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We derive a universal model for atom pairs interacting with non-resonant light via the polarizability
anisotropy, based on the long range properties of the scattering. The corresponding dynamics can be
obtained using a nodal line technique to solve the asymptotic Schrodinger equation. It consists of
imposing physical boundary conditions at long range and vanishing the wavefunction at a position
separating the inner zone and the asymptotic region. We show that nodal lines which depend on the
intensity of the non-resonant light can satisfactorily account for the effect of the polarizability at short
range. The approach allows to determine the resonance structure, energy, width, channel mixing and
hybridization even for narrow resonances.

1. Introduction

Ultracold collisions have been a focus of AMO physics research for the last two decades. The keen interest in the
subject is due to two main aspects—collisions at very low energy are highly non-classical, and they show
universal behavior [1, 2]. The quantum nature of ultracold collisions implies that the dynamics are governed by
tunneling and resonances. The latter are at the core of an unprecedented control over the scattering particles that
was achieved experimentally [3]. At the same time, the universal behavior of ultracold collisions has given rise to
athourough understanding of the underlying dynamics. For example, quantum-defect theory can be employed
to calculate atom—atom scattering properties and bound rovibrational levels close to threshold [4—6].

A theory based solely on the asymptotic properties of the interaction potential has proven useful also for the
description of photoassociation [7], i.e., the light-assisted formation of molecules [ 1, 8]. In particular, the nodal
line technique to solve the Schrodinger equation in the asymptotic approximation was employed to determine
the scattering length [9, 10] and potential energy curves [11] in several diatomic molecules. The formalism was
extended to shape resonances [12, 13], which occur when a scattering state becomes trapped behind the
centrifugal barrier for partial waves with £ > 0, with £ being the rotational quantum number. This extension
has allowed to capture all essentials of shape resonances in terms of a single parameter, the s-wave scattering
length which universally characterizes the long-range two-body interaction.

An important aspect of shape resonances is that they lead to an increased pair density at short interatomic
separations [ 14] and are thus crucial for molecule formation at ultralow temperatures 3, 15]. However, due to
the rotational excitation involved in generating the centrifugal barrier, the lowest energies at which shape
resonances occur typically correspond to temperatures of a few milli-kelvin. The interaction of non-resonant
light with the polarizability of the atom pair can be used to shift the positions of shape resonances to lower
energies [16, 17]. If the resonance position is made to match the trap temperature, the photoassociation rates are
predicted to go up by two to three orders of magnitude [ 17]. This control is of a universal character, independent
of the frequency of the light and the energy level structure of the molecule (as long as the frequency remains far
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from any molecular resonance). Interestingly, non-resonant light control should also enable
magnetoassociation by creating new Feshbach resonances and by strongly enlarging their width [18]. A non-
resonant field affects not only shape resonances but also bound rovibrational levels by shifting their energies and
hybridizing their rotational motion [17, 19]. This leads to alignment of the wave functions along the field
direction [20].

These manifold proposals for control using non-resonant light call for an extension of asymptotic models
[12, 13] to account for the coupling with non-resonant light via the polarizability anisotropy. Such an approach
is promising as long as the relevant physics occurs at large interatomic separations and in an energy region close
to threshold. This is the case both for shape resonance control in photoassociation [17] or Feshbach resonance
engineering [18]. The dependence of the polarizability on interatomic separation is then universal and depends
only on the polarizabilities of the constituent atoms [21, 22]. Including the interaction with a non-resonant field
in asymptotic models should allow for predicting the field intensity that is required to modify the position of a
shape resonance by a desired amount without exact knowledge of the potential. This is the question that we
address here.

We test the asymptotic model against exact results for the strontium dimer which has recently been the
subject of intense research both experimentally [23-26] and theoretically [27, 28]. The interest in Sr, is
motivated by prospects to study the variation of the electron to proton mass ratio [29] and has already resulted in
the observation of unusual non-adiabatic effects [30, 31]. Strontium molecules consisting of even-isotope
atoms, such as **Sr, or **Sr*Sr, for which the nuclear spin is zero, cannot be formed by magnetoassociation
using a Feshbach resonance. Photoassociation then presents a viable alternative and non-resonant light control
of shape resonances is particularly promising in this case [17]. The amount of intensity that is required to achieve
such control is expected to depend on the field-free scattering length. The scattering length is very small for **Sr,,
and large for **Sr®®Sr, allowing a comparison of the intensity dependence for the two limiting cases. All of these
facts together make the strontium dimer a natural benchmark for our asymptotic model.

The paper is organized as follows: we briefly recall the model for a diatomic molecule interacting with non-
resonant light in section 2. Introducing reduced units of length and energy, we derive in section 3.1 a universal
asymptotic Hamiltonian for this interaction. The nodal line technique to solve the corresponding asymptotic
Schrodinger equation is introduced in section 3.2, with the computational details summarized in appendix A.
For the example of **Sr,, we compare the results obtained from the asymptotic model with the nodal technique
to those obtained from diagonalization of the full Hamiltonian (section 4.1). The differences in field-dressed
shape resonances for molecules with small and large scattering lengths are illustrated in section 4.2, for **Sr, and
85r*Sr molecules. We conclude in section 5.

