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Abstract
Non-resonant light interacting with diatomics via the polarizability anisotropy couples different
rotational states andmay lead to strong hybridization of themotion. Themodification of shape
resonances and low-energy scattering states due to this interaction can be fully captured by an
asymptoticmodel, based on the long-range properties of the scattering (Crubellier et al 2015New J.
Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic
multi-channel description are found to be approximately linear in thefield intensity up to fairly large
intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of
such resonances by the non-resonant field. Themulti-channel results furthermore indicate the
dependence onfield intensity to present, at least approximately, universal characteristics. Herewe
combine the nodal line technique to solve the asymptotic Schrödinger equationwith perturbation
theory. Comparing our single channel results to those obtainedwith the full interaction potential, we
find nodal lines depending only on thefield-free scattering length of the diatom to yield an
approximate but universal description of the field-dressedmolecule, confirming universal behavior.

1. Introduction

Quantumcollisions at low energy depend on the long-range properties of the interaction between the particles
only and therefore exhibit universal behavior. Since, at long range, the dependence of the interaction on
interparticle distance has a power-law form and it is often sufficient to account only for the highest order termof
the interaction, low-energy collisions can bewell described by simplemodels with very few free parameters. This
is at the core ofmulti-channel quantumdefect theory [1–8]. Universality becomes particularly transparent when
introducing units which absorb allmolecule-specific parameters [9]. The corresponding Schrödinger equation
can be solved by the so-called nodal line technique [10–12]. It consists in accounting for all short-range physics
by the choice of the node positions of the scatteringwavefunction at intermediate interparticle distances. This
formalismhas been extended to shape resonances [13] and to the control of shape resonances by non-resonant
light which couples the different partialℓ-waves via the polarizability anisotropy [14]. In particular, we have
previously shown that an intensity-dependent nodal line is sufficient to account for the effect of the coupling to
the non-resonant light at short-range. An asymptoticmulti-channelmodel can thus predict the resonance
structure, energy, width and hybridization as a function of non-resonant light intensity. This is important since
non-resonant light control has been suggested to enhance photoassociation rates [15, 16],modify Feshbach
resonances [17] andmanipulatemolecular levels [16, 18].
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While amulti-channel treatment is essential to describe the strong hybridization of the rovibrationalmotion
due to the couplingwith the non-resonant light [15, 16], the position andwidth of the resonance are found to
vary linearly withfield intensity up to fairly large intensities [14].When treating the interactionwith the non-
resonant light as a perturbation and truncating the perturbation expansion at the first order, resonance position
andwidth are determined by the field-free wavefunctions. Thefield-free wavefunctions reside in a single partial
wave (channel) and, within the asymptotic approximation, depend on only one parameter—the s-wave
scattering length. This indicates universality of the intensity dependence of resonance positions andwidths in
non-resonant light control. It furthermore suggests that a single-channel approach should be sufficient to study
non-resonant light control atmoderate intensities.

Here we combine the asymptoticmodel for shape resonance control with non-resonant light developed in a
preceding paper [14]with perturbation theory to explore the universality of the resonance’s intensity
dependence. This allows us to recast themulti-channel approach of [14] in a single channel approximation.We
compare the perturbative results to those obtained in [14]with amulti-channel description, by solving the
Schrödinger equation for the diatom interactingwith non-resonant light bothwith the full potential and the
asymptotic approximation.

The paper is organized as follows: we briefly review the asymptoticmodel for a diatomic interactingwith
non-resonant light via the polarizability anisotropy introduced in [14], hereafter referred to as paper I, in
section 2.We summarize the behavior of shape resonances in non-resonant light observed by solving themulti-
channel Schrödinger equation and present an approximate general law for describing the intensity dependence
when analyzing the resonances in reduced units of length and energy in section 3.We then show in section 4 how
perturbation theory, either using energy-normalized continuum states (section 4.1) or a discretized continuum
(section 4.2), is applied to determine the slopes of the intensity dependence of position andwidth of the field-
dressed shape resonances at vanishing intensity. This allows us to explain the rule observed for the specific
example of strontiumdimers considered in paper I. Then, section 5.1 describes systematic single-channel
calculations that allow for predicting the position andwidth of shape resonances without a non-resonant field.
These results are used in section 5.2 to deduce the slope of the energy shifts of a shape resonance in the limit of
vanishing intensity for any angularmomentumℓ, in any diatomic system.We conclude in section 6.

