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Abstract

Non-resonant light interacting with diatomics via the polarizability anisotropy couples different
rotational states and may lead to strong hybridization of the motion. The modification of shape
resonances and low-energy scattering states due to this interaction can be fully captured by an
asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J.
Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic
multi-channel description are found to be approximately linear in the field intensity up to fairly large
intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of
such resonances by the non-resonant field. The multi-channel results furthermore indicate the
dependence on field intensity to present, at least approximately, universal characteristics. Here we
combine the nodal line technique to solve the asymptotic Schrodinger equation with perturbation
theory. Comparing our single channel results to those obtained with the full interaction potential, we
find nodal lines depending only on the field-free scattering length of the diatom to yield an
approximate but universal description of the field-dressed molecule, confirming universal behavior.

1. Introduction

Quantum collisions at low energy depend on the long-range properties of the interaction between the particles
only and therefore exhibit universal behavior. Since, at long range, the dependence of the interaction on
interparticle distance has a power-law form and it is often sufficient to account only for the highest order term of
the interaction, low-energy collisions can be well described by simple models with very few free parameters. This
is at the core of multi-channel quantum defect theory [1-8]. Universality becomes particularly transparent when
introducing units which absorb all molecule-specific parameters [9]. The corresponding Schrodinger equation
can be solved by the so-called nodal line technique [ 10-12]. It consists in accounting for all short-range physics
by the choice of the node positions of the scattering wavefunction at intermediate interparticle distances. This
formalism has been extended to shape resonances [13] and to the control of shape resonances by non-resonant
light which couples the different partial £-waves via the polarizability anisotropy [14]. In particular, we have
previously shown that an intensity-dependent nodal line is sufficient to account for the effect of the coupling to
the non-resonant light at short-range. An asymptotic multi-channel model can thus predict the resonance
structure, energy, width and hybridization as a function of non-resonant light intensity. This is important since
non-resonant light control has been suggested to enhance photoassociation rates [15, 16], modify Feshbach
resonances [17] and manipulate molecular levels [16, 18].
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While a multi-channel treatment is essential to describe the strong hybridization of the rovibrational motion
due to the coupling with the non-resonant light [15, 16], the position and width of the resonance are found to
vary linearly with field intensity up to fairly large intensities [ 14]. When treating the interaction with the non-
resonant light as a perturbation and truncating the perturbation expansion at the first order, resonance position
and width are determined by the field-free wavefunctions. The field-free wavefunctions reside in a single partial
wave (channel) and, within the asymptotic approximation, depend on only one parameter—the s-wave
scattering length. This indicates universality of the intensity dependence of resonance positions and widths in
non-resonant light control. It furthermore suggests that a single-channel approach should be sufficient to study
non-resonant light control at moderate intensities.

Here we combine the asymptotic model for shape resonance control with non-resonant light developed in a
preceding paper [ 14] with perturbation theory to explore the universality of the resonance’s intensity
dependence. This allows us to recast the multi-channel approach of [14] in a single channel approximation. We
compare the perturbative results to those obtained in [ 14] with a multi-channel description, by solving the
Schrodinger equation for the diatom interacting with non-resonant light both with the full potential and the
asymptotic approximation.

The paper is organized as follows: we briefly review the asymptotic model for a diatomic interacting with
non-resonant light via the polarizability anisotropy introduced in [14], hereafter referred to as paper I, in
section 2. We summarize the behavior of shape resonances in non-resonant light observed by solving the multi-
channel Schrodinger equation and present an approximate general law for describing the intensity dependence
when analyzing the resonances in reduced units of length and energy in section 3. We then show in section 4 how
perturbation theory, either using energy-normalized continuum states (section 4.1) or a discretized continuum
(section 4.2), is applied to determine the slopes of the intensity dependence of position and width of the field-
dressed shape resonances at vanishing intensity. This allows us to explain the rule observed for the specific
example of strontium dimers considered in paper 1. Then, section 5.1 describes systematic single-channel
calculations that allow for predicting the position and width of shape resonances without a non-resonant field.
These results are used in section 5.2 to deduce the slope of the energy shifts of a shape resonance in the limit of
vanishing intensity for any angular momentum Z, in any diatomic system. We conclude in section 6.

2. Asymptotic model for a diatom in a non-resonant optical field

In this section, we summarize the theoretical framework for studying the interaction of a diatom with non-
resonant light. A detailed derivation of the asymptotic model is found in [14]. The rovibrational Hamiltonian of
an atom pair, with reduced mass y, interacting with a non-resonant laser field of intensity I, linearly polarized
along the space-fixed Z axis, is written in the molecule-fixed frame as [18]

r 27l
H=Tqi+—— + V(R) - == (Aa(R)cos’ 0 + ar (R)). (1)
2uR? c

Here, R denotes interatomic separation and V,(R) the interaction potential in the electronic ground state. Ty
and I2/2uR? are the vibrational and rotational kinetic energies. In the last term of equation (1), cis the speed of
light and 0 the polar angle between the molecular axis and the laser polarization. The molecular polarizability
tensor is characterized by its perpendicular and parallel components with respect to the molecular axis a; (R)
and ¢ (R), and the polarizability anisotropy is Aa (R) = ¢ (R) — a, (R). Hamiltonian (1) is valid for any
diatomic molecule in its electronic ground state [ 18, 19]. The non-resonant field introduces a mixing of different
partial waves £ of the same parity (channels), whereas the magnetic quantum number m is conserved. For the
sake of simplicity, this study is restricted to states with 1 = 0 for which the largest effect of the non-resonant field
is observed. The corresponding multi-channel Schrédinger equation can be solved numerically, for m =0, as
describedin [16].

