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We show that the minimum experimental effort to estimate the average error of a quantum gate scales as

2n for n qubits and requires classical computational resources �n223n when no specific assumptions on

the gate can be made. This represents a reduction by 2n compared to the best currently available protocol,

Monte Carlo characterization. The reduction comes at the price of either having to prepare entangled input

states or obtaining bounds rather than the average fidelity itself. It is achieved by applying Monte Carlo

sampling to so-called 2-designs or two classical fidelities. For the specific case of Clifford gates, the

original version of Monte Carlo characterization based on the channel-state isomorphism remains an

optimal choice. We provide a classification of the available efficient strategies to determine the average

gate error in terms of the number of required experimental settings, average number of actual measurements,

and classical computational resources.
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Introduction.—The development of quantum technolo-
gies is currently facing a number of obstacles. One of them
is the difficulty to assess efficiently how well a quantum
device implements a desired operation. The corresponding
performance measure is the average fidelity or the average
gate error which can be determined via quantum process
tomography [1]. Full process tomography scales, however,
strongly exponentially in the number of qubits and pro-
vides the full process matrix, i.e., much more information
than just the gate error. For practical applications, a more
targeted and less resource-intensive approach is required.
Recent attempts at reducing the resources employ stochas-
tic sampling [2–7]. The process matrix can be estimated
efficiently if it is sparse in a convenient basis [4,5,8,9].
Randomized benchmarking utilizing so-called unitary
t-designs [10] is scalable when estimating the gate error
for Clifford gates [6,7]. For general unitary operations,
Monte Carlo sampling combined with the channel-state
isomorphism currently appears to be the most efficient
approach [2,3]. It comes with the advantage of separable
input states. A second promising approach for general
unitaries utilizes state 2-designs [11]. They are given, for
example, by the states of dþ 1 (d ¼ 2n) mutually
unbiased bases [12]. Since only three out of the dþ 1
mutually unbiased bases consist of separable states [13],
entangled input states need to be prepared. The approaches
of Refs. [2,3,11] yield the average fidelity for general
unitaries with an arbitrary, prespecified accuracy. They
have been tested experimentally, albeit so far only for
two- and three-qubit operations, without taking advantage
of the protocols’ efficiency [14,15]. Alternatively to esti-
mating the average fidelity directly, an upper and a lower
bound can be obtained from two classical fidelities that are
evaluated for the states of two mutually unbiased bases

[16]. This approach has been employed in an experiment
demonstrating quantum simulation with up to 6 qubits
[17]. When designing a quantum device, one is thus faced
with a number of options to determine the average gate
errors, the optimality of which will depend on specific
experimental constraints and the required accuracy.
Here, we provide a unified classification of the currently

available approaches in terms of the number and type of
input states and measurements that need to be available,
the number of actual experiments that need to be carried
out, and the classical computational resources that are
required. We show that applying Monte Carlo estimation
to the 2-design protocol and the classical fidelities yields a
reduction by a factor of 2n in resources for general unitary
operations. For the specific task of characterizing Clifford
gates, the two strategies are as efficient as Monte Carlo
sampling combined with the channel-state isomorphism
[2,3] or randomized benchmarking [6,7]. The reduction in
resources that we report here for general unitary operations
is made possible by avoiding the channel-state isomor-
phism: Instead of estimating the average fidelity in terms
of a single state fidelity in Liouville space, it is determined
by a sum over state fidelities in Hilbert space. We have
recently shown that a minimal set of states in Hilbert space
is sufficient for device characterization [18]. Therefore, the
number of states that enter the sum is determined only by
the desired bounds.
Monte Carlo sampling.—We first review Monte Carlo

estimation of the average fidelity as introduced in
Refs. [2,3] before applying it to 2-designs [5,11] and classical
fidelities [16]. The fidelity of a quantum state or process is of

the formF ¼ Tr½�id�act�with�idðactÞ the ideal (actual) state.
Monte Carlo sampling estimates the quantityF from a small
random sample of measurements. F thus needs to be
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expressed in terms of measurement results. To this end, �id

and �act are expanded in an orthonormal basis of Hermitian
operators Wk, yielding F�P

kTr½�idWk�Tr½�actWk�. The
measurement results are treated as a random variable X
taking values X� which occur with probability Prð�Þ
[
P