2. Asymptoticmodel for a diatom in a non-resonant opticalfield

In this section, we summarize the theoretical framework for studying the interaction of a diatomwith non-
resonant light. A detailed derivation of the asymptoticmodel is found in [14]. The rovibrationalHamiltonian of
an atompair, with reducedmass μ, interactingwith a non-resonant laserfield of intensity I, linearly polarized
along the space-fixedZ axis, is written in themolecule-fixed frame as [18]

μ
π Δα θ α= + + − + ⊥( )H T

R
V R

I

c
R R

L

2
( )

2
( )cos ( ) . (1)R g

2

2
2

Here,R denotes interatomic separation andVg(R) the interaction potential in the electronic ground state.TR
and μRL 22 2 are the vibrational and rotational kinetic energies. In the last termof equation (1), c is the speed of
light and θ the polar angle between themolecular axis and the laser polarization. Themolecular polarizability
tensor is characterized by its perpendicular and parallel components with respect to themolecular axis α⊥ R( )
and α∥ R( ), and the polarizability anisotropy is Δα α α= −∥ ⊥R R R( ) ( ) ( ). Hamiltonian (1) is valid for any
diatomicmolecule in its electronic ground state [18, 19]. The non-resonant field introduces amixing of different
partial wavesℓ of the same parity (channels), whereas themagnetic quantumnumberm is conserved. For the
sake of simplicity, this study is restricted to states withm=0 forwhich the largest effect of the non-resonant field
is observed. The correspondingmulti-channel Schrödinger equation can be solved numerically, form=0, as
described in [16].

At sufficiently large distance, > =R R C Casym 8 6 , the potential reduces to the asymptotic van derWaals

interaction ≈ −V R C R( )g 6
6 (Cn are the coefficients of themultipolar expansion). For α α≫ =R R (4 )d 1 2

1 6,
where α1, α2 denote the polarizabilities of the two atoms, the interactionwith the field reduces to

π α α
α α

θ= − + + −( ) ( )H
I

c R

2 2
3 cos 1 . (2)int 1 2

1 2

3
2

⎡
⎣⎢

⎤
⎦⎥

Introducing a dimensionless reduced length x, σ=R x, a reduced energy  , ϵ− =E E0 (definedwith respect

to thefield shifted dissociation limit α α= − +πE I( )
c0

2
1 2 ), and a reduced laser field intensity  , β=I , and

replacing allR-dependent terms by their leading order contributions, an asymptotic Schrödinger equation is
obtained,

2
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 θ θ φ− − + − − − =
x x x x

f x
Ld

d

1 cos 1 3
( , , ) 0. (3)

2

2 6

2

2

2

3

⎡
⎣⎢

⎤
⎦⎥

whereφ denotes the azimuthal angle around themolecular axis. The unit conversion factors are given by

σ
μ

ϵ
μσ

β σ ϵ
πα α

= = =


C c2
,

2
,

12
, (4)6

2

1 4 2

2

3

1 2

⎜ ⎟⎛
⎝

⎞
⎠

and the conversion factor for time is obtained from that for energy, τ ϵ=  . The corresponding conversion
factors are collected in table 1 for some example diatomics.