Atsufficiently large distance, R > R,gm = /C3/Cg, the potential reduces to the asymptotic van der Waals
interaction V, (R) ~ —Cs/R® (C, are the coefficients of the multipolar expansion). For R > R; = (4 )",
where a3, a; denote the polarizabilities of the two atoms, the interaction with the field reduces to

2xl 2
Hyy = —i[(a1+a2) + a1a2(3 cos? 6 — 1)] (2)
R3
Introducing a dimensionless reduced length x, R = ox, areduced energy &, E — Ey = ¢ £ (defined with respect
to the field shifted dissociation limit E, = —27” (a1 + ay)I),and areduced laser field intensity 7, I = § T,and

replacing all R-dependent terms by their leading order contributions, an asymptotic Schrodinger equation is
obtained,
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Table 1. Scaling factors, equations (4), for 883y, and 2°Sr®8Sr, obtained
for Cs = 3246.97 a.u.and ag = 186.25 aj, and for '*Cs,

(Ce = 6851.0 a.u., ap = 402.20 ag) and ¥ Rb, (Cs = 4707.0 a.u.,

ag = 309.98 a3); a.u. denotes the atomic units and a, the Bohr radius.

o (ag) € (uK) B(GW cm™) 7 (ns)
8gr, 151.053 86.3653 0.635 782 88.4409
86588y 150.617 87.876 0.641 319 86.9204
133Cs, 201.843 31.99 0.120 48 238.7
87Rb, 165.250 72.99 0.258 44 104.5

Table 2. Characteristic internuclear distances for *Sr, interacting with non-resonant light in atomic units (R, first line)
and reduced units (x, second line), see equations (4) and table 1 for the definition of the reduced units. R,, denotes the
position of the repulsive wall of V, R, its equilibrium distance. The validity of the asymptotic model with respect to the
interaction with the non-resonant field is characterized by R; = (4a@,)"/® and Rc > R, [14] and by

Ragym = 4/ Cs/Cs concerning Vg. Roz, Ry and Ry, indicate (for £ = 2...20) the range of the node position, cf

equation (6), the inner limit and the top of the rotational barrier, respectively (see figure 4 in [13]).

Rw Re Rd RC Rasym Rof Rb Rtop
au. 7.5 8.5 7.3 10 11 24...26 97...33 127...44
red.u. 0.050 0.056 0.048 0.066 0.073 0.16...0.17 0.64...0.22 0.84...0.29

2 2 29 _
d 1 r Icos 0—-1/3 _¢
dx?  x° x? x3

:|f(x’ 0, (ﬂ) =0. (3)

where ¢ denotes the azimuthal angle around the molecular axis. The unit conversion factors are given by

_(2uCe ) o _ coe
o= e , €=—0f S

- T >
12ron s

(4)
2uc
and the conversion factor for time is obtained from that for energy, 7 = /%/e. The corresponding conversion
factors are collected in table 1 for some example diatomics.

For each partial wave £, the wave function is expanded in terms of spherical harmonics Yz ;= (6, @)

ff (x, 0, @) = Y (x) Ysm=0 0, 9), (5)

and equation (3) is solved in the asymptotic x-domain, imposing to the radial function physical boundary
condition atlong range and a node at xos > Xasym = Rasym /0 > x4 = R;/0,a position separating inner zone
and asymptotic outer region, see [14] for details. Table 2 lists the values of Rysym, Rgand other characteristic
internuclear distances for the example of **Sr,. The effects of potential V,(R), centrifugal energy and
polarizability in the inner zone can satisfactorily be accounted for by introducing energy-, angular-momentum-
and intensity-dependent nodal lines x¢, [13, 14],

Xor = X0+ Ae+ BE(Z + 1) + CL. (6)

When the constants A, Band C can be deduced from exact calculations using the Hamiltonian (1) or from
experiment, the nodal line technique applied to the asymptotic model fully reproduces the results obtained

with (1), cffigure 2 of [14]. When this is not possible, analytical values for A% BY[13] and C°[14] which depend
on Xy, i.€., on the s-wave scattering length, allow for an approximate, universal description of shape resonances,
very similar to the asymptotic model developed by Gao for field-free resonances [20].

3. Heuristic scaling rule

We present and discuss in this section results obtained by solving the Schrédinger equation with the exact
Hamiltonian (1), using the discrete variable representation (DVR) as described in [16]. Specifically, we consider
the shape resonances with field-free # = 4, 8, 12, 16 for**Sr, [16],# = 5, 9for '*>Cs,,and # = 2 for *Rb,.
In paper I [14], alinear dependence of the resonance position versus field intensity was found for the two
considered isotopes **Sr, and **Sr**Sr up to very large values of the intensity [ 14]. The use of reduced units (see
table 1) allows us to extract from these results a general trend for the intensity dependence of the resonance
position, valid also for different # values and different species.

To this end, we introduce ‘#-reduced’ energy shifts or slopes. These are the energy shifts or slopes, in reduced
units, divided by Z (£ + 1). More precisely, for a field-dressed shape resonance adiabatically correlated to a
field-free resonance in the partial wave #, which occurs at the reduced energy £7 (I) for a non-resonant field of

3
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Figure 1. Intensity dependence of the ‘“-reduced’ energy shift 6€/[£ (£ + 1)], 6 = € f (i) - & f (0), i.e., the shift of the resonance
position from its field free value, divided by # (£ + 1). Shown are results obtained with the exact Hamiltonian (1), converted to
reduced units, for 88Srz (red, # = 4:fullline; £ = 8:dotted line; # = 12: dashed line; # = 16: dotted—dashed line), 133C52 (blue,

¢ = 5:fullline; # = 9: dotted line) and *Rb, (green, £ = 2:fullline.

reduced intensity Z, the ‘#-reduced’ energy shift is equal to /[ (£ + 1), where 6 = £/ (I) — £7(0)
denotes the shift of the resonance from its field-free position (here, as everywhere else in the paper, the position
of a shape resonance is taken with respect to the field shifted dissociation limit). Analogously, we call the
quantity E/[I¢ (£ + 1)]‘¢-reduced’ slope. The intensity dependence of the ‘#-reduced’ energy shifts is
reported in figure 1 for the resonances in strontium, rubidium and cesium mentioned above. Except for the

¢ = 2 resonance in *’Rb,, an almost linear behavior is observed up to high intensity. Moreover, in the limit of
vanishing field all slopes are nearly equal.

Before presenting a calculation of the slopes to first order of perturbation in section 4, we give here a simple
qualitative argument, based on perturbation theory, to justify the approximate proportionality to # (£ + 1) of
the slope of the resonance position’s intensity-dependence at vanishing intensity. The asymptotic interaction
with the field, given in reduced units by

hine = =1 /3 (cos2 0 — 1/3), (7)

can be treated as a perturbation and therefore, to first order, in a single-channel approach. One has thus to
calculate the matrix element of h;,, with the (single-channel) field-free wave functions f ; =0(x, 0, @) (see
equation (A.7) in appendix),

(£, 0, )| im

1} 0, 9))

= —Ta(0) f°° [T (8)
with m=0and
(&) 20(€ + 1) 9)

- 320 +3)2¢-1)°

An integral similar to the one in equation (8) occurs in the expectation value of R~ for field-free wave functions
obtained with the exact Hamiltonian (1), when x, is replaced by R = 0. It is important to note that, for £ > 2,
the angular factor a (¢) is nearly independent of # and approximately equal to 1/6. The #-dependence of the
matrix element, equation (8), thus necessary arises from the radial part, i.e., the expectation value of x~3 for the
field free wave functions.

