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Abstract
Wederive a universalmodel for atompairs interacting with non-resonant light via the polarizability
anisotropy, based on the long range properties of the scattering. The corresponding dynamics can be
obtained using a nodal line technique to solve the asymptotic Schrödinger equation. It consists of
imposing physical boundary conditions at long range and vanishing thewavefunction at a position
separating the inner zone and the asymptotic region.We show that nodal lines which depend on the
intensity of the non-resonant light can satisfactorily account for the effect of the polarizability at short
range. The approach allows to determine the resonance structure, energy, width, channelmixing and
hybridization even for narrow resonances.

1. Introduction

Ultracold collisions have been a focus of AMOphysics research for the last two decades. The keen interest in the
subject is due to twomain aspects—collisions at very low energy are highly non-classical, and they show
universal behavior [1, 2]. The quantumnature of ultracold collisions implies that the dynamics are governed by
tunneling and resonances. The latter are at the core of an unprecedented control over the scattering particles that
was achieved experimentally [3]. At the same time, the universal behavior of ultracold collisions has given rise to
a thourough understanding of the underlying dynamics. For example, quantum-defect theory can be employed
to calculate atom–atom scattering properties and bound rovibrational levels close to threshold [4–6].

A theory based solely on the asymptotic properties of the interaction potential has proven useful also for the
description of photoassociation [7], i.e., the light-assisted formation ofmolecules [1, 8]. In particular, the nodal
line technique to solve the Schrödinger equation in the asymptotic approximationwas employed to determine
the scattering length [9, 10] and potential energy curves [11] in several diatomicmolecules. The formalismwas
extended to shape resonances [12, 13], which occurwhen a scattering state becomes trapped behind the
centrifugal barrier for partial waves with ℓ > 0, withℓ being the rotational quantumnumber. This extension
has allowed to capture all essentials of shape resonances in terms of a single parameter, the s-wave scattering
lengthwhich universally characterizes the long-range two-body interaction.

An important aspect of shape resonances is that they lead to an increased pair density at short interatomic
separations [14] and are thus crucial formolecule formation at ultralow temperatures [3, 15].However, due to
the rotational excitation involved in generating the centrifugal barrier, the lowest energies at which shape
resonances occur typically correspond to temperatures of a fewmilli-kelvin. The interaction of non-resonant
light with the polarizability of the atompair can be used to shift the positions of shape resonances to lower
energies [16, 17]. If the resonance position ismade tomatch the trap temperature, the photoassociation rates are
predicted to go up by two to three orders ofmagnitude [17]. This control is of a universal character, independent
of the frequency of the light and the energy level structure of themolecule (as long as the frequency remains far
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from anymolecular resonance). Interestingly, non-resonant light control should also enable
magnetoassociation by creating newFeshbach resonances and by strongly enlarging their width [18]. A non-
resonant field affects not only shape resonances but also bound rovibrational levels by shifting their energies and
hybridizing their rotationalmotion [17, 19]. This leads to alignment of thewave functions along the field
direction [20].

Thesemanifold proposals for control using non-resonant light call for an extension of asymptoticmodels
[12, 13] to account for the couplingwith non-resonant light via the polarizability anisotropy. Such an approach
is promising as long as the relevant physics occurs at large interatomic separations and in an energy region close
to threshold. This is the case both for shape resonance control in photoassociation [17] or Feshbach resonance
engineering [18]. The dependence of the polarizability on interatomic separation is then universal and depends
only on the polarizabilities of the constituent atoms [21, 22]. Including the interactionwith a non-resonant field
in asymptoticmodels should allow for predicting thefield intensity that is required tomodify the position of a
shape resonance by a desired amountwithout exact knowledge of the potential. This is the question thatwe
address here.

We test the asymptoticmodel against exact results for the strontiumdimerwhich has recently been the
subject of intense research both experimentally [23–26] and theoretically [27, 28]. The interest in Sr2 is
motivated by prospects to study the variation of the electron to protonmass ratio [29] and has already resulted in
the observation of unusual non-adiabatic effects [30, 31]. Strontiummolecules consisting of even-isotope
atoms, such as 88Sr2 or

86Sr88Sr, for which the nuclear spin is zero, cannot be formed bymagnetoassociation
using a Feshbach resonance. Photoassociation then presents a viable alternative and non-resonant light control
of shape resonances is particularly promising in this case [17]. The amount of intensity that is required to achieve
such control is expected to depend on the field-free scattering length. The scattering length is very small for 88Sr2,
and large for 86Sr88Sr, allowing a comparison of the intensity dependence for the two limiting cases. All of these
facts togethermake the strontiumdimer a natural benchmark for our asymptoticmodel.

The paper is organized as follows: we briefly recall themodel for a diatomicmolecule interactingwith non-
resonant light in section 2. Introducing reduced units of length and energy, we derive in section 3.1 a universal
asymptoticHamiltonian for this interaction. The nodal line technique to solve the corresponding asymptotic
Schrödinger equation is introduced in section 3.2, with the computational details summarized in appendix A.
For the example of 88Sr2, we compare the results obtained from the asymptoticmodel with the nodal technique
to those obtained fromdiagonalization of the full Hamiltonian (section 4.1). The differences infield-dressed
shape resonances formolecules with small and large scattering lengths are illustrated in section 4.2, for 88Sr2 and
86Sr88Srmolecules.We conclude in section 5.