2. Interaction of a diatom with a non-resonant optical field

The internuclear Hamiltonian of an atom pair in its electronic ground state in the presence of a non-resonant
laser field, assuming the Born—Oppenheimer approximation, is written in the molecule-fixed frame as

2

L
H=Tz +
2uR?

+ V(R) — 2—7[1(A01(R)c05249 + al(R)). (1)
c

In equation (1), Trand 1%/2uR? are the vibrational and rotational kinetic energies for the motion of the two
nuclei with reduced mass y, interacting at interatomic separation R through the potential Vi(R). The last term of
equation (1), where c denotes the speed of light, represents the interaction with non-resonant light of intensity I,
linearly polarized along the space-fixed Z axis. @ denotes the polar angle between the molecular axis and the laser
polarization. The molecular polarizability tensor is characterized by its perpendicular and parallel components
a; (R) and o (R), determined with respect to the molecular axis, which give rise to the polarizability anisotropy,
Aa(R) = oy (R) — ay (R). Note that the tensor &, which has the dimension of a volume (cm®in cgs units), is
related to the polarizability @ which is deduced from the induced dipole moment (expressed in SI units of
CV ' m?) by a = 4me,a with e, the vacuum polarizability. In equation (1), the frequency of the non-resonant
light is assumed to be far detuned from any resonance which allows for using the static polarizabilities. A large
effect of the non-resonant light is expected if the light—matter interaction strength is large compared to the
rotational kinetic energy. This corresponds to small rotational constant, or large reduced mass, and to large
atomic polarizabilities.

The long-range behavior of the R-dependent polarizability, validat R > Ry = (4a;a;)"®, can be derived
from the polarizabilities of the two constituent atoms, a; and ;. In the electronic ground state, one obtains
[21,22]
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daa, N 4((11 + aZ)alaz

o (R) = o+ a, + 2 G

, (2a)

2000 N ((11 + a2>a1a2

R3 R® (26)

a,(R)~ o+ a; —

This R-dependence needs to be connected to ab initio data at short range. If this data is not available for the
molecule of interest, the parallel and perpendicular polarizability components can be approximated (as in the
present paper) by keeping them constant for R < R, and employing equations 2 for R > R¢ > R,. The specific
value of R is not important for weakly bound levels and low-energy scattering states as long as the inequality is
fulfilled which avoids the divergence occurring in o at R.

The non-resonant field introduces a mixing of different partial waves of the same parity such that #isnota
good quantum number. For a given diatom, the rovibrational levels and low-energy scattering states can be
determined by solving the Schrodinger equation associated to the Hamiltonian (1). To this end, H is represented
by a mapped grid for the radial part [32] and a basis set expansion in terms of the spherical harmonics Yz, ,,, (6, @)
for the angular part [33], taking advantage of the magnetic quantum number m being conserved. We label the
field-dressed states by the field-free quantum numbers #, m and v, adding a tilde to indicate that they are labels
not quantum numbers. For the bound states, the field-dressed levels 7, ¢ are diabatically connected to the field-
free quantum numbers even for very high intensities. For the sake of simplicity this study is restricted to states
with m =0.

3. Asymptotic model

We derive an asymptotic approximation to the Hamiltonian (1) by extending the nodal line asymptotic model of
[13] to account for the interaction of the diatom with a non-resonant field. This is possible since the influence of
the non-resonant field on low temperature scattering states and weakly bound levels is dominated by the long
range part of the interaction, characterized by a 1/R>-behavior (see equation (2)) and since the resonances under
study are sufficiently close to the threshold. This method yields an efficient approach to study near threshold
properties, such as shape resonances, of a diatomic molecule subjected to an intense non-resonant field.

3.1. Universal asymptotic Schrodinger equation for a diatom interacting with a non-resonant field

To derive the asymptotic approximation, we consider the Schrédinger equation with V,(R) replaced by its
leading order asymptotic term, V, (R) ~ —Cg / R® describing the van der Waals interaction. For the interaction
with the non-resonant field, we also account only for the leading order term which scales as 1/R>. In addition, the
R-independent term in @, (R), lowers the dissociation limit. It reduces to E, = —%”aol , where a, denotes the
atomic polarizability. Taking advantage of m being conserved and considering only m = 0, the asymptotic 2D-
Schrodinger equation reads

& G P
R R R N
2udR>  R® 2R
2 2
_ 2n1[2a0 4 ;30 (3CO529 _ 1)]U/(R, 0, ) = Ey (R, 0, ¢). (3)
Cc

Ifthe atoms are not identical, a needs to be replaced by @ a,, and 2ao by a; + s, see equation (2). Equation (3)
can be rescaled by introducing a dimensionless reduced length x, a reduced energy € (defined with respect to the
field shifted dissociation limit E,) and a reduced laser field intensity 7
R =ox,
E - EO =e& 5
I=pI.