The field-free resonance positions result from the competition between the van der Waals and centrifugal
interactions at intermediate distance, where the amplitude of the resonance wave function is very large.
Intermediate distances are already in the asymptotic zone, but well before the location x, of the potential barrier,
Le., Xasym < Xor < % < x¢. Here Xoqym = Rogym /o and x, = [£ (£ + 1) ]71/4 denotes the location of the inner
limit of the rotational barrier, i.e., it is the value of x;, = R;/o in table 2 for the considered #. At this point the
centrifugal and van der Waals interactions exactly balance each other out. The amplitude of the s-wave (£ = 0)
radial wave function, yfl:oo (x), is never resonant and thus always rather small in this x-range. Close to threshold,
the van der Waals interaction prevails. Treating the rotational kinetic energy as a first order perturbation
introduces a resonant correction proportional to # (£ + 1) in the £-wave radial wavefunction of the field-free
molecule. At intermediate distance yfI: 00 (x) ~ yf:oo (x) + £(Z + 1)z (x). When evaluating the integral in

equation (8), the zeroth order contribution is small, and in the first order, only the cross term yfjoo (x)x73 z (x)

contributes significantly. As the energy varies, resonant behavior might appear, with a maximum of the radial

4
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Table 3. Position and width of the %8Sr, field-free shape resonances with £ = 4, 8, 12 and 16, both in reduced and SI units, as calculated in
[14] in a multi-channel asymptotic model with the nodal line technique.

=4 =38 =12 ¢ =16
Position (red. units) 33.26 139.3 247.2 253.5
Position (mK) 2.872 12.03 21.35 21.89
Width (red. units) 11.48 0.9159 2.141 x 1073 8.778 x 10712
Width (uK) 991.3 79.11 0.018 49 7.582 x 10710

integral and therefore an energy shift with respect to the field-shifted dissociation limit approximately
proportionalto T a (£) £ (£ + 1),i.e., proportional to IZ (¢ + 1).

For non-zero non-resonant light, this result remains valid only as long as the interaction with the light can be
considered as a pertubation compared to the centrifugal interaction, i.e.,for T <« 6 £ (£ + 1)xgs,in the x-
domain mainly contributing to the integral, i.e., for xo, < x < x,. Therefore, for a given intensity 7, the
deviation of the reduced energy shift from the approximate universal law is larger for smaller #-values.

The observation of an approximately universal intensity-dependence of the reduced energy shifts can be
equivalently formulated as follows: In order to shift the position of two shape resonances with field-free
rotational quantum numbers #; and £, in two molecules, 1 and 2, by the same amount, the reduced laser
intensities 7; and 7, must be related as

L4(4+ 1) » Lity(4 +1). (10)

We emphasize that this rule provides only the approximate slope of the energy variationat T — 0. To obtain the
energy variation itself, one also has to know the field-free reduced energy of the shape resonance, i.e., the s-wave
scattering length [13,21].

4. Slopes at vanishing intensity from perturbation theory

Since the intensity dependence of the shape resonance positions appears to be linear up to large values of the field
intensity, it is interesting to study the behavior at very low intensity and calculate the slopes at Z = 0. This
procedure requires only free-field calculations, that is a single-channel model. In principle, the perturbation
theory has here to be applied to a continuous spectrum. We discuss the example of the **Sr, shape resonances
with field-free # = 4, 8, 12, 16, whose positions and widths are recalled in table 3. We present results
obtained by the single-channel nodal line technique, with a detailed description of the resonance profiles, and
compare them to those obtained by solving the Schrodinger equation with Hamiltonian (1), using a
discretization of the scattering continuum.

4.1. Single-channel nodal line technique

The description of the pertubation of a shape resonance by a weak interaction takes a rather simple form in the
nodal line formalism. It is described in appendix, with no particular shape of the potentials involved in the zero
and first order expressions. In the case of interest here, the unperturbed asymptotic Schrédinger equation for the
radial wave function of wave £ reads, in reduced units,

& 1L+ o
Rt IO “”

where we have omitted, compared to equation (5), the index £ of the radial function y(x) for simplicity. The
superscript denotes the order of perturbation theory. The perturbation is given by

a(?)

hine = Iv (x) = —I—
X

. (12)

Let us recall that in the nodal line formalism (see section III B of paper I [14]), equation (11) is only solved in the
asymptotic x domain, x > x, (here also the index £ is omitted for simplicity). The interactions in the inner zone
(potential, rotational kinetic energy) in the zeroth order Hamiltonian are accounted for by the choice of the
node position, equation (6). In the perturbative treatment of the interaction with the non-resonant field,
contributions to first order coming from the inner zone have thus to be accounted for separately.

In a first step, we ignore the variation of the node position to treat the problem in the outer zone. The
reduced slopes of position and width of the resonance can be obtained by calculating the perturbation of the
energy profile of the phaseshift characterizing the resonance structure (see appendix A 2 of paper I [14]). This
perturbation, written in the Born approximation [22], cfequation (A.8), is equal to %Aéout (&) = —rnJyu (E)

5
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Table 4. Reduced slopes (i.e., slopes in reduced units, divided by (¢ + 1)) of the reso-
nance position’s intensity dependence for *Sr, and # = 4, 8, 12 and 16 from different
approaches. The first four lines are obtained with the single-channel perturbative
approach described in appendix: lines 1 and 3: including only the asymptotic outer part of
the perturbation, equation (13). Lines 2 and 4: taking also the inner part through the inten-
sity-dependence of the node position, equation (14), into account. The first two lines are
obtained by fitting the derivative of the phase shift with respect to T to equation (A.6). The
following two lines (marked by a star) correspond to the simplified formula,

equation (A.9), which ignores the intensity dependence of the width. The fifth line results
from a calculation similar to those reported in paper I [14], i.e., using an asymptotic sin-
gle-channel model with 7-dependent nodal lines. The last line lists the slopes of the node
position’s intensity-dependence used in paper I [14]; they are required to obtain the
reduced slopes in lines 2 and 4.