2. Interaction of a diatomwith a non-resonant opticalfield

The internuclearHamiltonian of an atompair in its electronic ground state in the presence of a non-resonant
laserfield, assuming the Born–Oppenheimer approximation, is written in themolecule-fixed frame as

μ
π Δα θ α= + + − + ⊥( )H T

R
V R

I

c
R R

L

2
( )

2
( )cos ( ) . (1)R g

2

2
2

In equation (1),TR and μRL 22 2 are the vibrational and rotational kinetic energies for themotion of the two
nuclei with reducedmass μ, interacting at interatomic separationR through the potentialVg(R). The last termof
equation (1), where c denotes the speed of light, represents the interactionwith non-resonant light of intensity I,
linearly polarized along the space-fixedZ axis. θ denotes the polar angle between themolecular axis and the laser
polarization. Themolecular polarizability tensor is characterized by its perpendicular and parallel components
α⊥ R( ) and α∥ R( ), determinedwith respect to themolecular axis, which give rise to the polarizability anisotropy,
Δα α α= −∥ ⊥R R R( ) ( ) ( ). Note that the tensorα, which has the dimension of a volume (cm3 in cgs units), is
related to the polarizability α which is deduced from the induced dipolemoment (expressed in SI units of
CV−1 m2) by α πϵ α= 4 0 with ϵ0 the vacuumpolarizability. In equation (1), the frequency of the non-resonant
light is assumed to be far detuned from any resonancewhich allows for using the static polarizabilities. A large
effect of the non-resonant light is expected if the light–matter interaction strength is large compared to the
rotational kinetic energy. This corresponds to small rotational constant, or large reducedmass, and to large
atomic polarizabilities.

The long-range behavior of theR-dependent polarizability, valid at α α> =R R (4 )d 1 2
1 6, can be derived

from the polarizabilities of the two constituent atoms, α1 and α2. In the electronic ground state, one obtains
[21, 22]

2
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ThisR-dependence needs to be connected to ab initio data at short range. If this data is not available for the
molecule of interest, the parallel and perpendicular polarizability components can be approximated (as in the
present paper) by keeping them constant for <R RC , and employing equations 2 for > >R R RC d. The specific
value ofRC is not important for weakly bound levels and low-energy scattering states as long as the inequality is
fulfilledwhich avoids the divergence occurring in α∥ atRd.

The non-resonant field introduces amixing of different partial waves of the same parity such thatℓ is not a
good quantumnumber. For a given diatom, the rovibrational levels and low-energy scattering states can be
determined by solving the Schrödinger equation associated to theHamiltonian (1). To this end,H is represented
by amapped grid for the radial part [32] and a basis set expansion in terms of the spherical harmonics θ φℓY ( , )m,

for the angular part [33], taking advantage of themagnetic quantumnumberm being conserved.We label the
field-dressed states by thefield-free quantumnumbersℓ,m and v, adding a tilde to indicate that they are labels
not quantumnumbers. For the bound states, the field-dressed levels ṽ , ℓ̃ are diabatically connected to thefield-
free quantumnumbers even for very high intensities. For the sake of simplicity this study is restricted to states
withm=0.

3. Asymptoticmodel

Wederive an asymptotic approximation to theHamiltonian (1) by extending the nodal line asymptoticmodel of
[13] to account for the interaction of the diatomwith a non-resonant field. This is possible since the influence of
the non-resonantfield on low temperature scattering states andweakly bound levels is dominated by the long
range part of the interaction, characterized by a R1 3-behavior (see equation (2)) and since the resonances under
study are sufficiently close to the threshold. Thismethod yields an efficient approach to study near threshold
properties, such as shape resonances, of a diatomicmolecule subjected to an intense non-resonant field.

3.1. Universal asymptotic Schrödinger equation for a diatom interactingwith a non-resonantfield
Toderive the asymptotic approximation, we consider the Schrödinger equationwithVg(R) replaced by its
leading order asymptotic term, ≈ −V R C R( )g 6

6 describing the van derWaals interaction. For the interaction

with the non-resonant field, we also account only for the leading order termwhich scales as R1 3. In addition, the
R-independent term in α⊥ R( ), lowers the dissociation limit. It reduces to α= − πE I

c0
4

0 , where α0 denotes the

atomic polarizability. Taking advantage ofm being conserved and considering onlym=0, the asymptotic 2D-
Schrödinger equation reads

 
μ μ

ψ θ φ

π α
α

θ ψ θ φ ψ θ φ

− − +

− + − =( )

R

C
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0
2
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⎤
⎦⎥

If the atoms are not identical, α0
2 needs to be replaced by α α1 2, and α2 0 by α α+1 2, see equation (2). Equation (3)

can be rescaled by introducing a dimensionless reduced length x, a reduced energy  (definedwith respect to the
field shifted dissociation limitE0) and a reduced laserfield intensity 

σ
ϵ
β

=
− =

=



R x
E E

I

,
,

.
0

The unit conversion factors for length σ, energy ϵ and laser intensity β contain the information specific to the free
atompair:


σ

μ
=

C
a

2
, (4 )6

2

1 4

⎜ ⎟⎛
⎝

⎞
⎠

ϵ
μσ

= b
2

, (4 )
2

2

3
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
β

π α μ
σ ϵ
πα

= =c C c
c

12 (2 ) 12
. (4 )
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6
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0
2 3 4

3

0
2

The unit conversion factor for time,  ϵ, is obtained from that of energy. The unit conversion factor for
intensity, β, is proportional to α −C6

1 4
0

2 (i.e., to α −
0

3 2, according to the approximate London formula for the van
derWaals coefficientC6) and to μ−3 4, such that larger polarizability and larger reducedmass require less
intensity I for achieving the same value of the reduced intensity  .