The unit conversion factors for length o, energy € and laser intensity § contain the information specific to the free
atom pair:

1/4
o= (2”66) : (4a)

(4b)
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}Z3/2cl/4 3
p=—— = (40)

T 127 alup’*  127ad’

The unit conversion factor for time, 7/¢, is obtained from that of energy. The unit conversion factor for
intensity, 3, is proportional to C¢'* &g (i.e., to ag *'%, according to the approximate London formula for the van
der Waals coefficient Cy) and to u~*'4, such that larger polarizability and larger reduced mass require less
intensity I for achieving the same value of the reduced intensity Z.
Employing atomic units, that is Bohr radii a, for o, Hartree for e and a; for the atomic polarizability, and
expressing the laser intensity I in GW ¢cm 2, the reduced intensity is given by
2

I
1 = 4274177 1078 0% (5)
€0

whereas the shift of the dissociation limit in reduced units is equal to
Ey 4rayl

I
£y= 20 = = —1.424725 1078 22 (6)
€ ce €

When the reduced energy is expressed in yK, the numerical factors are equal to 13496.717 for the reduced
intensity and —4498.93 for the reduced threshold shift, respectively. The asymptotic Schrodinger equation in
reduced units is given by
d? 1 I cos’ 0 — 1/3
[—@—;-F;—IT—(?]][(X,H,(p):O. (7)
This universal asymptotic Schrodinger equation is valid at sufficiently large distances where the potential is
dominated by the 1/x° term, i.e., for x > Xyqym = (Cs/Cs)"/2.

The asymptotic model in reduced units predicts that a field-free shape resonance is solely determined by
equation (7), i.e., by its rotational quantum number #, and by boundary conditions at a distance, xos > Xasym-
The value of x is related to the value in reduced units of the s-wave scattering length of the molecule. In the
presence of a non-resonant field, the resonance energy (in reduced units) depends, apart from the field-free
scattering length, on both the reduced laser field intensity 7 and the field-free rotational quantum number #.

To account for the presence of the interaction with the non-resonant light in equation (7), we introduce
below a modification of the nodal line technique to solve the asymptotic Schédinger equation for x > X,gm. To
this end, we first expand the wave function in spherical harmonics, Y, ,,, (8, @) (setting m =0)

f6 0, 0) = D3, (0 Yoz (6, @), (8)
14

introducing the radial functions y, (x) for the different coupled channels #. Equation (7) is then replaced by a
system of coupled equations which can be written in vectorial form

2
%y(x) £ (M+ € Dy(x) =0, ©)

where the vector y (x) is the set of functions y, (x), 1 denotes the identity and M is the matrix of the operator

2 2 —_— . . . . . .
16 LZ +17 M represented in the basis of spherical harmonics with #-values of the same parity. We
X X
restrict our considerations here to m = 0 and even ¢ values varying from 0 to various £ ,,,, so that the model
consists of n = £,,/2 + 1channels# = 0, 2, ..., 2(n — 1). We denote by y’ (x) a particular solution of the

asymptotic Schrédinger equation in the coupled channel model

“imax

Y@ = D yi(x)Yemeo(cos 0), (10)

¢ even=0

where yfj (x) is the radial component of the jth solution in the £th channel.

3.2.Nodal line technique

The nodal line technique is a method to solve the Schrodinger equation in the asymptotic region, which is
applicable to the near-threshold energy range. The disregarded inner region is dominated by the potential Vy(R),
cfequation (1), and gives rise to a nodal structure of the wavefunction which is almost independent of its energy
and the other interaction terms in the Hamiltonian (1). Therefore the dependence of the node positions on
energy £, on the centrifugal term & # (¢ + 1), or on any other small term in the Hamiltonian, such as the
coupling with the non-resonant light & 7, can be estimated in the WKB approximation by a Taylor expansion of
the local de Broglie wavelength. To first order, it introduces small contributions to the node positions which vary
linearly with &, £ (¢ + 1),and I, respectively.

4
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When using the nodal line technique, the solution of the coupled equations (9) is carried out only for the
zone where the asymptotic Hamiltonian is valid. At large distance, physical boundary conditions are imposed,
depending on the sign of €. For £ < 0, the radial wave functions exponentially decay in all channels, quantifying
the energy of bound levels. For £ > 0, regular and irregular Bessel functions characterize the asymptotic
behavior. At small distance, on the frontier of the inner zone, we require the radial part of the physical wave
function in each channel yfj to vanish ata position x,, thatislocated on a £-dependent straight line in the (£, x)
plane, the so-called nodal line [9, 34].

Without non-resonant field, the following positions were used:

Xor = Xo0 + AE + BE(£ + 1), (11)

where the parameters xg, A and B are characteristic of the chosen atom pair. In particular, xy, corresponds to the
position of a node of the threshold s-wave wave function and is related to the s-wave scattering length [7]. A takes
the variation of the node position with energy in the wave function with £ = 0 into account. B describes the shift
in the node of the threshold wave functions induced by the centrifugal term for the various partial waves, £ > 0.
The parameters x,, A and B are adjusted, if possible, to reproduce experimental data, such as the positions of
bound levels or resonances close to threshold, and the s-wave scattering length. They can also be determined by
studying the nodal structure of wave functions calculated in a single-channel model using a molecular potential,
when available.

In the absence of either reliable potentials or experimental data, there is a rough, but universal estimate of the
parameters A and B given by very simple analytical formulas which depend only on the s-wave scattering length,
AS = —(x¢9)"/8 and B® = (x49)°/4 [13]. These laws are deduced from the universal model of [4] which consists
ina —1/x° potential limited by an infinite repulsive wall at a distance xo, — 0. The WKB approximation is used
to evaluate, in the vicinity of the threshold and for a not too high value of Z, the shift of the node located at xgo
that arises from the contribution of the kinetic A€ and centrifugal B (£ + 1) energies in the range
Xoe < x < Xqp [34]. Although the model becomes less realistic as xqo decreases, the correspondingAG and B¢
values are comparable to the values ajusted to experimental data [9, 10].