=4 =38 ¢=12 £ =16
Outer —-0.0791 —-0.0710 —0.0602 —
Outer+inner -0.0931 —-0.101 —-0.100 —
Outer* -0.114 -0.0713 —0.0602 —0.0521
Outer+inner* -0.137 —0.101 —0.100 —-0.102
Calccf1 —0.0941 —0.101 —0.100 —0.0954
dxo/dT 4.417 1073 4.525 x107° 4.873 x107° 5.497 x1075

Table 5. Same as table 4 but for the width instead of the position of the
resonances (lines 3 and 4 are omitted since the simplified formula,
equation (A.9), does not give any information on the intensity dependence
of the width). The resonance with £ = 16 is so extremely narrow that the
intensity-dependence of its width cannot be obtained.

‘=4 =8 =12 =16
Outer —1.44 —-0.213 —0.000 089 1 —
Outer + inner -1.88 —-0.324 —0.000 156 —
CalccfI -1.69 -0.329 —0.000 160 —
with
1d
Jout (€) = _;d_IAaout(g)
© ] ) 2
=—a(®) [~ 5[y [ax (13)
X0 X

where Ky (x) = y9 (x) is the field-free energy-normalized physical regular radial function (F(x,) = 0).
Assuming a Lorentzian shape of the derivative of the phaseshift with respect to energy, one obtains for this
derivative in equation (13) the right-hand side of equation (A.6). A simple fit procedure thus yields the slopes at
1 = 0 of both position and width of the resonance (cf first line of tables 4 and 5), except for the extremely narrow
resonance with £ = 16, for which the slopes cannot be obtained. The simplified formula of equation (A.9) gives
roughly the same result for the slope of the position as the fitting procedure (compare first and third lines of
table 4), except for the broadest resonance (£ = 4).

The nodal line formalism allows us to also account for the modifications due to the internal part of the non-
resonant field perturbation which changes the node position x,. One can calculate the displacement of the node
positions with the complete Hamiltonian (see paper I [14]): for instance, the slopes % of the intensity
dependence of the node positions at T = 0 are listed in the last line of table 4 for # = 4, 8, 12, 16in 88gr,. If
no reliable data are available for the full potential, it is possible to use a ‘universal’ value for these slopes (see
equation (19) below). We show in the appendix that a simple relationship, equation (A.12), exists between the
intensity dependence of the node position and the corresponding modification of the slope of the intensity
dependence of the phaseshift %Aéin (&) = =T (E), corresponding to the contribution of the inner zone, with

1d dxg 1

(&) = ———A6,(E) = ————.
Iin (&) ndI ) dT 7% Gy(xp)? (14)

Here Gy (x;) is the value at x, of the energy-normalized irregular solution of the Schrédinger equation, which is
orthogonal to the physical regular one, F (x) = y*)(x), which has a node at x,. Adding this quantity to the one
coming from equation (13) and repeating the above fitting procedure for the sum yields the total slopes of both
position and width of the resonance (see the second line in table 4 and table 5). The agreement with the slopes
calculated with the full potential is excellent (compare lines 2, 4 and 5 of table 4, and lines 2 and 3 of table 5).
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Table 6. Reduced slopes (i.e., slopes in reduced units, divided by £ (£ + 1)) of the
resonance position’s intensity dependence for **Sr, and two different sizes Rppqx of
the discretization box, computed with Hamiltonian (1) anda DVR (lines 1 and 2)
compared to perturbation theory (PT) using the full potential (lines 3 to 6). PT can
employ additionally the asymptotic approximation for the interaction term,
equation (16) (lines 3 and 4), or treat the full interaction with the non-resonant
light, equation (15) (lines 5 and 6). For the narrow resonances #= 12 and 16, the
reduced slopes are evaluated from a single L*-normalized wave function, whereas
for the broad resonances, an integration over the Lorentzian resonance profile is
carried out (see text for details). These reduced slopes are to be compared to those
reported in table 4.

Rinax (a9) £=4 £=38 £=12 £ =16
Non-PT 1x 10° —0.1026 —0.1029 —0.1013 —0.0952
Non-PT 2% 10° —0.1010 —0.1030 -0.1017 —0.0952
PT (x7%) 1x10° —0.107 —0.0856 —0.0900 —0.0827
PT (x~%) 2% 10° —0.105 —0.0854 —0.0904 —0.0827
Full PT 1% 10° -0.111 —0.0933 —0.1011 —0.0952
Full PT 2% 10° —0.109 —0.0931 —0.1017 —0.0952

4.2. Full potential calculations and discretized continuum

Our calculations of the resonance positions with the full potential employ a DVR [16]. This implies that the
continuum spectrum is discretized in a finite box of size R, and represented by means of L?-normalized wave
functions with energies E,, > 0. Energy-normalized discretized continuum wavefunctions are obtained by
multiplication with 1 / JE, — E,—1. When considering the full Hamiltonian (1), a resonance for partial wave £ is
identified in the discretized spectrum by plotting the rotational constant {%2/(2uR?) ) for the £-component of
the coupled channels wavefunction as a function of energy. Very narrow resonances, such as those with £ = 12
or = 16 in *Sr,, cftable 3, appear as 5-functions at the corresponding resonance energy, independent of the
size of the box Ry, For the other two ®®Sr, resonances considered here, with # = 4 and # = 8, the widths are
broader. The resonances are thus described by more than one eigenvalue of the discretized spectrum. The
resonance position is then obtained by fitting the rotational constants, computed using energy-normalized wave
functions [23, 24], to a Lorentzian profile. Once resonance positions are obtained, their intensity-dependence
can be fitted to a line in the weak field regime. The corresponding slopes, divided by £ (£ + 1) are presented in
table 6 (lines 1 and 2). Their weak dependence on the size of the box indicates the accuracy of our continuum
discretization.

Analogously to the previous subsection, we treat the interaction with the non-resonantlight, i.e., the last
term in the full Hamiltonian (1), as a perturbation to the field-free Hamiltonian. This is motivated by the
approximately linear dependence of the resonance positions on field intensity up to fairly large intensity. We
distinguish between narrow and broad resonances. For a narrow resonance, which is associated to a single
discretized energy, time-independent perturbation theory provides the following first-order correction to the
resonance energy [25, 26]

A = =22 (s las (1) = (e + )

(15)

+ (Ve 18a(R®)| . ) 5 T0r T

207 + 26 - 1 ]

where y, , is the field-free L*-normalized wave function of the resonance. When using additionally the
asymptotic approximation for the interaction Hamiltonian at sufficiently large distance, equation (2), the first-
order correction to the energy shift with respect to the field-dressed dissociation limit, Ey = —2zZ(a; + a,)/c,
becomes (in reduced units)

A& = =T (s K7 w0 ) (0, (16)

where a (¢) is given in equation (9). Equation (16) is equivalent to equation (8). Equations (15) and (16) provide
an approximation to the slopes of the intensity dependence of the resonance positions, valid within the limits of
aweak perturbation and for a narrow resonance.