Employing atomic units, that is Bohr radii a0 for σ, Hartree for ϵ and a0
3 for the atomic polarizability, and

expressing the laser intensity I inGW cm−2, the reduced intensity is given by

α
ϵσ

= − I
4.274177 10 , (5)8 0

2

3

whereas the shift of the dissociation limit in reduced units is equal to

ϵ
πα

ϵ
α
ϵ

= = − = − − E I

c

I4
1.424725 10 . (6)0

0 0 8 0

When the reduced energy is expressed in μK, the numerical factors are equal to 13496.717 for the reduced
intensity and−4498.93 for the reduced threshold shift, respectively. The asymptotic Schrödinger equation in
reduced units is given by

θ θ φ− − + − − − = 
x x x x

f x
Ld

d

1 cos 1 3
( , , ) 0. (7)

2

2 6

2

2

2

3

⎡
⎣⎢

⎤
⎦⎥

This universal asymptotic Schrödinger equation is valid at sufficiently large distanceswhere the potential is
dominated by the x1 6 term, i.e., for > =x x C C( )asym 8 6

1 2.
The asymptoticmodel in reduced units predicts that afield-free shape resonance is solely determined by

equation (7), i.e., by its rotational quantumnumberℓ, and by boundary conditions at a distance, >ℓx x0 asym.
The value of ℓx0 is related to the value in reduced units of the s-wave scattering length of themolecule. In the
presence of a non-resonant field, the resonance energy (in reduced units) depends, apart from the field-free
scattering length, on both the reduced laser field intensity  and thefield-free rotational quantumnumberℓ.

To account for the presence of the interactionwith the non-resonant light in equation (7), we introduce
below amodification of the nodal line technique to solve the asymptotic Schödinger equation for >x xasym. To
this end, we first expand thewave function in spherical harmonics, ℓY m, (θ,φ)(settingm=0)

∑θ φ θ φ=
ℓ

ℓ ℓ =f x y x Y( , , ) ( ) ( , ), (8)m, 0

introducing the radial functions ℓy x( ) for the different coupled channelsℓ. Equation (7) is then replaced by a
systemof coupled equationswhich can bewritten in vectorial form

+ + = 
x

x xy M y
d

d
( ) ( ) ( ) 0, (9)

2

2

where the vector xy( ) is the set of functions ℓy x( ),  denotes the identity and M is thematrix of the operator

− + θ −
x

L

x x

1 cos 1 3
6

2

2

2

3
represented in the basis of spherical harmonics withℓ-values of the same parity.We

restrict our considerations here tom=0 and evenℓ values varying from0 to variousℓmax so that themodel
consists of ℓ= +n 2 1max channels ℓ = … −n0, 2, , 2( 1).We denote by xy ( )j a particular solution of the
asymptotic Schrödinger equation in the coupled channelmodel

∑ θ=
ℓ

ℓ

ℓ ℓ
=

=x y x Yy ( ) ( ) (cos ), (10)j j
m

even 0

, 0

max

where ℓy x( )j is the radial component of the jth solution in theℓth channel.

3.2. Nodal line technique
The nodal line technique is amethod to solve the Schrödinger equation in the asymptotic region, which is
applicable to the near-threshold energy range. The disregarded inner region is dominated by the potentialVg(R),
cf equation (1), and gives rise to a nodal structure of thewavefunctionwhich is almost independent of its energy
and the other interaction terms in theHamiltonian (1). Therefore the dependence of the node positions on
energy  , on the centrifugal term ℓ ℓ∝ +( 1), or on any other small term in theHamiltonian, such as the
couplingwith the non-resonant light ∝  , can be estimated in theWKBapproximation by a Taylor expansion of
the local de Broglie wavelength. Tofirst order, it introduces small contributions to the node positions which vary
linearly with  , ℓ ℓ +( 1), and  , respectively.

4
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When using the nodal line technique, the solution of the coupled equations (9) is carried out only for the
zonewhere the asymptoticHamiltonian is valid. At large distance, physical boundary conditions are imposed,
depending on the sign of  . For < 0, the radial wave functions exponentially decay in all channels, quantifying
the energy of bound levels. For ⩾ 0, regular and irregular Bessel functions characterize the asymptotic
behavior. At small distance, on the frontier of the inner zone, we require the radial part of the physical wave
function in each channel ℓy j to vanish at a position ℓx0 that is located on aℓ-dependent straight line in the  x( , )
plane, the so-called nodal line [9, 34].

Without non-resonant field, the following positionswere used:

ℓ ℓ= + + +ℓ x x A B ( 1), (11)0 00

where the parameters x00,A andB are characteristic of the chosen atompair. In particular, x00 corresponds to the
position of a node of the threshold s-wavewave function and is related to the s-wave scattering length [7].A takes
the variation of the node positionwith energy in thewave functionwith ℓ = 0 into account.B describes the shift
in the node of the thresholdwave functions induced by the centrifugal term for the various partial waves, ℓ > 0.
The parameters x00,A andB are adjusted, if possible, to reproduce experimental data, such as the positions of
bound levels or resonances close to threshold, and the s-wave scattering length. They can also be determined by
studying the nodal structure of wave functions calculated in a single-channelmodel using amolecular potential,
when available.

In the absence of either reliable potentials or experimental data, there is a rough, but universal estimate of the
parameters A andB given by very simple analytical formulas which depend only on the s-wave scattering length,

= −A x( ) 8G
00

7 and =B x( ) 4G
00

5 [13]. These laws are deduced from the universalmodel of [4]which consists

in a − x1 6 potential limited by an infinite repulsive wall at a distance →x 00G . TheWKB approximation is used
to evaluate, in the vicinity of the threshold and for a not too high value ofℓ, the shift of the node located at x00
that arises from the contribution of the kinetic A and centrifugal ℓ ℓ +B ( 1) energies in the range

⩽ ⩽x x x0 00G
[34]. Although themodel becomes less realistic as x00 decreases, the correspondingA