In the presence of a laser field, as it will be shown below (see section 4.1), an intensity dependent term has to
be added to the nodal lines

Xor = X0 + AE + B (€ + 1) + CI. (12)

The new term, CZ, i.e., lowest order in T, accounts for the contribution of the interaction with the non-resonant
field at short range. With this modification it is possible to obtain the bound levels, the resonance profiles of the
shape resonances as well as the scattering length of the field dressed molecule for any intensity. The Z-dependent
term can be evaluated in the same way as A° and B°. It is even possible to use exactly the same description of the
polarizability as in the full-potential calculations (see sections 2 and 4): using the diagonal term of equation (7)
for x > xc = R¢/o, replacing cos? 6 by its approximate £-independent mean value 1/2, and keeping a constant
polarizability for x < x¢, we obtain (in reduced units)

CC = —xpy/12 + 3x0/48. (13)

In order to determine bound levels and resonances, the calculation is performed in two steps. First, equation (9)
is solved numerically by inward integration starting from a large value x,, imposing onlylarge x boundary
conditions. For £ < 0, i.e., levels below threshold, this value has simply to be larger than the outer Condon
point. For £ > 0, x, is chosen in the x-domain where the diagonal elements of the matrix M + £1 reach their
asymptotic form, thatis [ — £ (£ + 1)/x*]for & > 0and [1/x® — Z (£ + 1)/x*for & = 0.One can then use
analytical solutions as initial values for the inward integration of the radial functions y; (x) in each channel and

construct a set of linearly independent solutions y/ with the correct asymptotic behavior. There are n such
solutions for bound levels and Siegert states. Their asymptotic behavior corresponds to either an exponentially
decreasing function or an outgoing complex wave function in a given channel and zero in all others. For £ > 0,
there are 2 linearly independent solutions, with an asymptotic behavior given by either a regular or an irregular
Bessel function in a given channel and zero in all others, see reference [33] for € > 0 and reference [35] for € =0.

In a second step, we calculate the physical solutions z*. They are linear combinations of the particular
solutions y/ previously calculated. The coefficients are determined by imposing the radial components in each
channel to vanish at the corresponding node position x,. This short range condition leads to a quantization of
energy for the bound levels and Siegert states, see appendices A.1 and A.3, respectively. It also allows to
determine the scattering length in the presence of the non-resonant field [36].

The continuous, n-fold degenerate spectrum at an energy £ is described by multichannel scattering theory
[37-39]. The chosen asymptotic boundary conditions allow for a direct determination of the energy-dependent
reaction matrix, K (&), from which the scattering matrix, S (£), and the time-delay matrix, Q (&), are easily
deduced. The details are presented in appendix A. In particular, the Q matrix is well-adapted to analyze shape
resonances, by studying the energy variation of its lowest eigenvalue g, (£) which corresponds to Lorentzian

5
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Table 1. Scaling factors defining the reduced units, cfequation (4), for
885y, and **Sr®*Sr, obtained for Cs = 3246.97 a.u.and o = 186.25 ap.

o(ag) e(uK) S(GW cm 2) 7i/e(ns)
83Sr, 151.053 86.3653 0.635782 88.4409
865885y 150.617 87.876 0.641319 86.9204

profiles, see appendix A.2 for details. The eigenvalues tan [7;] of the K matrix allow for determining the
eigenphase sum 7 (£). The energy variation of the derivative of the eigenphase sum yields also a profile of the
shape resonances. The resonances are also finally characterized by calculating the energy variation of either
population or mean value of 1/x? inside the rotational barrier, see appendix A.2 for details.

4. Shape resonances in strontium

We investigate here the shape resonances of two isotopomers of strontium, **Sr, and **Sr®Sr. They have the
largest natural abundances (68% and 16%) and no nuclear spin. The s-wave scattering lengths are ag = —2 a,,
or —0.013 in reduced units, for ®*Sr, [40] and ag = 97.94y, or 0.664 in reduced units, for **Sr®®Sr [41] (see table 1
for the scaling factors). For close to zero scattering length, quantum defect theory predicts shape resonances
with Z = 4, 8, 12, ...1.e., for the case of ®®Sr,, whereas for a large scattering length, i.e., for 86G,88¢y, shape
resonances with Z = 2, 6, 10, ... are expected [12]. We first test the validity of the asymptotic model by
comparing to solutions obtained with the full Hamiltonian (1) for 83Sr, and then compare the behavior of the
shape resonances as a function of the non-resonant light intensity for the two isotopomers.

4.1. Validity of the asymptotic model: position, width and hybridization of shape resonances in **Sr,

To test the validity of the asymptotic model, we solve the asymptotic Schrodinger equation (7) and compare to
results obtained with the full Hamiltonian (1) [17], using the ground state potential energy curve from [23],
adjusted to yield the relevant scattering length. The polarizabilities are computed from equation (2) for

R > R¢ = 10 ay with an atomic polarizability of ay = 186.25ag [42]; for R < R the polarizabilities are taken to
be constant. We first need to determine the nodal lines. To this end we use [ 13] which gives the energies and
widths of shape resonances as a function of the position of a node at short range. Reversely, knowing the position
of a field-free shape resonance, it is possible to find a node position x(, (in a chosen x-interval) that yields a
resonance at this energy value. Starting from the positions of the field-free shape resonances # =4, 8,12 and 16
[17], we first test nodal lines of the type (11). Since the coefficient A in equation (11) plays a minor role, it is taken
to be constant and equal to A = A® = —(x,)’/8, the value of the ‘universal’ model [13]. B (#) is taken to be a
polynomial of degree 3in £ (¢ + 1);xo0 and B (¢) are determined by a fit to the field-free shape resonance
positions (the degree of the polynomial is 3 to fit the 4 data points exactly). Note that this fit provides the correct
value, a = —2ay, of the field-free scattering length.