For broad resonances, equations (15) and (16) can also be used. However, the complete profile of the matrix
element of the perturbation needs to be evaluated. To this end, energy-normalized wave functions have to be
considered. In our example of **Sr,, the resonance profiles are made up by about 40 energies for # = 4 and 5 for
¢ = 8. We decompose the energy dependence of the matrix elements into a Lorentzian plus a slowly varying
background. This is important in particular for the resonance # = 4, which is very broad such that it extends
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down to the threshold (see table 3). The final mean value of the perturbation is determined by integrating the
matrix elements, equations (15) and (16), over the Lorentzian.

For both broad and narrow resonances, the values obtained with perturbation theory are reported in table 6
for two different sizes of the discretization box, where equation (16) was employed in lines 3 and 4 and
equation (15) in lines 5 and 6, together with the results from multi-channel calculations with the full
Hamiltonian (1) (lines 1 and 2). The results are converged with respect to the continuum discretization since the
differences between the two sizes of the box are very small, below 2%, for all £ values and all treatments. For the
non-perturbative multi-channel calculations, the excellent agreement between the asymptotic model (with the
reduced slopes reported in line 5 of table 4) and the full Hamiltonian (lines 1 and 2 of table 6) found in [14] is
confirmed: the values differ by less than 2%, except for £ = 4, where the difference is of the order of 10%. This
observation for # = 4 is most likely due to the different choice of profile used in the analysis—the lowest
eigenvalue of the delay matrix in the nodal line method as opposed to the rotational constant, i.e., the mean value
of R72, in the full potential calculations. For broad resonances these two profiles are known to be rather different
[13]. The otherwise good agreement allows to assess the accuracy of the perturbation theory treatment, in
particular in form of the single-channel nodal line technique, when using intensity-dependent nodal lines.

For the narrow resonances, with £ = 12 and £ = 16, the reduced slopes obtained within perturbation
theory using the full interaction with the non-resonant light, cf equation (15) and lines 5 and 6 of table 6, are very
close to the multi-channel calculations (lines 1 and 2 of table 6), deviating by at most 2%. A somewhat larger
deviation, of about 10%, is observed for the reduced slopes obtained when neglecting the R~° contribution to
the polarizability anisotropy at short range, cf equation (16) and lines 3 and 4 of table 6. A similar difference
between the two perturbation theory treatments is also observed for £ = 4 and # = 8. A small deviation from
the asymptotic model for the interaction with the non-resonant field thus persists at short range. The agreement
between the multi-channel calculations (lines 1 and 2 of table 6) and the single-channel perturbation theory
treatment accounting for the full interaction with the non-resonant light, using equation (15) and referred to as
’full PT” in lines 5 and 6 of table 6, for £ = 4 and # = 8 is slightly worse than for the narrow resonances, with a
difference of about 10%. The values obtained from nodal line technique, both perturbative (line 2 of table 4) and
non-perturbative (line 5 of table 4) are closer to the multi-channel results for # = 8, but for # = 4 the difference
also amounts to about 10%. For # = 8, 12 and 16, the perturbative nodal line technique yields the most accurate
values when contributions from the inner part are accounted for in addition to the x> approximation of
equation (12). Itis due to the fact that the intensity-dependence of the nodal lines is evaluated using this
complete formula, cfequation (14).

To summarize, all values obtained for the reduced slopes within perturbation theory in tables 4 and 6 are
close to the non-perturbative ones and very similar for the two methods. In other words, the perturbative single-
channel approximation works very well, both in the nodal line technique, provided intensity-dependent nodal
lines are considered, and in the full potential calculations with a discretized continuum, provided an integration
over the resonance profile is carried out for broad resonances which do not reduce to a 6-function. Moreover,
and importantly so, the perturbative values of the ‘Z-reduced’ slopes are the same for different #. The
perturbation theory treatment thus confirms our heuristic scaling rule, equation (10).

5. Systematic single-channel calculations: general trends

The good agreement between perturbation theory and full potential calculations shown in the previous section
indicates that a single-channel approximation may be sufficient for many purposes. Specifically, we use the
single-channel approximation in section 5.1 to predict the position and width of shape resonances (without any
non-resonant field). This extends the approach of [ 13], simplifying the required calculations. Second, in section
5.2, we employ the single-channel approximation to investigate universality of the intensity-dependence of
shape resonances exposed to non-resonant light.

5.1. Field-free case

In the single-channel asymptotic model using the nodal line technique, the only parameter relevant for the
partial wave £ is the node position, x(z, which determines the position and width of shape resonances. The
characteristics of the resonances can be determined using the complex energy method, described in section A 3
of paper I[14], for narrow resonances, or employing the energy profile of the phase shift, see section A 2 in
paper I [14], for broad resonances close to the top of the potential barrier. The resonance position as a function
of node position is shown in figure 2 for even ¢ ranging from 2 to 20 and for node positions

0.139 < xp¢ < 0.176. In figure 2, a single abscissa is used for the various xq,, which is as if the dependence of the
nodal lines on energy and angular momentum had been neglected, i.e., it is equivalent to xgy = x¢¢, Or

A = B = 0inequation (6). The resonance position shows a pseudo-periodic dependence on node position: for
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Figure 2. (b), (c): energies (taken with respect to the threshold) and widths of even £-wave field-free shape resonances as a function of
the node position x¢ in a single-channel asymptotic model with energy- and angular momentum-independent nodal lines. The
energies, £ f, are represented by continuous lines; and the curves £ f =+ yf / 2, where yf denotes the resonance width, are drawn as
dashed lines. The tops of the potential barriers, Vtip = 2[£ (¢ + 1)/3]/?, are indicated by the horizontal dot-dashed lines ((c):

10 < 7 < 20,i.e., gray: £ = 10;orange: £ = 12;darkbrown: £ = 14;light purple: £ = 16;rose: ¢ = 18;red: ¥ = 20.b: 2 < £ < 8:
purple: £ = 2;lightblue: £ = 4; darkblue: ¢ = 6;green: £ = 8.) (a): s-wave scattering length, in reduced units.