T
�¼1 Prð�Þ ¼ 1 with T the size of the event space], i.e.,

F ¼ XT
�¼1

Prð�ÞX�: (1)

Introducing ��ð�Þ ¼ Tr½�W��, X� is given by

X� ¼ ��actð�Þ
��idð�Þ ¼

Tr½�actW��
Tr½�idW��

and Prð�Þ ¼ ��idð�Þ2
N

;

with N ensuring proper normalization. Prð�Þ is also
called the relevance distribution. Two levels of stochastic
sampling are involved in the Monte Carlo estimation of a
fidelity: According to Eq. (1), F is the expectation value of
the random variable X taking values X� with known proba-
bility Prð�Þ. However, the X�’s cannot be accessed
directly, since they depend on another random variable,
the expectation value of W� for �act. Because of the statis-
tical nature of quantum measurements, as well as random
errors in the experiment, it will be necessary to repeatedly
measure W� in order to determine X�. Assuming that the
X�’s have been determined with sufficient accuracy,
Monte Carlo sampling estimates their expectation value
F from a finite number of realizations L,

F ¼ lim
L!1FL with FL ¼ 1

L

XL
l¼1

X�l
: (2)

with �l taking values between 1 and T. L is chosen such
that the probability for FL to differ from F by more than �
is less than �. The key point of the Monte Carlo approach is
that L depends only on the desired accuracy � and con-
fidence level � and is independent of the system size. Note
that � is lower bounded by measurement and state prepa-
ration errors. Since, as quantum mechanical expectation
values, the X�l

’s are known only approximately, also F can

be obtained only approximately ~FL ¼ ð1=LÞPL
l¼1

~X�l

(with ~X�l
denoting the approximate values of X�l

).

Therefore, in addition to ensuring that FL approximates
F with a statistical error of at most �, one also has to
guarantee that ~FL approximates FL with the desired accu-
racy. This implies repeated measurements for a given
element l (l ¼ 1; . . . ; L) of the Monte Carlo sample.
Denoting the number of respective measurements by Nl,
the total number of experiments is given by Nexp ¼P

L
l¼1 Nl. It can be shown that a proper choice of hNli and

hNexpi guarantees the approximations of FL by ~FL and of F

by FL to hold with the desired confidence level. While L is
independent of system size, the choices of hNli and hNexpi
in general depend on it.

For a quantum process, the average fidelity can be
obtained by Monte Carlo estimation when combining it
with the channel-state isomorphism [2,3]. Fav is then
expressed in terms of the entanglement fidelity Fe via
Fav ¼ ðdFe þ 1Þ=ðdþ 1Þ [19]. Since Fe is a state fidelity
in Liouville space and Liouville space vectors correspond
to Hilbert space operators, this implies evaluation of Fav

with respect to an operator basis comparing input to output
operators. Since a complete operator basis consists of 22n

elements and the size of the event space is given by all
possible combinations of input and output operators,
T ¼ 24n. The fact that only states not operators can be
prepared as input is remedied by randomly selecting eigen-
states of the input operators. There are six eigenstates for
the three Pauli operators for each qubit. Therefore, the
number of experimental settings, i.e., pairs of input state
or output measurement operator, is given by Nsetting ¼
Ninput � Nmeas ¼ 6n � 22n. The random selection of ex-

perimental settings requires classical computational
resources Cclass that scale as n224n [2,3]. Although only
some of the settings will be selected, the ability to imple-
ment all of them in the experiment is implied. Because of
the statistical nature of measurements, all in all hNexpi runs
of the experiment have to be carried out. For the experi-
mental implementation, Nsetting, hNexpi, and Cclass thus

characterize the procedure.
Monte Carlo estimation of classical fidelities and

2-designs.—State fidelities in Hilbert space as opposed to
a state fidelity in Liouville space are sufficient to estimate
the average fidelity of an arbitrary quantum gate [16,18].
We therefore distinguish in aMonte Carlo event �l between
input states and measurement operators, �l ¼ ðil; klÞ. This
allows for applying Monte Carlo sampling to the classical
fidelities of Ref. [16] and the 2-design approach [11].
The two classical fidelities which yield an upper and a

lower bound to the average fidelity [16] can bewritten as [18]