However, when using the ansatz (11) to determine, in addition to the field-free positions of the shape
resonances, the slopes of their dependence on the non-resonant field, the result is disappointing: for the four
resonances the slopes are smaller by a factor of approximately 1.75 compared to those obtained from the full
Hamiltonian. This finding suggests that the contribution of the short-range part of the interaction with the non-
resonant field (for x < xg,) is non-negligible, rendering the use of field-independent nodal lines insufficient.
Remarkably, the effect of the coupling at short range on the intensity dependence of the resonance positions can
be simply compensated, at least roughly, by introducing a scaling factor in the field intensity.

The influence of the interaction with the non-resonant field at short range on the resonance positions can be
fully accounted for in the asymptotic model by making the nodal lines intensity-dependent, cf equation (12).
Assuming A to be constant, A = A%, as above, xyo and B (£), taken to be a polynomial of degree 4in # (£ + 1),
are adjusted to reproduce exactly the nodes of the field-free wave functions with # = 0, 4, 8, 12, 16. As above,
this fit provides the correct value, a = —2ay, of the field-free scattering length. Additionally, C, taken tobe a
polynomial of degree 3in # (£ + 1), is adjusted to reproduce exactly the variation of the node positions for
¢ =4, 8, 12, 16withintensitywhen 7 isincreased from 0 to 1 reduced unit. To this end, the #-wave function
of the rovibrational level closest to threshold is obtained numerically for 7 = 0 and 7 = 1, employing the
Fourier grid method to solve equation (1) in a single channel approximation. For T = 1, the single channel
calculation represents an approximation. It is, however, well justified by the very small £ mixing observed in a
coupled channels calculation for T = 1, correspondingto I = 0.64 GW cm™ > for **Sr,. The variation of the
node positions at threshold with # (£ + 1) isshown in figure 1 for T = 0. Also plotted are the node positions at
threshold of the *universal’ model, i.e., B(¢£) = B = xOSO/ 4, corresponding to the same value of xg. They do not
deviate much from the node positions obtained from the full potential, except for large # values. The node

6
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Figure 1. Nodal lines for **Sr, in reduced units: the red line shows the variation of the node positions at threshold with # (£ + 1) for
T = 0, compared to the ‘universal’ model corresponding to the same value of x, (green dots). The blue squares indicate the values for
¢ = 4, 8, 12, 16, adjusted to reproduce the field-free positions of the corresponding shape resonances [17]. The variation from

I = 0to T = 1 (inreduced units) of the nodes is too small to be visible in this figure.

positions in the presence of a weak non-resonant field, T = 1in reduced units, differ from those for T = 0 by
onlyabout —0.5 X 10~ reduced units, not visible on the scale of the figure. Adding this small and simple linear
intensity dependence to the nodal lines yields spectacular agreement of the asymptotic model with the full
Hamiltonian. This is demonstrated by the upper panel of figure 2 which compares the results of the asymptotic
model with intensity-dependent nodal lines to those of the full Hamiltonian: almost no difference is visible on
the scale of the figure. A linear intensity dependence of the nodal lines thus allows for utilizing the asymptotic
model up to very large field intensities.

Note that all crossings between resonances or levels in figure 2 are in fact avoided crossings, and the
diabatized lines are simply labeled by the Z value equal to the field-free # value. Figure 2 also shows the behavior
of the resonance width as a function of field intensity for the example of # = 8 (lower panel). The calculations
using the asymptotic nodal line technique were performed with 11 coupled channels, but we have checked for
several values of Z and T that the positions of the shape resonances (up to # = 20) do not change when £, is
increased (up to £,,x = 24, corresponding to 13 coupled channels). The resonance positions and widths for
/ = 8, 12, 16 shown in figure 2 have been obtained with the complex energy method, cf appendix A.3. For the
resonance # = 4, which is close to the top of the corresponding barrier at I = 0, the complex energy method
does not apply and resonance profiles have been determined from the smallest eigenvalue of the time-delay
matrix Q (&), appendix A.2.

The intensity dependence of the resonance positions and widths shown in figure 2 is related to a strong
hybridization of the rovibrational motion [ 16, 17]. The hybridization involves different aspects, which can be
analyzed from profile calculations, cfappendix A.2. This is shown in figure 3, illustrating #-mixing for the
example of the Z = 8 resonance. The population density (per energy unit) trapped behind the centrifugal
barrier (lower panel of figure 3) is essentially always concentrated in the # = 8 channel. It increases rapidly when
approaching the threshold. The crossing with the # = 12 resonance does not visibly affect this evolution,
whereas the crossing with Z = 4 involves a clear decrease of the population density in the # = 8 channel (dip in
the green line near 11 GW cm ™). Note the different behavior of the percentages at short and long range. In the
short-range region the population is essentially concentrated in the # = 8 channel; and the short-range
percentages converge exactly to the population percentages in the different channels of the corresponding 7 = 8
bound level at threshold (middle panel of figure 3). In contrast, the asymptotic percentages (upper panel of
figure 3) are very different from the short-range ones, with a very small contribution of the # = 8 partial wave
and large contributions of partial waves with # = 0 and 2 at high intensities. The asymptotic percentages
represent the partial wave decomposition of the continuum wave function associated to the lowest eigenvalue of
the time delay matrix Q (£). We stress here that this wave function is, inside the multiply degenerate continuum,
the only wave function exhibiting resonant behavior. The behavior of the asymptotic percentages would
probably be important if dynamical processes were considered.