each £ value, separate branches appear successively, with discontinuities occuring at #-dependent values x,
such that Jozy1)74(1/ (2x02f) ) = 0, where ], denotes a regular Bessel function. When this condition is fulfilled, a
bound level with angular momentum ¢ reaches the threshold and becomes a shape resonance. Correspondingly,
the number of bound #-levels is decreased by one, as is the number of nodes of the resonance wave function
inside the potential barrier, xo, < x < x,. Between two consecutive discontinuities, along a given branch, the
resonance energy increases from threshold, reaches the top of the potential barrier, vt’f;p =2[¢(¢ + 1)/3P3,
and even passes over the top of the barrier, with the resonance profile becoming very broad. The dependence of
the reduced s-wave scattering length on x, (see equation (12) of [13]) is also shown in figure 2. It exhibits an
analogous pseudo-periodic pattern, and the presence of an £ = 0 bound level just at threshold corresponds, as is
well known, to infinite scattering length. One can see in figure 2 that, for a given value of the scattering length,
there is never more than one resonance below the top of a particular Z-potential barrier; and when a resonance
appears in a particular £-channel, resonances also appear in the # + 4p (p integer) channels. In order to
properly account for the contribution of the potential and centrifugal term at short range, x < x¢o, the nodal
lines need to depend on both energy and angular momentum [13]. The results presented in figure 2 can easily be
extended to energy- and angular momentum-dependent node positions x: the dependence on angular
momentum simply introduces £-dependent translations parallel to the horizontal axis. The energy-dependence
modifies the shape of the curves shown in figure 2 only slightly. The position and width of field-free resonances
of any molecule can be estimated from figure 2, once the nodal lines x,, equation (6) have been chosen (we use
in this section the "universal’ asymptotic model [ 13], with A = A® = —(x¢9)’/8, B = BY = (x9)*/4and C=0,
resulting in nodal lines depending only on xy). The results of the transformation &, (xos) = & (x¢) are
presented in figure 3, with the abcissa now being actually x,. In addition, for the figure to be more compact, we
have divided £7 by the height of the corresponding rotational barrier Vtip. Figure 3 is useful to predict, at least
roughly, the position of shape resonances of a molecule with s-wave scattering length ag: the resonances lie on
the vertical line located at the abcissa a (xo9) = as (with agin reduced units). The dashed vertical lines in figure 3
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Figure 3. (b): Energy divided the heigth of the potential barrier, £7 / v‘{;p, of #-wave field-free shape resonances (2 < ¢ < 20 even) asa

function of the node position xy, (in reduced units) of the s-wave threshold wave function (£7=°(xo) = 0) in the universal single-
channel asymptotic model with energy- and angular momentum-dependent nodal lines (A = A® B = B%). The relative energies for
two £ + 4p-series (withintegerp), £ = 2, ..., 18and ¢ = 4, ..., 20, are represented by continuous lines; and the three adjacent
series by dashed lines (same color code as in figure (2). The horizontal black dotted—dashed line indicates the top of the potential
barriers. (a): s-wave scattering length, ag (x¢p ), as a function of node position. The vertical dashed black lines correspond to

8881, (X0 ~ 0.1545) and *¢Sr**Sr(x40 ~ 0.1590).

log,o(resonance width)

0.0 0.2 0.4 0.6 0.8 1.0
resonance position / heigth of the barrier

Figure 4. Resonance widths y* as a function of resonance position, divided by the heigth of the centrifugal barrier, £ ‘ / vtﬁp, for £-
wave field-free shape resonances (with Zeven, 2 < ¢ < 20, same color code as in figure 2), obtained by single-channel calculations
with energy- and angular momentum-independent nodal lines. The abscissas 0 and 1 correspond to a resonance at threshold and a
resonance at the top of the centrifugal barrier, respectively, and the dashed black vertical line indicates the top of the barriers.

indicate the examples of **Sr, and **Sr®*Sr studied in paper I, with the scattering lengths equal to as = —2 ao [27]
or —0.013 reduced units and ag = 97.9 a, [28] or 0.664 reduced units, respectively. Note that, for a given
molecule, the resonance energies relative to the barrier tops, £7 / vtf;p, generally decrease regularly with
increasing Z. Note also that shape resonances with £ = 4p (p integer, not too high) appear at threshold for a
reduced scattering length with large absolute value, whereas shape resonances with # = 4p + 2 appear at
threshold for a reduced scattering length close to 0.48. This property had been derived analytically by Gao [29]
by solving the Schrédinger equation for a x~6 potential plus centrifugal term limited at x’ — 0 by an infinite
repulsive wall [29, 30]. With this potential, analytical values for the reduced s-wave scattering length a5 and the
wall position xOGf for which the last, least-bound rotational levels # = 1, 2, 3, 4 modulo 4 are located exactly at
the dissociation limit, have been obtained [29, 30]. For x(y — 0, the "universal’ asymptotic nodal line model
becomes equivalent to Gao’s universal model.

For completeness, figure 4 presents the widths of the field-free resonances, calculated in the single-channel
asymptotic model, as a function of resonance energy. These widths are already visible in figure 2, where they are
represented by the distance between the dotted lines around each resonance. Figure 4 shows the general trend of
the widths as a function of the energy relative to the top of the barrier: At threshold, the resonances have a
vanishing width, which rapidly increases when the resonance energy increases (note the logarithmic scale). At
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Figure 5. ‘/-reduced’ slopes, 6€/I/[¢ (¢ + 1)], calculated with a single-channel universal asymptotic model in thelimit Z — 0, asa
function of €7 (0) / vf,p for even # values 2 < £ < 20 (same color code as in figure 2). The contribution of the interaction with the
non-resonant light in both outer zone, x > x¢,, and inner zone, x < x,, are accounted for, cf equations (17) and (18). The /-
reduced’ slopes obtained by solving the multi-channel Schrodinger equation for *8Sr, # = 4, 8, 12, 16 (red), '*>Cs, # = 5, 9
(blue) and*Rb, ¢ = 2 (green), cffigure 1, are indicated by stars. The corresponding ‘#-reduced’ slopes deduced from the universal
asymptotic model are indicated by open circles with the same colors as the stars. The values predicted in paper I [14] for the # = 2 and
¢ = 6 resonances in **Sr**Sr, using a multi-channel asymptotic model, are indicated by black open circles.

the top of the potential barrier, the resonance width is rather huge, between 1 and 100 reduced units. This
general behavior is observed for all partial waves.