Fj ¼ 1

d

Xd
i¼1

Tr½�j;id
i �j;act

i �

¼ 1

d

Xd
i¼1

Tr½Uj�j
i ih�j

i jUþDðj�j
i ih�j

i jÞ�; (3)

with j�j
i i the states of two mutually unbiased bases in

d-dimensional Hilbert space (i ¼ 1; . . . ; d; j ¼ 1; 2;
d ¼ 2n), D the dynamical map describing the actual evolu-

tion, and U the desired unitary. Expanding the states �j;id
i ,

�j;act
i in terms of Pauli operators, Eq. (3) becomes

Fj ¼
Xd
i¼1

Xd2
k¼1

Prjði; kÞ�
j
Dði; kÞ

�j
Uði; kÞ

; (4)

with characteristic function�j
Uði; kÞ ¼ Tr½WkUj�j

i ih�j
i jUþ�

and relevance distribution Prjði; kÞ ¼ ð1=d2Þ½�j
Uði; kÞ�2.

Note that Tr½WkWk0 � ¼ d�k;k0 . We show in the

Supplemental Material [21] that Prjði; kÞ is properly
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normalized such that we can estimate the two classical fidel-
ities Fj, and thus an upper and a lower bound to Fav, by

Monte Carlo sampling.
The expression for the average fidelity when using

2-designs given in terms of dþ 1 mutually unbiased
bases [11]

F2des
av ¼ 1

dðdþ 1Þ
Xdðdþ1Þ

i¼1

Tr½Uj�iih�ijUþDðj�iih�ijÞ�

(5)

is formally similar to Eq. (3); i.e., it can be interpreted
as the sum over dþ 1 classical fidelities. Equation (5) can
thus be rewritten

F2des
av ¼ Xdðdþ1Þ

i¼1

Xd2
k¼1

Pr2desði; kÞ�
2des
D ði; kÞ

�2des
U ði; kÞ ; (6)

with characteristic function �2des
U analogous to �j

U, and the
relevance distribution differing only in normalization,
Pr2desði; kÞ ¼ ð1=d2ðdþ 1ÞÞ½�2des

U ði; kÞ�2. We show in the
Supplemental Material [21] that also Pr2desði; kÞ is properly
normalized such that F2des

av can be estimated by Monte Carlo
sampling.

Resources for estimating the gate error of general
unitaries.—Evaluating Eqs. (4) or (6) by Monte Carlo
estimation involves randomly selecting L times a pair
(il, kl) of input state-measurement operator. Compared to
Refs. [2,3], the number of input states is significantly
reduced for the two approaches based on state fidelities
in Hilbert space. This yields a correspondingly smaller
number of settings that an experimentalist needs to be
able to implement, cf. Table I. Moreover, the smaller
number of input states reduces the classical computational
resources required for the random selection by a factor
of 2n for the classical fidelities. This is due to Cclass ¼
Ninput � Csingle with Csingle the classical computational

cost for sampling a single state fidelity in Hilbert space

(Csingle � n222n [3]). It reflects the fact that the relevance

distribution for the classical fidelities depends on Oðd3Þ
parameters, whereas the relevance distribution of
Refs. [2,3] depends on Oðd4Þ parameters. The reduced
number of parameters is sufficient to determine whether
the actual evolution matches the desired unitary [18].
Analogously to Refs. [2,3], we determine the sample

size L by Chebyshev’s inequality. It provides an upper
bound for the probability of a random variable Z with
variance �Z to deviate from its mean,

