproduce the correct curvature of quantum defects states (here the g-state) when joining the
Stark manifold. When propagating states in the Stark manifold, however, the DC fields chosen
in the experiment are usually higher, around 100 V

m , where the g-state is already part of the Stark
manifold (cf. Fig. 4.10 (b)). Thus, it is likely that no fine-tuning of the Hamiltonian is necessary
for the control of quantum dynamics. To test this, we compare two cases: a Hamiltonian with
the optimised parameters presented in Sec. 4.2.2 and the radially optimised Hamiltonian from
this section. We have chosen one radially optimised Hamiltonian for which the fidelity has in-
creased after the optimisation while leaving the States within the Stark manifold mostly intact.
We compare the Hamiltonians for both cases at a DC field of 110 V

m . We find that the singlets
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in the Stark manifold are not significantly affected by the radial optimisation. Only the triplets
and the low-angular-momentum states with a significant quantum defect are slightly modified.
For the f states, we find a deviation of around 60 MHz between the two models. For the g state,
the mismatch is slightly smaller. On average, the difference between the two models is around a
few 100 kHz. To estimate the influence of these deviations, we perform a circularisation using a
π-pulse similarly as explained in Sec. 4.3. We take the initial state to be the lowest singlet of the
mj = m` = 2 ladder. Due to selection rules, the propagation does not change the spin quantum
number of the state. The population will therefore stay within the subspace of singlet states (and
triplet states which are significantly mixed with singlets). As the singlets are only marginally
affected by the radial optimisation, the populations during the circularisation differ on average
by about 10−4 between the two Hamiltonians. As this is below the sensitivity of the experiment,
we conclude that the optimisation of the radial part does not affect the dynamics in the Stark
manifold significantly and a further optimisation does not seem necessary.

C.3 Stark map around 50f triplets

To test the optimised model parameters obtained in Sec. 4.2.3 and prove that they do not only
reproduce the considered Stark map around 49g, we calculate the Stark map of an additional
transition and compare them to experimental data. Here, we present the data for the transition
from the reference state 501F,m = 2 towards the 503F triplets. The simulated Stark map and the
corresponding measurements are shown in Fig. C.4. This map illustrates clearly that at high DC
fields, states with the same m` quantum number tend to cluster together. The plots the simula-
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Figure C.4: Stark map from 501F3,mj = 2 to 503F for mj = 0, . . . , 4 using the optimised pa-
rameters. The line colour indicates the expectation value of m`, the crosses indicate the ex-
perimental measurements. The coloured lines show the simulations when having fitted the F-
states n = 50, 52 (lower number in Tab. 4.2), the grey lines in the background indicate the fit for
n = 48, 50, 52 (upper number).
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tions for two different initial sets of parameters. The coloured lines correspond to simulations
when when considering only n = 50, 52 for fitting the triplet states (lower number in Tab. 4.2)
which we assume to deliver better results when considering 503F states. As a comparison, we
have plotted the simulations with the fit of n = 48, 50, 52 (upper number) using grey lines in the
background. The deviation is hardly visible. However, upon close inspection it can be seen that
the grey lines show slightly lower transition frequencies than the coloured ones. In particular, the
points at zero field match the coloured lines much better (zoom not shown). The overall agree-
ment between simulation and experiment is very good and we conclude, that our model can also
reproduce the Stark map of triplet states. In order to improve the agreement further, as slight
deviations are visible at higher fields, more experimental data is required. These deviations can
be attributed to the large errors when fitting the quantum defects of triplet states (cf. Fig. 4.5 (b))
that have been discussed in the main text extensively.
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coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of
Magnetic Resonance 172, 296 (2005)

[79] A. Konnov and V. Krotov, On global Methods of successive Improvement of Controlled Processes,
Automation and Remote Control 60, 1427 (1999)
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[172] S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys, Coherent dipole-
dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance, Na-
ture Physics 10, 914 (2014)

[173] R. Faoro, B. Pelle, and A. Zuliani, Few-body interactions in frozen Rydberg gases, European
Physical Journal: Special Topics 225, 2935 (2016)

[174] R. F. Stebbings and F. B. Dunning, Rydberg States of Atoms and Molecules, Cambridge Uni-
versity Press, New York, 2011

[175] K. A. Smith, F. G. Kellert, R. D. Rundel, F. B. Dunning, and R. F. Stebbings, Discrete Energy
Transfer in Collisions of Xe(nf) Rydberg Atoms with NH3 Molecules, Physical Review Letters
40, 1362 (1978)

[176] R. Baer and E. Rabani, Theory of resonance energy transfer involving nanocrystals: The role of
high multipoles, The Journal of Chemical Physics 128, 184710 (2008)

[177] G. Gil, S. Corni, A. Delgado, A. Bertoni, and G. Goldoni, Excitation energy-transfer in func-
tionalized nanoparticles: Going beyond the Förster approach, Journal of Chemical Physics 144
(2016)

[178] J. Deiglmayr, H. Saßmannshausen, P. Pillet, and F. Merkt, Observation of dipole-quadrupole
interaction in an ultracold gas of rydberg atoms, Physical Review Letters 113, 193001 (2014)

[179] C. Zener and R. H. Fowler, Non-adiabatic crossing of energy levels, Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character
137, 696 (1932)

[180] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and
S. Gleyzes, Confined quantum Zeno dynamics of a watched atomic arrow, Nature Physics 10,
715 (2014)



XXXII REFERENCES
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