G andBG

values are comparable to the values ajusted to experimental data [9, 10].
In the presence of a laser field, as it will be shown below (see section 4.1), an intensity dependent termhas to

be added to the nodal lines

ℓ ℓ= + + + +ℓ  x x A B C( 1) . (12)0 00

The new term, C , i.e., lowest order in  , accounts for the contribution of the interactionwith the non-resonant
field at short range.With thismodification it is possible to obtain the bound levels, the resonance profiles of the
shape resonances aswell as the scattering length of the field dressedmolecule for any intensity. The -dependent
term can be evaluated in the sameway asAG andBG. It is even possible to use exactly the same description of the
polarizability as in the full-potential calculations (see sections 2 and 4): using the diagonal termof equation (7)
for σ> =x x RC C , replacing θcos2 by its approximateℓ-independentmean value 1/2, and keeping a constant
polarizability for ⩽x xC , we obtain (in reduced units)

= − +C x x12 3 48. (13)G
C00

4 4

In order to determine bound levels and resonances, the calculation is performed in two steps. First, equation (9)
is solved numerically by inward integration starting from a large value ∞x , imposing only large x boundary
conditions. For < 0, i.e., levels below threshold, this value has simply to be larger than the outer Condon
point. For ⩾ 0, ∞x is chosen in the x-domainwhere the diagonal elements of thematrix +  M reach their
asymptotic form, that is ℓ ℓ− + x[ ( 1) ]2 for > 0 and ℓ ℓ− +x x[1 ( 1) ]6 2 for = 0. One can then use
analytical solutions as initial values for the inward integration of the radial functions ℓy x( )j in each channel and

construct a set of linearly independent solutions y j with the correct asymptotic behavior. There are n such
solutions for bound levels and Siegert states. Their asymptotic behavior corresponds to either an exponentially
decreasing function or an outgoing complexwave function in a given channel and zero in all others. For ⩾ 0,
there are n2 linearly independent solutions, with an asymptotic behavior given by either a regular or an irregular
Bessel function in a given channel and zero in all others, see reference [33] for ϵ > 0 and reference [35] for ϵ = 0.

In a second step, we calculate the physical solutions zk. They are linear combinations of the particular
solutions y j previously calculated. The coefficients are determined by imposing the radial components in each
channel to vanish at the corresponding node position ℓx0 . This short range condition leads to a quantization of
energy for the bound levels and Siegert states, see appendices A.1 andA.3, respectively. It also allows to
determine the scattering length in the presence of the non-resonant field [36].

The continuous, n-fold degenerate spectrum at an energy  is described bymultichannel scattering theory
[37–39]. The chosen asymptotic boundary conditions allow for a direct determination of the energy-dependent
reactionmatrix, K( ), fromwhich the scatteringmatrix, S( ), and the time-delaymatrix, Q( ), are easily
deduced. The details are presented in appendix A. In particular, the Q matrix is well-adapted to analyze shape
resonances, by studying the energy variation of its lowest eigenvalue q ( )1 which corresponds to Lorentzian

5
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profiles, see appendix A.2 for details. The eigenvalues τtan[ ]j of the K matrix allow for determining the
eigenphase sum τ ( ). The energy variation of the derivative of the eigenphase sum yields also a profile of the
shape resonances. The resonances are alsofinally characterized by calculating the energy variation of either
population ormean value of x1 2 inside the rotational barrier, see appendix A.2 for details.

4. Shape resonances in strontium

We investigate here the shape resonances of two isotopomers of strontium, 88Sr2 and
86Sr88Sr. They have the

largest natural abundances (68% and 16%) and no nuclear spin. The s-wave scattering lengths are = −a a2S 0,
or−0.013 in reduced units, for 88Sr2 [40] and =a 97.9S a0, or 0.664 in reduced units, for

86Sr88Sr [41] (see table 1
for the scaling factors). For close to zero scattering length, quantumdefect theory predicts shape resonances
with ℓ = …4, 8, 12, i.e., for the case of 88Sr2, whereas for a large scattering length, i.e., for

86Sr88Sr, shape
resonances with ℓ = …2, 6, 10, are expected [12].We first test the validity of the asymptoticmodel by
comparing to solutions obtainedwith the full Hamiltonian (1) for 88Sr2 and then compare the behavior of the
shape resonances as a function of the non-resonant light intensity for the two isotopomers.

4.1. Validity of the asymptoticmodel: position, width and hybridization of shape resonances in 88Sr2
To test the validity of the asymptoticmodel, we solve the asymptotic Schrödinger equation (7) and compare to
results obtainedwith the full Hamiltonian (1) [17], using the ground state potential energy curve from [23],
adjusted to yield the relevant scattering length. The polarizabilities are computed from equation (2) for

> =R R 10C a0 with an atomic polarizability of α = 186.250 a0
3 [42]; for ⩽R RC the polarizabilities are taken to

be constant.Wefirst need to determine the nodal lines. To this endwe use [13]which gives the energies and
widths of shape resonances as a function of the position of a node at short range. Reversely, knowing the position
of afield-free shape resonance, it is possible tofind a node position ℓx0 (in a chosen x-interval) that yields a
resonance at this energy value. Starting from the positions of the field-free shape resonancesℓ=4, 8, 12 and 16
[17], we first test nodal lines of the type (11). Since the coefficientA in equation (11) plays aminor role, it is taken
to be constant and equal to = = −A A x( ) 8G

00
7 , the value of the ‘universal’model [13]. ℓB ( ) is taken to be a

polynomial of degree 3 in ℓ ℓ +( 1); x00 and ℓB ( ) are determined by afit to thefield-free shape resonance
positions (the degree of the polynomial is 3 tofit the 4 data points exactly). Note that this fit provides the correct
value, = −a a2 0, of thefield-free scattering length.

However, when using the ansatz (11) to determine, in addition to thefield-free positions of the shape
resonances, the slopes of their dependence on the non-resonant field, the result is disappointing: for the four
resonances the slopes are smaller by a factor of approximately 1.75 compared to those obtained from the full
Hamiltonian. This finding suggests that the contribution of the short-range part of the interactionwith the non-
resonant field (for < ℓx x0 ) is non-negligible, rendering the use offield-independent nodal lines insufficient.
Remarkably, the effect of the coupling at short range on the intensity dependence of the resonance positions can
be simply compensated, at least roughly, by introducing a scaling factor in the field intensity.