Pr½jZ� hZij � �Z=
ffiffiffiffi
�

p � � �; (7)

with � > 0. In our case, hZi ¼ FwithF ¼ F2des
av orFj, Z ¼

FL ¼ 1=L
P

L
l¼1 X�l

, and X�l
� Xl ¼ �Dðil; klÞ=�Uðil; klÞ,

cf. Eqs. (4) and (6). We show in the Supplemental Material
[21] that the variance of Xl is smaller than 1, and thus
varðFLÞ � 1=L. Then the choice L ¼ 1=ð�2�Þ guarantees
that the probability for the estimate FL to differ from F by
more than � is smaller than �. Specifying the experimental
inaccuracy and choosing the confidence level thus deter-
mines the sample size.
In order to estimate the number of required experiments,

we first determine the number of experiments for one
setting, Nl. For each l, the observable Wkl has to be

measured Nl times to account for the statistical nature of
the measurement. The corresponding approximation to Xl

is given by

~Xl ¼ 1

�Uðil; klÞ
1

Nl

XNl

j¼1

wlj; (8)

with wlj the measurement result for the jth repetition of

experimental setting l, equal to either þ1 or �1 for Pauli
operators. Since ~Xl is given as the sum of independent
random variables wlj, Nl can be determined using

Hoeffding’s inequality. It provides an upper bound for
the probability of a sum S ¼ P

n
i¼1 Yi of independent var-

iables Yi with ai � Yi � bi to deviate from its expected
value by more than �,

PrðjS� hSij � �Þ � 2 exp

�
� 2�2P

n
i¼1ðbi � aiÞ2

�
; (9)

8� > 0. In our case, S ¼ ~FL ¼ ð1=LÞPL
l¼1

~Xl and, using

Eq. (8),
P

n
i¼1ðbi � aiÞ2 ¼

P
L
l¼1 4Nl½LNl�Uðil; klÞ��2.

Inserting this into Eq. (9), it is obvious that the choice

Nl ¼ 2

L�½�Uðil; klÞ�2
log

�
2

�

�
¼ Nlðil; klÞ (10)

ensures the right-hand side of Eq. (9) to be � �.

The setting l is chosen with probability Prj=2desðil; klÞ.
The average number of times that this specific experiment
(with input state il and measurement operator Wkl) is

carried out is therefore given by

TABLE I. Resources required for determining the average gate
error of a general unitary operation in terms of classical compu-
tational effort Cclass required for the random selection, number
Ninput of input states that need to be prepared, the number of

experimental settings Nsetting from which the actual experiments

will be randomly chosen, and the average number hNexpi of

experiments to be performed. Nsetting ¼ Ninput � Nmeas with the

number of measurement operators Nmeas ¼ 22n for all cases. A:
Monte Carlo sampling based on the channel-state isomorphism
[2,3]. B: Monte Carlo sampling for 2-designs. C: Monte Carlo
sampling for classical fidelities.

Approach Cclass Ninput Nsetting hNexpi
A Oðn224nÞ 6n Oð6n22nÞ Oð22nÞ
B Oðn224nÞ 2nð2n þ 1Þ Oð24nÞ Oð2nÞ
C Oðn223nÞ 2� 2n Oð23nÞ Oð2nÞ
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hNli ¼
Xd
il¼1

Xd2
kl¼1

Prjðil; klÞNlðil; klÞ

¼ 1

d2
Xd
il¼1

Xd2
kl¼1

½�j
Uðil; klÞ�2

4

½�j
Uðil; klÞ�2L�2

log

�
2

�

�

� 1þ 2d

L�2
log

�
2

�

�
(11)

for the two classical fidelities (j ¼ 1, 2). The same hNli is
obtained for the 2-designs due to normalization of
Pr2desði; kÞ. The total number of experiments that need to
be carried out is then estimated by

hNexpi ¼
XL
l¼1

hNli � L

�
1þ 2d

L�2
log

�
2

�

��

� 1þ 1

�2�
þ 2d

�2
log

�
2

�

�
: (12)