4.2. Comparing **Sr, and **Sr®®Sr: intensity dependence of shape resonances in molecules with small and
large scattering length

The crucial free parameter in the asymptotic model, and the only free parameter in the ‘universal’ asymptotic
model, is the value of the s-wave scattering length (in reduced units) which determines the node positions. Itis
thus particularly instructive to compare the **Sr, and **Sr**Sr dimers. Since for small # the differences between
the ‘universal’ and the ‘realistic’ nodal lines are small, see figure 1, we use here ‘universal’ nodal lines (12) for
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Figure 2. Upper panel: position of the shape resonances of 833y, as a function of non-resonant field intensity (£ = 4 (cyan), £ = 8
(green), Z = 12 (orange), £ = 16 (red) and ¢ = 20 (magenta)), obtained from the asymptotic model with intensity-dependent
r}odal lines (solid lines) and the full Hamiltonian (dotted lines)—the results are almost indistinguishable. Lower panel: width of the
¢ = 8 shape resonance of **Sr, as a function of non-resonant field intensity. The dashed curve displays a 15-fold zoom of the solid
one, showing the broadening (resp. narrowing) of the # = 8 resonance when it crosses the £ = 4 (resp. £ = 12) one, as indicated
by the arrows. At threshold, also indicated by an arrow, the width tends to zero as expected.

865r38Sr, with coefficients A = A%, B = BS, C=0and the value of x,, determined by the s-wave scattering
length. In this essentially explorative work, we have also limited the number of channels to 5 (£ .., = 8),
sufficient to study the # = 2 and # = 6 resonances.

Encouraged by the very good agreement between the asymptotic model and the full Hamiltonian for the
shape resonances, we calculate for both isotopomers, in addition to the shape resonances, bound levels very close
to threshold. Figure 4 displays the positions of shape resonances and bound levels for **Sr,, whereas the
corresponding results for **Sr®*Sr are shown in figure 5. In both figures, we characterize each level or resonance
by a value 7, with the labeling done by continuity through avoided crossings (‘diabatic’ labeling) in two
concording ways. First, we observe how the levels appear, as the number of channels in the calculations is
enlarged; second, we analyze the channel decomposition for 7 = 0. The intensity dependence of the resonance
and bound level positions is extremely different for **Sr, and **Sr®®Sr: in figure 5, new # values, # = 2 and
£ = 6, appear, all crossings are widely avoided and the # = 6 resonance crosses twice the threshold. It is worth
mentioning that the theoretical energies obtained for the field-free bound **Sr, levels with # = 0 and # = 2
(—74.64 reduced units or —134.4 MHz and —36.37 reduced units or —65.5 MHz) are in good agreement with the
experimental values of —136.7 and —66.6 MHz for the v=62, # = 0 and the v=62, £ = 2 shape resonances,
respectively [24]. In the presence of the non-resonant field, the bound levels in figures 4 and 5 are of three types:
(1)‘pure’ bound levels which are bound also in the field-free case; (ii) bound levels which appear when a shape
resonance is pushed below threshold as the non-resonant field intensity is increased; and (iii) ‘supplementary’
bound levels, which start tangentially to the threshold, i.e., regular scattering states that become bound as the
field intensity is increased. The latter are due to a deepening of the # = 0 adiabatic potential as T increases. This
effect is also observed for a very strong static electric field coupling to a permanent dipole moment [43].

Figure 6 analyzes the hybridization of a shape resonance for the example of the # = 6 resonance in **Sr®®Sr.
The features are similar to those shown in figure 3: in particular a drastic increase of the population density,
especially in the # = 6 channel, is observed when the resonance comes close to the threshold. Simultaneously,
there is almost no more contribution of the £ = 6 partial wave in the asymptotic behavior.
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0 5 10 15 20
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Figure 4. Positions of bound levels and shape resonances as a function of non-resonant field intensity for **Sr,, calculated with
realistic, 7-dependent, nodal lines (see text). Bound levels that are bound also in the field-free case are drawn as solid lines, dotted—
dashed lines correspond to shape resonances which become bound at a certain intensity, and ‘supplementary’ levels, i.e., regular
scattering states that become bound, are represented by dashed lines. The colors correspond to a ‘diabatic’ labeling.