The influence of the interactionwith the non-resonant field at short range on the resonance positions can be
fully accounted for in the asymptoticmodel bymaking the nodal lines intensity-dependent, cf equation (12).
AssumingA to be constant, =A AG, as above, x00 and ℓB ( ), taken to be a polynomial of degree 4 in ℓ ℓ +( 1),
are adjusted to reproduce exactly the nodes of the field-freewave functionswith ℓ = 0, 4, 8, 12, 16. As above,
thisfit provides the correct value, = −a a2 0, of thefield-free scattering length. Additionally,C, taken to be a
polynomial of degree 3 in ℓ ℓ +( 1), is adjusted to reproduce exactly the variation of the node positions for
ℓ = 4, 8, 12, 16with intensity when  is increased from0 to 1 reduced unit. To this end, theℓ-wave function
of the rovibrational level closest to threshold is obtained numerically for = 0 and = 1, employing the
Fourier gridmethod to solve equation (1) in a single channel approximation. For = 1, the single channel
calculation represents an approximation. It is, however, well justified by the very smallℓmixing observed in a
coupled channels calculation for = 1, corresponding to =I 0.64 GW cm−2 for 88Sr2. The variation of the
node positions at thresholdwith ℓ ℓ +( 1) is shown infigure 1 for = 0. Also plotted are the node positions at
threshold of the ’universal’model, i.e., ℓ = =B B x( ) 4G

00
5 , corresponding to the same value of x00.They do not

deviatemuch from the node positions obtained from the full potential, except for largeℓ values. The node

Table 1. Scaling factors defining the reduced units, cf equation (4), for
88Sr2 and

86Sr88Sr, obtained for =C 3246.976 a.u. and α = 186.250 a0
3.

σ (a0) ϵ μ( K) β(GW cm−2)  ϵ(ns)

Sr88
2 151.053 86.3653 0.635782 88.4409

Sr Sr86 88 150.617 87.876 0.641319 86.9204
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positions in the presence of aweak non-resonant field, = 1 in reduced units, differ from those for = 0 by
only about − × −0.5 10 4 reduced units, not visible on the scale of the figure. Adding this small and simple linear
intensity dependence to the nodal lines yields spectacular agreement of the asymptoticmodel with the full
Hamiltonian. This is demonstrated by the upper panel offigure 2which compares the results of the asymptotic
model with intensity-dependent nodal lines to those of the fullHamiltonian: almost no difference is visible on
the scale of the figure. A linear intensity dependence of the nodal lines thus allows for utilizing the asymptotic
model up to very largefield intensities.

Note that all crossings between resonances or levels infigure 2 are in fact avoided crossings, and the
diabatized lines are simply labeled by the ℓ̃ value equal to thefield-freeℓ value. Figure 2 also shows the behavior
of the resonancewidth as a function offield intensity for the example of ℓ =˜ 8 (lower panel). The calculations
using the asymptotic nodal line techniquewere performedwith 11 coupled channels, but we have checked for
several values of ℓ̃ and  that the positions of the shape resonances (up to ℓ =˜ 20) do not changewhenℓmax is
increased (up to ℓ = 24max , corresponding to 13 coupled channels). The resonance positions andwidths for
ℓ =˜ 8, 12, 16 shown infigure 2 have been obtainedwith the complex energymethod, cf appendix A.3. For the
resonance ℓ̃ = 4,which is close to the top of the corresponding barrier at = 0, the complex energymethod
does not apply and resonance profiles have been determined from the smallest eigenvalue of the time-delay
matrix Q ( ), appendix A.2.

The intensity dependence of the resonance positions andwidths shown infigure 2 is related to a strong
hybridization of the rovibrationalmotion [16, 17]. The hybridization involves different aspects, which can be
analyzed fromprofile calculations, cf appendix A.2. This is shown infigure 3, illustratingℓ-mixing for the
example of the ℓ =˜ 8 resonance. The population density (per energy unit) trapped behind the centrifugal
barrier (lower panel offigure 3) is essentially always concentrated in the ℓ = 8 channel. It increases rapidly when
approaching the threshold. The crossing with the ℓ =˜ 12 resonance does not visibly affect this evolution,
whereas the crossingwith ℓ =˜ 4 involves a clear decrease of the population density in the ℓ = 8 channel (dip in
the green line near 11 GW cm−2). Note the different behavior of the percentages at short and long range. In the
short-range region the population is essentially concentrated in the ℓ = 8 channel; and the short-range
percentages converge exactly to the population percentages in the different channels of the corresponding ℓ =˜ 8
bound level at threshold (middle panel offigure 3). In contrast, the asymptotic percentages (upper panel of
figure 3) are very different from the short-range ones, with a very small contribution of the ℓ = 8 partial wave
and large contributions of partial waveswith ℓ = 0 and 2 at high intensities. The asymptotic percentages
represent the partial wave decomposition of the continuumwave function associated to the lowest eigenvalue of
the time delaymatrix Q ( ).We stress here that this wave function is, inside themultiply degenerate continuum,
the onlywave function exhibiting resonant behavior. The behavior of the asymptotic percentages would
probably be important if dynamical processes were considered.