This number is sufficient to account for both the sampling
error due to finite L and statistical experimental errors in
the measurement results. Notably, hNexpi � 2n only; i.e.,

the average number of experiments to estimate Fav scales
like that required for characterizing a general pure quan-
tum state [3]. This represents a reduction by a factor of 2n

compared to Refs. [2,3], cf. Table I. These savings come at
the expense of (i) obtaining only bounds on the average
fidelity when using two classical fidelities Fj or (ii) the

necessity to prepare entangled input states when using
2-designs. The latter scales quadratically in n [11]. Even
factoring this additional cost in, a Monte Carlo estimation
of the average fidelity for a general unitary operation using
2-designs is significantly more efficient than that based on
the channel-state isomorphism [2,3].

Resources for Monte Carlo estimation of Clifford
gates.—The scaling of hNexpi with the number of qubits

changes dramatically for Clifford gates [2,3]. This is due to
the property of Clifford gates to map eigenstates of a
d-dimensional set of commuting Pauli operators into
eigenstates from the same set. The mutually unbiased bases
in Eqs. (3) and (5) can be chosen to be such eigenstates
[20]. Given a generic eigenstate j�ii of a commuting set
W of Pauli operators, the characteristic function of a
Clifford gate UCl becomes

�UCl
ði; kÞ ¼ Tr½WkUClj�iih�ijUy

Cl� ¼ Tr½Wkj�jih�jj�

¼
��1 if Wk 2 W

0 otherwise
: (13)

The relevance distribution for Clifford gates Prði; kÞ �
½�UCl

ði; kÞ�2 is thus zero for many settings and uniform

otherwise. Since settings with Prði; kÞ ¼ 0 will never be
selected, the sampling complexity becomes independent of
system size. Calculating hNli according to Eq. (11) for a
uniform relevance distribution, and accounting for the

correct normalizations of Prði; kÞ, hNli is found to be
independent of d, hNli � 1þ 2 logð2=�Þ=ðL�2Þ, for all
three approaches. Consequently, also hNexpi does not scale
with system size, hNexpi � 1þ 1=ð�2�Þ þ 2 logð2=�Þ=�2,
cf. Table II. For Clifford gates, the three approaches
require, therefore, a similar, size-independent number of
measurements. A difference is found, however, for the
number of possible experimental settings. For each input
state i, there are only d (instead of d2) measurement
operators Wk with nonzero expectation value. This leads
to Nsetting ¼ Ninput � 2n for Clifford gates, cf. Table II. The

larger Nsetting required for approaches A and B in Table II

comes with a potentially higher accuracy of the estimate
which is, however, limited by the experimental error of
state preparation and measurement.
Conclusions.—We find the number of measurements

required to estimate the gate error for a general unitary to
scale as 2n for n qubits. Our reduction by a factor of 2n

compared to the best currently available approach [2,3]
comes at the expense of either determining bounds from
two classical fidelities instead of the average fidelity itself
or allowing for entangled input states. For the classical
fidelities, the number of experimental settings that one
needs to be able to prepare and the classical computational
resources required for the sampling are also reduced by
a factor of 2n. All three approaches are significantly
more efficient than traditional process tomography requir-
ing of the order of 24n measurements and a computational
cost scaling as 46n. For the special case of Clifford gates,
we find the number of experiments to be independent of
system size, just as in a Monte Carlo estimation based
on the channel-state isomorphism [2,3] and randomized
benchmarking [6,7].
We have shown earlier [18] that the minimum number

of pure input states for device characterization is of the
order 2n. This corresponds to the number of states required
by the classical fidelities. Monte Carlo sampling of two
classical fidelities therefore realizes a strategy of minimal
resources. Our comprehensive classification should allow
an experimentalist to choose the most suitable procedure
to determine the average fidelity defined in terms of the
number of experimental settings, from which a Monte Carlo
procedure randomly draws realizations and the actual
number of experiments to be carried out.
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TABLE II. Resources required for determining the average
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