5. Conclusions

We have generalized an asymptotic theory of diatomic scattering and weakly bound molecular levels [12, 13] to
account for the interaction of the diatomic with non-resonant light through its polarizability anisotropy. Solving
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Figure 6. Hybridization of the #Z = 6 shape resonance of *°Sr**Sr as a function of non-resonant field intensity, analogously to figure 3.
The dotted—dashed line indicates the crossing with threshold.

the asymptotic Schrédinger equation by a nodal line technique has allowed us to accurately reproduce the results
of the full Hamiltonian for **Sr, at all intensities. The agreement demonstrates the efficiency of the asymptotic
model to predict the intensity dependence of the positions and widths of shape resonances. Moreover, due to the
simplicity of the boundary conditions on the nodal lines, it is possible to utilize multichannel scattering theory
and work with true continuum states. This allows for a detailed description of the resonance profiles which is
accurate for broad and extremely narrow resonances alike.
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The field-free scattering length is the essential parameter that determines the field-free position of shape
resonances and also the position of the nodal lines. We have found an intensity dependence of the nodal line to
be required to accurately account for the effect of the polarizability interaction at short range. Otherwise the
slopes of the positions’ intensity dependence in the asymptotic model differ by a factor of about 1.75 from those
of the full Hamiltonian. A similar factor appears in a single channel approximation to the asymptotic model
when intensity-independent nodal lines are considered [44]. The node positions are assumed to depend
separately on energy, rotational quantum number and non-resonant field intensity. The channel mixing is thus
completely ignored at short range.

The variation with field intensity of the resonance postions is found to be linear up to rather large field
intensity. This suggests the use of perturbation theory based on field-free properties only, i.e., a single-channel
model. A detailed discussion of such an approach will be presented in [44].

Our current approach allows for a universal prediction of the intensity dependence of shape resonances in
arbitrary diatomic molecules, based solely on their scattering length, C4 coefficient and reduced mass, and on the
polarizability of the constituent atoms, without knowledge of the full interaction potential. This is important for
utilizing non-resonant light control in molecule formation via photoassociation [17] or Feshbach resonances
[18] asit allows to predict the required intensities. In addition to tuning the position and width of shape or
Feshbach resonances, non-resonant light control can also be employed to change the background scattering
length. This will be studied in detail elsewhere [36].
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Appendix A. Computational details

In the following we present the computational details of the nodal line technique applied to the asymptotic
model for diatomics in a non-resonant field for the tasks of determining the energy and wave function of bound
levels below the field shifted dissociation limit, and the energy profile and properties of shape resonances. All
numerical calculations were performed using MATHEMATICA.

A.1. Bound levels
For a given value of energy, & = —k?, nlinearly-independent solutions y are obtained by inward integration.
Each solution jis related to a specific channel £; = 2(j — 1) by imposing yff (x) to behave asymptotically as

yfj (x) o« exp(—kx) in the £j channel and zero in all others. The physical solution Z is a linear combination,
z=)ajy), (A1)
j=1

where the radial component in each channel # must vanish on the corresponding nodal line x¢,. The resulting
linear system of n equations with n unknown variables a; has a non-trivial solution if and only if

Diound (&) = det(3 (x0r) ) = 0. (A2)

where det(M) is the determinant of the matrix M. Equation (A2) is solved either by iteration on the energy € or
by interpolation of Dyound (€) on a set of £-values and finding the corresponding zeros, Epound- Solution of the
linear system of the n equations z;’zl a; y} (xor) = 0 corresponding to the n #-values at an energy Eyound yields

the coefficients a;and thus the bound state wave functions of the various £-channels. The coupled wave function
z atthe energy Eoung is normalized to one, such that hybridization can be measured by the weights

@ (Evouna) = [, 1Z;ai7) (0 dx.
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A.2.Resonance profiles
To analyze the profiles of shape resonances in the n-fold degenerate continuous spectrum, we use multichannel
scattering theory [37, 38]. For each energy &, € = k? > 0, we calculate 2n particular, linearly-independent,
energy-normalized solutions of the Schrodinger equation (9) by inward integration. The initial conditions are
taken at large distance x,, where the centrifugal term 1/x? prevails. For each channel £; (where again
¢; = 2(j — 1)), we determine two particular solutions, denoted by j/ (x) and y/ (x), respectively, by imposing as
asymptotic behavior in this channel either a regular \/ (kzx)/2 Jy4 1,2 (kx) or anirregular / (kmx)/2 Yy 11/ (kx)
energy-normalized Bessel function and zero in all other channels. The physical solutions of equation (9) are n
linear combinations of the 2# calculated particular solutions which vanish on the nodal lines in each channel.
Among all the possible sets of r particular combinations, we choose the ‘standard’ ones, z/, which asymptotically
contain a regular component in the channel £ only
n
2(x) = 2| 8557 ) + Ky (0], (A3)

j’=1

where K is the so-called reaction matrix [37, 38]. Introducing twon X n matrices

(Mucg)! = Cxo0), (Ada)

(Mirreg ); = )'; (xOf)) (A4b)

the conditions that the wave functions vanish on the nodal lines allow us to determine the K- and S- matrices
[37,38]

K = ~(Mineg) " Mreg, (A5)

S=(1+K) - (1-iK" (A6)

The existence and properties of a shape resonance can be determined by several different methods. An example
of four different profiles tpat we have obtained in two particular cases ( 865188Gr, # = 2, atafield intensity 7 = 5
reduced units and **Sr,, # = 8, atafield intensity I = 6.5 reduced units) is displayed in figure A1.
The most suitable method for characterizing resonances is surely to study the time-delay matrix Q (&)
[38,39], which is related to the scattering matrix S by
ds
=-S5 . —. A7
Q iF (A7)

When a narrow and isolated resonance shape resonance is present, the energy dependence of the lowest
eigenvalue of Q, g, (£) exhibits a Lorentzian profile

14

2 1 \2’
(e-&) + ()
where &, is the resonance energy and y, its FWHM. The wavepacket associated to the corresponding eigenvector
is resonantly delayed during its scattering by the attractive potential. This method can be extended to the analysis
of overlapping resonances [47].