4.2. Comparing 88Sr2 and
86Sr88Sr: intensity dependence of shape resonances inmoleculeswith small and

large scattering length
The crucial free parameter in the asymptoticmodel, and the only free parameter in the ‘universal’ asymptotic
model, is the value of the s-wave scattering length (in reduced units) which determines the node positions. It is
thus particularly instructive to compare the 88Sr2 and

86Sr88Sr dimers. Since for smallℓ the differences between
the ‘universal’ and the ‘realistic’ nodal lines are small, see figure 1, we use here ‘universal’nodal lines (12) for

Figure 1.Nodal lines for 88Sr2 in reduced units: the red line shows the variation of the node positions at thresholdwith ℓ ℓ +( 1) for
= 0, compared to the ‘universal’model corresponding to the same value of x00 (green dots). The blue squares indicate the values for

ℓ = 4, 8, 12, 16, adjusted to reproduce thefield-free positions of the corresponding shape resonances [17]. The variation from
= 0 to = 1 (in reduced units) of the nodes is too small to be visible in thisfigure.
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86Sr88Sr, with coefficients =A AG, =B BG,C=0 and the value of x00 determined by the s-wave scattering
length. In this essentially explorative work, we have also limited the number of channels to 5 (ℓmax = 8),
sufficient to study the ℓ =˜ 2 and ℓ =˜ 6 resonances.

Encouraged by the very good agreement between the asymptoticmodel and the fullHamiltonian for the
shape resonances, we calculate for both isotopomers, in addition to the shape resonances, bound levels very close
to threshold. Figure 4 displays the positions of shape resonances and bound levels for 88Sr2, whereas the
corresponding results for 86Sr88Sr are shown infigure 5. In bothfigures, we characterize each level or resonance

by a value ℓ∼, with the labeling done by continuity through avoided crossings (‘diabatic’ labeling) in two
concordingways. First, we observe how the levels appear, as the number of channels in the calculations is
enlarged; second, we analyze the channel decomposition for = 0. The intensity dependence of the resonance
and bound level positions is extremely different for 88Sr2 and

86Sr88Sr: infigure 5, new ℓ̃ values, ℓ =˜ 2 and
ℓ =˜ 6, appear, all crossings arewidely avoided and the ℓ =˜ 6 resonance crosses twice the threshold. It is worth
mentioning that the theoretical energies obtained for the field-free bound 88Sr2 levels with ℓ = 0 and ℓ = 2
(−74.64 reduced units or−134.4 MHz and−36.37 reduced units or−65.5 MHz) are in good agreement with the
experimental values of−136.7 and−66.6 MHz for the v=62, ℓ = 0 and the v=62, ℓ = 2 shape resonances,
respectively [24]. In the presence of the non-resonant field, the bound levels infigures 4 and 5 are of three types:
(i)‘pure’ bound levels which are bound also in thefield-free case; (ii) bound levels which appear when a shape
resonance is pushed below threshold as the non-resonant field intensity is increased; and (iii)‘supplementary’
bound levels, which start tangentially to the threshold, i.e., regular scattering states that become bound as the
field intensity is increased. The latter are due to a deepening of the ℓ =˜ 0 adiabatic potential as  increases. This
effect is also observed for a very strong static electric field coupling to a permanent dipolemoment [43].

Figure 6 analyzes the hybridization of a shape resonance for the example of the ℓ =˜ 6 resonance in 86Sr88Sr.
The features are similar to those shown infigure 3: in particular a drastic increase of the population density,
especially in the ℓ = 6 channel, is observedwhen the resonance comes close to the threshold. Simultaneously,
there is almost nomore contribution of the ℓ = 6 partial wave in the asymptotic behavior.

Figure 2.Upper panel: position of the shape resonances of 88Sr2 as a function of non-resonant field intensity (ℓ =˜ 4 (cyan), ℓ̃ = 8
(green), ℓ =˜ 12 (orange), ℓ̃ = 16 (red) and ℓ̃ = 20 (magenta)), obtained from the asymptoticmodel with intensity-dependent
nodal lines (solid lines) and the full Hamiltonian (dotted lines)—the results are almost indistinguishable. Lower panel: width of the
ℓ =˜ 8 shape resonance of 88Sr2 as a function of non-resonant field intensity. The dashed curve displays a 15-fold zoomof the solid
one, showing the broadening (resp. narrowing) of the ℓ =˜ 8 resonance when it crosses the ℓ =˜ 4 (resp. ℓ =˜ 12) one, as indicated
by the arrows. At threshold, also indicated by an arrow, thewidth tends to zero as expected.
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5. Conclusions

Wehave generalized an asymptotic theory of diatomic scattering andweakly boundmolecular levels [12, 13] to
account for the interaction of the diatomicwith non-resonant light through its polarizability anisotropy. Solving

Figure 3. 88Sr2: hybridization of the ℓ =˜ 8 shape resonance. The top panel shows the ‘asymptotic’ percentages in the different
channels, i.e., the square of the partial wave components of the continuumwave function associated to the lowest eigenvalue of the
time delay-matrix. The bottompanel displays the population densities (per energy unit) in the different channels which are trapped
inside the corresponding rotational barriers; and themiddle panel shows the ‘short-range’ channel percentages obtained from the
population densities presented in the bottompanel. The dotted–dashed line indicates the crossing with threshold.

Figure 4.Positions of bound levels and shape resonances as a function of non-resonant field intensity for 88Sr2, calculatedwith
realistic, -dependent, nodal lines (see text). Bound levels that are bound also in thefield-free case are drawn as solid lines, dotted–
dashed lines correspond to shape resonances which become bound at a certain intensity, and ‘supplementary’ levels, i.e., regular
scattering states that become bound, are represented by dashed lines. The colors correspond to a ‘diabatic’ labeling.
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the asymptotic Schrödinger equation by a nodal line technique has allowed us to accurately reproduce the results
of the fullHamiltonian for 88Sr2 at all intensities. The agreement demonstrates the efficiency of the asymptotic
model to predict the intensity dependence of the positions andwidths of shape resonances.Moreover, due to the
simplicity of the boundary conditions on the nodal lines, it is possible to utilizemultichannel scattering theory
andworkwith true continuum states. This allows for a detailed description of the resonance profiles which is
accurate for broad and extremely narrow resonances alike.