5.2. Universality in the non-resonant light control of shape resonances at low intensity

The linearity of the intensity dependence of the resonance positions observed in paper I [14] and the validity of
perturbation theory at low intensity suggest a more detailed investigation of the field-dressed resonances in the
universal asymptotic model. To this aim, we determine the position of the field-dressed resonances, £7 (I), at
very small field intensity (Z = 0.01 reduced units) as a function of node position x,, in the range

0.139 < xp¢ < 0.176, and for partial waves with even £-value, with 2 < £ < 20. For the same partial wave and
the same x, value, the resonance position without non-resonant field is denoted by £7 (0). When determining
these two resonance positions, the contribution of the non-resonant field is accounted for only in the ‘outer’
zone, x > Xo,. The contribution of the field to the ‘Z-reduced’ slope of the resonance position’s intensity-
dependence in the outer zone can therefore be quantified as

ENT) - ££(0)

Sout =
out 12(¢ + 1)

(17)
The contribution of the non-resonant field in the ‘inner’ zone results, as described in I [14], in a change of the
node position proportional to the field intensity. With equation (6), this change becomes d x¢,/d T = C.The
contribution of the field to the ‘Z-reduced’ slope in the inner zone becomes

1 d&L(0) dxor

= ; (18)
C(&+1) dxop dI

in

where the first derivative is evaluated from the dependence of £% (0) on x¢y, reported in figure 2. The second
derivative is taken to be equal to the value of C, C = CC, in the universal asymptotic model (cfequation (13) in
paper I [14]),

CC = —xgo/12 + 3x73/48. (19)
C

Here, xc = R¢/o is the position, in reduced units, at which the asymptotic expansion for the polarizabilities is
truncated (see section 2 of paper I [14]). In the universal model, the total reduced slope is equal to

S = Siu + Sou and depends for each #-value on the resonance position, € f (0). Calculating S (€ f (0)) for the
same energy £ f (0) but using different branches for the node x, (see figure 2) results in almost the same value.
This proves the adequacy of our treatment of the different interactions (potential, rotational energy, laser field
interaction) in the inner zone. Figure 5 presents the total ‘“-reduced’ slopes S as a function of the field-free
resonance position relative to the heigth of the potential barrier, £% (0)/ vt”;p. Although alarge number of £ values
and, in principle, any value of the scattering length is included in the calculations, strikingly, the slopes in figure 5
are contained in a rather small interval. The largest deviations occur for the lowest #-values, £ = 2 or 4. Fora
fixed £-value, the slope increases slightly (i.e., its absolute value decreases) with increasing resonance energy, or,
equivalently, with increasing node position x¢.. The absolute value of the ‘Z-reduced’ slope decreases with #. It
presents a less pronounced variation when £ increases. For £ larger than approximatively 8, the ‘Z-reduced’
slope is roughly independent of #, with only a weak dependence on the energy relative to the barrier height,
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&l (0)/1/£p. The mean value of the total ‘/-reduced’ slopesis S (€7 = 0) = —0.11 =+ 0.2 at the dissociation limit

and S (&7 = vt’f;p) = —0.05 + 0.2 at the top of the potential barrier.

The ‘Z-reduced’ slopes obtained by solving the multi-channel Schrodinger equation with Hamiltonian (1)
forthe # = 4, 8, 12 and 16 resonances of ¥3Sr,, the # = 2 resonance of ¥’Rb, and the # = 5 and 9 resonances of
133Cs,, reported in figure 1, are in very good agreement with the values obtained from the universal asymptotic
model, even for the highest # values. The universal model thus appears suitable to predict, at least
approximately, the ‘Z-reduced’ slope for any diatomic molecule. Moreover, we find the heuristic scaling
observed in table 3 to roughly hold in reduced units and for any value of the reduced scattering length. The
approximate scaling rule therefore seems to be generally applicable, for a large number of # values and for any
dimer.

6. Conclusions

We have applied first order perturbation theory to the asymptotic model for shape resonance control of
diatomic molecules interacting with non-resonant light developed in [14]. Our work is the first to employ an
asymptotic model using the nodal line technique [10] to treat the perturbation of continuum states in the
framework of collision theory, i.e., the Born approximation. As in earlier studies applying this approach to shape
resonances [13, 14], we find it crucial to properly account for interactions at short range.

The perturbation theory treatment has been motivated by observing a linear dependence of the resonance
position on non-resonant field intensity for several molecules with different scattering lengths and shape
resonances in different partial waves. Comparison with full multi-channel calculations has revealed the
perturbative approach to be valid for not too low values £ of the partial waves. The advantage of the perturbative
approach is that it results in a single-channel model which facilitates calculations significantly. Although the
non-resonant field couples partial waves with £ and £ + 2, we find the single-channel perturbation
approximation to be valid up to comparatively high intensity. We rationalize this finding as follows: The first
order perturbation correction to the resonance energy is related to the expectation value of x~> (where x denotes
the interatomic separation in reduced units). The main contribution to the corresponding radial integral comes
from x values just before the centrifugal barrier. In this range, the amplitude of the scattering wave functions is
rather small, implying weak coupling, except at energies where a resonance appears. Since, close to threshold,
resonances exist simultaneously only for £ and £ + 4, the resonances themselves are not strongly coupled by the
non-resonant field. Therefore an overall only weak channel mixing is observed, justifying the perturbative
approach.

We have analyzed the linear dependence of the resonance position on non-resonant field intensity by
introducing reduced slopes, i.e., slopes divided by # (#Z + 1). We have observed an almost identical value for the
reduced slope of several shape resonances in strontium, rubidium and cesium. The approximately identical
dependence of the reduced slope on energy, relative to the height of the centrifugal barrier, is reproduced by
systematic calculations using the universal asymptotic model, where the field-free scattering length is the only
free parameter. Our universal model is equivalent to the multi-channel quantum defect treatment of shape
resonances developed by Gao [20, 21, 29]. Fixing the value of the field-free scattering length in the universal
model allows for predicting the position of field-free shape resonances [ 13, 21]. The corresponding predictions
of our perturbative approach are less accurate for lower partial waves. In contrast, the slopes of the intensity-
dependence of the resonances are well predicted even for high #-values.