Thelifetime T = 7/¢t of the resonance (in Sl units) is calculated from the reduced lifetime ¢ = 1 /5, and the
reduced unit of time 7/¢. The channel-mixing of the resonance can be characterized by the eigenvector
corresponding to g, (&, ), which gives the partial wave decomposition of the continuum wave function (one
among the n wave functions of the #- multiple continuum) which concentrates the resonant character of the

scattering at this intensity value.
The second method consists in diagonalizing the K-matrix, with eigenvalues tan (z7;). The corresponding

q, (&) ~ = (A8)

eigenvectors can be used to construct the so-called ‘eigenchannel wave functions’, w/, wich have the same
asymptotic behavior, u/ (x) o« Jz41/, (kx) + tan (n7j) Yz41/2 (kx), in all channels. The z; are called the eigenphase
shifts. The total eigenphase shift

n

(&) =) 1), (A9)

j=1

increases by 7 when & passes through the resonance energy. The derivative with respect to the energy of the total
eigenphase shift, 7’ (£), exhibits a resonance profile, since it is related to the trace of the Q matrix by
Tr [Q(&)] = 27'(&).
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Figure A1. Comparison of four different methods allowing to characterize a shape resonance, in two particular cases: in the left
column, a very broad resonance, 2 = 2 0f%Sr®Sr, ata field intensity I = 5 reduced units (calculated with 5 coupled channels), in the
right one, a narrow resonance, Z = 80f%Sr,, ata field intensity 7 = 6.5 reduced units (calculated with 11 channels). In each column
are represented, from top to bottom, the energy variations of: the derivative with respect to energy 7’ (£) of the sum of the eigenphases
of the K-matrix, the total population density I, (€) trapped behind the centrifugal barriers, the mean value I, (€) of the operator 1/x?
and the eigenvalues g; (€) of the delay-matrix. One notices that all eigenvalues are zero (or positive) except the lowest one (in red),
which exhibits a negative Lorentzian profile (indicating a positive time delay for the scattering). For a narrow resonance (right
column) all profiles are quite similar. For a broad resonance (left column) the different methods yield slightly different profiles.

It is finally possible to characterize the profile of a shape resonance from the radial components v/ (x) of any
orthonormalized set of continuum wave functions. In practice, we have used energy-normalized wave functions
associated to eigenvalues of the matrix K” - K. Introduction of the transposed matrix K” allows one to
eliminate numerical problems related to small asymmetries of the matrix K. In addition, the scalar product of
the standard functions z/ defined in equation (A3) isequal to 1 + K” - K. Since a shape resonance is a
metastable state in which two atoms are temporally kept close to each other, a resonance profile is also expected
for the density (per energy unit) inside the barrier and for the expectation value of the 1/x?. Precisely we calculate
the following integrals

n

I,= (A10)

/%Iﬁﬁﬁw.

xP

"M

n
j=1¢=1

With either p=0or p=2; x/., isaverylarge value for p = 2; for p = 0, it is the position of the top of the
centrifugal barrier xtf;p = [£(¢ + 1)/3]V*for ¢ > 0anditis taken as xtﬂgz forz = 0.

As shown in figure A1, the four calculated profiles, ¢, (£), 7' (£), I (€) and I (£), exhibit similar shape,
especially for narrow resonances. In the latter case, the profiles g (£) are perfectly given by equation (A8).

A.3.Resonances via the complex energy method

Shape resonances with large £ are very narrow, even for low field intensity. This is due to the presence of the
broad and high potential barrier. Resonances lying very close to the field-shifted dissociation limit also have a
very small width. It is quite difficult to detect narrow resonances and to calculate their characteristics from an
analysis of the resonance profiles as described in appendix A.2. As an alternative, we therefore calculate the
resonances as Siegert states with complex energy £ = £ — 1y/2 where the real and imaginary part are related to
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the resonance energy and width [45, 46]. Siegert states are described by a complex wave function z whose
asymptotic behavior corresponds to an outgoing wave in each channel.

To determine the Siegert states, we proceed similarly as for bound levels, cf appendix A.1. We first determine
nlinearly-independent particular complex solutions y/ of equation (9). Changing € into & = k*resultsina
complex k-value. Inward integration, imposing an outgoing wave asymptotically in the £j channel and zero in all
others yields the y’. The outgoing wave is written as a combination of the regular and irregular Bessel functions,

(=)D [7x/2 [ Jes12 (kx) + 1Yp 1,5 (kx) ] The physical Siegert wave function, obtained as a linear

combination of the yj solutions, has to satisfy the boundary condition at small x, i.e., the radial components in
all channels have to vanish on the corresponding nodal line x,, calculated at the energy PRe (Es). These
conditions are equivalent to a vanishing determinant Dyegert (£5) of the radial #-components of the n particular

solutions ytf (x) at the node positions. This condition quantifies the resonance energy to the value
Esr =& —11,/2.
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