Figure 5.Positions of bound levels and shape resonances as a function of non-resonant field intensity for 86Sr88Sr, calculatedwith
‘universal’ intensity-independent nodal lines. Avoided crossings are here clearly visible,making it impossible tomatch colors and
labels. Diabatized curves, towhich the labeling corresponds, are drawn in black dashed lines.

Figure 6.Hybridization of the ℓ =˜ 6 shape resonance of 86Sr88Sr as a function of non-resonant field intensity, analogously to figure 3.
The dotted–dashed line indicates the crossingwith threshold.
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Thefield-free scattering length is the essential parameter that determines the field-free position of shape
resonances and also the position of the nodal lines.We have found an intensity dependence of the nodal line to
be required to accurately account for the effect of the polarizability interaction at short range.Otherwise the
slopes of the positions’ intensity dependence in the asymptoticmodel differ by a factor of about 1.75 from those
of the fullHamiltonian. A similar factor appears in a single channel approximation to the asymptoticmodel
when intensity-independent nodal lines are considered [44]. The node positions are assumed to depend
separately on energy, rotational quantumnumber and non-resonant field intensity. The channelmixing is thus
completely ignored at short range.

The variationwithfield intensity of the resonance postions is found to be linear up to rather large field
intensity. This suggests the use of perturbation theory based onfield-free properties only, i.e., a single-channel
model. A detailed discussion of such an approachwill be presented in [44].

Our current approach allows for a universal prediction of the intensity dependence of shape resonances in
arbitrary diatomicmolecules, based solely on their scattering length,C6 coefficient and reducedmass, and on the
polarizability of the constituent atoms, without knowledge of the full interaction potential. This is important for
utilizing non-resonant light control inmolecule formation via photoassociation [17] or Feshbach resonances
[18] as it allows to predict the required intensities. In addition to tuning the position andwidth of shape or
Feshbach resonances, non-resonant light control can also be employed to change the background scattering
length. This will be studied in detail elsewhere [36].
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AppendixA. Computational details

In the followingwe present the computational details of the nodal line technique applied to the asymptotic
model for diatomics in a non-resonant field for the tasks of determining the energy andwave function of bound
levels below the field shifted dissociation limit, and the energy profile and properties of shape resonances. All
numerical calculations were performed usingMATHEMATICA.

A.1. Bound levels
For a given value of energy, = − k2, n linearly-independent solutions y j are obtained by inward integration.

Each solution j is related to a specific channel ℓ = −j2( 1)j by imposing ℓy x( )j to behave asymptotically as

∝ −ℓy x kx( ) exp( )j in theℓj channel and zero in all others. The physical solution z is a linear combination,

∑=
=

az y , (A1)
j

n

j
j

1

where the radial component in each channelℓmust vanish on the corresponding nodal line ℓx0 . The resulting
linear systemof n equations with n unknown variables aj has a non-trivial solution if and only if

= =ℓ ℓ( ) ( )( )D y xdet 0, (A2)j
bound 0

where Mdet( ) is the determinant of thematrix M. Equation (A2) is solved either by iteration on the energy  or
by interpolation of D ( )bound on a set of  -values and finding the corresponding zeros, bound. Solution of the

linear systemof the n equations ∑ =ℓ ℓ= a y x( ) 0j
n

j
j

1 0 corresponding to the nℓ-values at an energy bound yields

the coefficients aj and thus the bound state wave functions of the variousℓ-channels. The coupledwave function
z at the energy bound is normalized to one, such that hybridization can bemeasured by theweights

∫ϖ = ∑ℓ ℓℓ

∞ a y x x( ) [ ( )] d
x

x

j j
j

bound
2

0
.
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A.2. Resonance profiles
To analyze the profiles of shape resonances in the n-fold degenerate continuous spectrum,we usemultichannel
scattering theory [37, 38]. For each energy  , = > k 02 , we calculate n2 particular, linearly-independent,
energy-normalized solutions of the Schrödinger equation (9) by inward integration. The initial conditions are
taken at large distance ∞x , where the centrifugal term x1 2 prevails. For each channelℓj (where again
ℓ = −j2( 1)j ), we determine two particular solutions, denoted by xj ( )j and xy ( )j , respectively, by imposing as

asymptotic behavior in this channel either a regular π ℓ+k x J kx( ) 2 ( )1 2 or an irregular π ℓ+k x Y kx( ) 2 ( )1 2

energy-normalized Bessel function and zero in all other channels. The physical solutions of equation (9) are n
linear combinations of the n2 calculated particular solutionswhich vanish on the nodal lines in each channel.
Among all the possible sets of n particular combinations, we choose the ‘standard’ ones, z j, which asymptotically
contain a regular component in the channelℓj only

∑ δ= +
′=

′
′

′
′x x xz j K y( ) ( ) ( ) , (A3)j

j

n

j j
j

j
j j

1

,
⎡⎣ ⎤⎦

where K is the so-called reactionmatrix [37, 38]. Introducing two n × nmatrices

=
ℓ ℓ ℓ( ) j x aM ( ), (A4 )
j j

reg 0

=
ℓ ℓ ℓ( ) y x bM ( ), (A4 )
j j

irreg 0

the conditions that thewave functions vanish on the nodal lines allowus to determine the ‐K and ‐S matrices
[37, 38]

= −
−( )K M M· , (A5)irreg

1
reg

= + − −ı ıS 1 K 1 K( ) · ( ) . (A6)1

The existence and properties of a shape resonance can be determined by several differentmethods. An example
of four different profiles that we have obtained in two particular cases (86Sr88Sr, ℓ =˜ 2, at afield intensity = 5
reduced units and 88Sr2, ℓ =˜ 8, at afield intensity = 6.5 reduced units) is displayed in figure A1.