For all partial waves except for £ = 2, the reduced slopes are found to vary regularly and in a small intervall
from the dissociation limit, where the resonances emerge, to the top of the centrifugal barrier, where the
resonances start to dissolve. This behavior is independent of the specific molecule, it depends neither on its
reduced mass, nor on its Cy coefficient, polarizability or scattering length, characteristic of the short range
interaction. The stability of the reduced slope, derived here first by generalizing observations for a small number
of molecules and partial waves, presents a universal trend for field-dressed shape resonances.

The perturbative treatment developed here allows for a simple and efficient approach to determine the
intensity-dependence in non-resonant light control of shape resonances since it requires single-channel
calculations using the field-free resonance functions only. The slopes predicted by perturbation theory are
sufficient to estimate, at least approximately, the non-resonant field intensities that are required to shift a field-
free resonance to a desired position. This is important for utilizing non-resonant light control in molecule
formation via photoassociation [16] or Feshbach resonances [17]. In addition to tuning the position and width
of shape or Feshbach resonances, non-resonant light control can also be employed to change the s-wave
scattering length. This will be studied in detail elsewhere [31].
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Appendix. Perturbation of a shape resonance in the nodal line asymptotic model

The description of the pertubation of a shape resonance by a weak interaction takes a rather simple form in the
nodal line formalism. For simplicity, the following derivation assumes the use of reduced units, but no particular
forms for the radial potentials involved in the zero order Hy and first order H; Hamiltonians.

We consider a shape resonance associated to a Hamiltonian H, with position £, and width y,. Let us assume
that the resonance is characterized by a Lorentzian profile of the derivative §; (&) of the phaseshift with respect
to energy, (see for instance equation (1.185) in [22]),

7’0/2

50(&) = )
U (e- ) + ()

(A1)

In the nodal line asymptotic formalism, the energy-normalized radial wave function y(*) for any # value at any
value of scattering energy € = k? can be obtained from two separate inward integrations in which the asymptotic
behavior of the energy-normalized solution is imposed to be either sin (kx)/ Jrk or cos (kx)/+/7k , with
respective solutions f; (x) and g, (x) (see section A 2 inI). The condition imposed to the physical solution yOis
to vanish at the node position x = x,. The corresponding phaseshift is given by

hyx)
2 (x0)

tan[ao (e)] = (A.2)

The solution y'”) is identical to the regular wave function F) (x) associated to Hy, with an asymptotic behavior
sin(kx + 80 (&))/\7k (see [13]),
Fy(x) = cos[&o (&) ]fo (x) + sin[(‘}o (&) ]go (x). (A.3)
The linearly independent solution associated to F) (x) is the irregular wave function Gy (x) given by
Go(x) = —sin[ 8(&) |f, (x) + cos[ 69 () |2, (x). (A.4)

Let us add a small perturbation characterized by a Hamiltonian H; = T v (x), where the parameter 7
characterizes the strength of the perturbation. We assume the profile of the resonance to remain Lorentzian in
the presence of this small perturbation, with the new profile depending on 7,

, 1)/2
5(&) = 4 2) : (A.5)
(e-&@) + o @ny
Closeto I = 0, the T-dependence of §' (€) is related to the derivatives at 7 = 0 of the 7 -dependencies of
position and width:
4= € - &)
dr S dr 2 2T
[(£- &) + (n/2)]
2 2
E—-Eo) — 1/2
Ldr1 (=€) = (n2) (A.6)

(- e + (w2 |

The T-dependence of the phaseshift can be related to the Hamiltonian H;: for any &, the additional phaseshift
Adout (€) coming from the perturbation in the outer asymptotic domain x > x is given, to first order in 7, by
the Born approximation (see for instance equation (4.38) in [22]):
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Aboui (€) ~ tan ASou (€)

- / v @[y [, (A7)
where X, is the position of the node, such that
d
—About (€
i t ()
= =1 [T v [y [dx = —xgou (). (A8)

The derivative with respect to £ of the last equation has to be fitted to equation (A.6), allowing us to
determine the derivatives with respect to intensity at 7 = 0 of position and width of the field-dressed resonance.
For narrow resonances, the 7-dependence of the width is weak and the corresponding term in % canbe

neglected compared to the other one. This implies that the integral in equation (A.8) has a Lorentzian shape,
with the same center £,y and width y, as §;(€) (equation A.1) . If we call 7, the value of the integral J,u (£) at
& = &9, we deduce the slope of the T7-dependence of the resonance positionat 7 = 0 tobe

d 00
e =t a2 = f T (84, (A.9)

which is equal to the strength of the interaction integrated over the whole energy-profile. For an attractive

potential v (x) < 0, the integral J (£) and therefore the slopes ii’ are negative and Adyy (£), equation (A.7), is

positive.

The nodal line formalism also allows to account for the perturbation due to the internal part of the
perturbation H, at x < xg, which introduces a shift Ax proportional to 7 in the node position. A simple
relationship between Ax and the corresponding modification to first order in 7 of the phaseshift Ad;, (€) canbe
obtained from equation (A.2)

Wi g,
PSS €3 ) I
dxo fo(x0)2 + go(xo)2

where W (g, f,) = &, f, — &, f, denotes the Wronskian (here the derivatives are taken with respect to x).
Employing the property F (xo) = 0 and the relation between the pairs of functions (f;, g,) and (K, Go),

(A.10)

1
W(g()) fo) = W(GO) FO) = ;)
fo (x0)* + gy (x0)* = Fo(x0)* + Go(x0)* = Go(x0)%, (A.11)
we find
P P S (A12)
dxo m Go(xo)?
Finally, the contribution of the inner zone to the variation of the phaseshift is, for any value of energy,
dx
P P L N (A.13)
dI dI T Go(,XO)Z

For an attractive potential v(x), the shift in the node position is negative (see the value of C” in equation 19) and
Adi, (€) is positive.

This additional correction to the phaseshift coming from the inner part of the perturbation also resultsin a
shift of the resonance position. This contribution equation (A.13) is to be added to the slope due to the
asymptotic part of the perturbation equation (A.8). As above the derivative with respect to £ of the total slope of

the change in the phaseshift associated with the perturbation H;
d d d
—A5(E) = —Abo (E) + —A6in (&) = —nT (), A.14
dI()dI ot()dI (&) = -nJ (&) (A.14)

has to be fitted to equation (A.6) to determine the slopes at 7 = 0 in the variation of the energy position and
width of the field-dressed resonances.
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