Themost suitablemethod for characterizing resonances is surely to study the time-delaymatrix Q( )
[38, 39], which is related to the scatteringmatrix S by

= − ı
S

Q S ·
d

d
. (A7)†

When a narrow and isolated resonance shape resonance is present, the energy dependence of the lowest
eigenvalue of Q, q ( )1 exhibits a Lorentzian profile

γ

γ
∼ −

− +


  ( )( )
q ( ) , (A8)r

r r

1 2 1

2

2

where r is the resonance energy and γr its FWHM.Thewavepacket associated to the corresponding eigenvector
is resonantly delayed during its scattering by the attractive potential. Thismethod can be extended to the analysis
of overlapping resonances [47].

The lifetime  ϵ=T t of the resonance (in SI units) is calculated from the reduced lifetime γ=t 1 r and the
reduced unit of time  ϵ. The channel-mixing of the resonance can be characterized by the eigenvector
corresponding to q ( )r1 , which gives the partial wave decomposition of the continuumwave function (one
among the nwave functions of the ‐n multiple continuum)which concentrates the resonant character of the
scattering at this intensity value.

The secondmethod consists in diagonalizing the K-matrix, with eigenvalues πτtan( )j . The corresponding

eigenvectors can be used to construct the so-called ‘eigenchannel wave functions’, u j, wich have the same
asymptotic behavior, πτ∝ +ℓ ℓ+ +u x J kx Y kx( ) ( ) tan( ) ( )j

j1 2 1 2 , in all channels. The τ j are called the eigenphase
shifts. The total eigenphase shift

∑τ τ=
=

( ) , (A9)
j

n

j

1

increases by πwhen  passes through the resonance energy. The derivative with respect to the energy of the total
eigenphase shift, τ′ ( ), exhibits a resonance profile, since it is related to the trace of the Q matrix by

τ= ′ QTr [ ( )] 2 ( ).
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It isfinally possible to characterize the profile of a shape resonance from the radial components ℓv x( )j of any
orthonormalized set of continuumwave functions. In practice, we have used energy-normalizedwave functions
associated to eigenvalues of thematrix K K·T . Introduction of the transposedmatrix KT allows one to
eliminate numerical problems related to small asymmetries of thematrix K . In addition, the scalar product of
the standard functions z j defined in equation (A3) is equal to + K K·T . Since a shape resonance is a
metastable state inwhich two atoms are temporally kept close to each other, a resonance profile is also expected
for the density (per energy unit) inside the barrier and for the expectation value of the x1 2. Precisely we calculate
the following integrals

∫∑ ∑=
ℓ

ℓ

= = ℓ

ℓ ( )
I

z x

x
xd . (A10)p

j

n n

x

x
j

p
1 1

2

0

max
⎡⎣ ⎤⎦

With either p=0 or p=2; ℓxmax is a very large value for p=2; for p=0, it is the position of the top of the
centrifugal barrier ℓ ℓ= +ℓ −x [ ( 1) 3]top

1 4 for ℓ > 0 and it is taken as ℓ=x top
2 for ℓ = 0.

As shown infigure A1, the four calculated profiles, q ( )1 , τ′ ( ), I ( )2 and I ( )0 , exhibit similar shape,
especially for narrow resonances. In the latter case, the profiles q ( )1 are perfectly given by equation (A8).

A.3. Resonances via the complex energymethod
Shape resonances with largeℓ are very narrow, even for lowfield intensity. This is due to the presence of the
broad and high potential barrier. Resonances lying very close to the field-shifted dissociation limit also have a
very small width. It is quite difficult to detect narrow resonances and to calculate their characteristics from an
analysis of the resonance profiles as described in appendix A.2. As an alternative, we therefore calculate the
resonances as Siegert states with complex energy γ= −  ı 2S where the real and imaginary part are related to

Figure A1.Comparison of four differentmethods allowing to characterize a shape resonance, in two particular cases: in the left
column, a very broad resonance, ℓ =˜ 2 of 86Sr88Sr, at a field intensity = 5 reduced units (calculatedwith 5 coupled channels), in the
right one, a narrow resonance, ℓ =˜ 8 of 88Sr2, at a field intensity = 6.5 reduced units (calculated with 11 channels). In each column
are represented, from top to bottom, the energy variations of: the derivativewith respect to energy τ′ ( )of the sumof the eigenphases
of theK-matrix, the total population density I ( )0 trapped behind the centrifugal barriers, themean value I ( )2 of the operator x1 2

and the eigenvalues q ( )i of the delay-matrix. One notices that all eigenvalues are zero (or positive) except the lowest one (in red),
which exhibits a negative Lorentzian profile (indicating a positive time delay for the scattering). For a narrow resonance (right
column) all profiles are quite similar. For a broad resonance (left column) the differentmethods yield slightly different profiles.
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the resonance energy andwidth [45, 46]. Siegert states are described by a complexwave function z whose
asymptotic behavior corresponds to an outgoingwave in each channel.

To determine the Siegert states, we proceed similarly as for bound levels, cf appendix A.1.Wefirst determine
n linearly-independent particular complex solutions y j of equation (9). Changing  into = kS

2 results in a
complex k-value. Inward integration, imposing an outgoingwave asymptotically in theℓj channel and zero in all
others yields the y j. The outgoingwave is written as a combination of the regular and irregular Bessel functions,

π− +ℓ
ℓ ℓ

+
+ +x J kx ıY kx( 1) 2 ( ) ( )( 1) 2

1 2 1 2
⎡⎣ ⎤⎦. The physical Siegert wave function, obtained as a linear

combination of the y j solutions, has to satisfy the boundary condition at small x, i.e., the radial components in
all channels have to vanish on the corresponding nodal line ℓx0 , calculated at the energyRe ( )S . These
conditions are equivalent to a vanishing determinant D ( )Ssiegert of the radialℓ-components of the n particular

solutions ℓy x( )j at the node positions. This condition quantifies the resonance energy to the value
γ= −  ı 2S r r r, .
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