For each partial waveℓ, thewave function is expanded in terms of spherical harmonics θ φℓ =Y ( , )m, 0

θ φ θ φ=ℓ ℓ ℓ =f x y x Y( , , ) ( ) ( , ), (5)m, 0

and equation (3) is solved in the asymptotic x-domain, imposing to the radial function physical boundary
condition at long range and a node at σ σ> = > =ℓx x R x Rd d0 asym asym , a position separating inner zone
and asymptotic outer region, see [14] for details. Table 2 lists the values ofRasym,Rd and other characteristic
internuclear distances for the example of 88Sr2. The effects of potentialVg(R), centrifugal energy and
polarizability in the inner zone can satisfactorily be accounted for by introducing energy-, angular-momentum-
and intensity-dependent nodal lines ℓx0 [13, 14],

ℓ ℓ= + + + +ℓx x A e B C( 1) . (6)0 00

When the constantsA,B andC can be deduced from exact calculations using theHamiltonian (1) or from
experiment, the nodal line technique applied to the asymptoticmodel fully reproduces the results obtained
with (1), cffigure 2 of [14].When this is not possible, analytical values forAG,BG [13] andCG [14]which depend
on x00, i.e., on the s-wave scattering length, allow for an approximate, universal description of shape resonances,
very similar to the asymptoticmodel developed byGao forfield-free resonances [20].

3.Heuristic scaling rule

Wepresent and discuss in this section results obtained by solving the Schrödinger equationwith the exact
Hamiltonian (1), using the discrete variable representation (DVR) as described in [16]. Specifically, we consider
the shape resonances with field-free ℓ = 4, 8, 12, 16 for 88Sr2 [16], ℓ = 5, 9 for 133Cs2, and ℓ = 2 for 87Rb2.
In paper I [14], a linear dependence of the resonance position versus field intensity was found for the two
considered isotopes 88Sr2 and

86Sr88Sr up to very large values of the intensity [14]. The use of reduced units (see
table 1) allows us to extract from these results a general trend for the intensity dependence of the resonance
position, valid also for differentℓ values and different species.

To this end, we introduce ‘ℓ-reduced’ energy shifts or slopes. These are the energy shifts or slopes, in reduced
units, divided by ℓ ℓ +( 1).More precisely, for afield-dressed shape resonance adiabatically correlated to a
field-free resonance in the partial waveℓ, which occurs at the reduced energy  ℓ ( )r for a non-resonant field of

Table 1. Scaling factors, equations (4), for 88Sr2 and
86Sr88Sr, obtained

for =C 3246.976 a.u. and α = 186.250 a0
3, and for 133Cs2

( =C 6851.06 a.u., α = 402.200 a0
3) and 87Rb2 ( =C 4707.06 a.u.,

α = 309.980 a0
3); a.u. denotes the atomic units and a0 the Bohr radius.

σ (a0) ϵ (μK) β (GW cm−2) τ (ns)

88Sr2 151.053 86.3653 0.635 782 88.4409
86Sr88Sr 150.617 87.876 0.641 319 86.9204
133Cs2 201.843 31.99 0.120 48 238.7
87Rb2 165.250 72.99 0.258 44 104.5

Table 2.Characteristic internuclear distances for 88Sr2 interactingwith non-resonant light in atomic units (R, first line)
and reduced units (x, second line), see equations (4) and table 1 for the definition of the reduced units.Rw denotes the
position of the repulsive wall ofVg,Re its equilibriumdistance. The validity of the asymptoticmodel with respect to the
interactionwith the non-resonant field is characterized by α α=R (4 )d 1 2

1 6 and >R RC d [14] and by
=R C Casym 8 6 concerningVg. ℓR0 ,Rb andRtop indicate (for ℓ = …2 20) the range of the node position, cf

equation (6), the inner limit and the top of the rotational barrier, respectively (seefigure 4 in [13]).

Rw Re Rd RC Rasym ℓR0 Rb Rtop

a.u. 7.5 8.5 7.3 10 11 24…26 97…33 127…44

red.u. 0.050 0.056 0.048 0.066 0.073 0.16…0.17 0.64…0.22 0.84…0.29

3
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reduced intensity  , the ‘ℓ-reduced’ energy shift is equal to δ ℓ ℓ +[ ( 1)], where    δ = −ℓ ℓ( ) (0)r r

denotes the shift of the resonance from its field-free position (here, as everywhere else in the paper, the position
of a shape resonance is takenwith respect to the field shifted dissociation limit). Analogously, we call the
quantity  δ ℓ ℓ +[ ( 1)] ‘ℓ-reduced’ slope. The intensity dependence of the ‘ℓ-reduced’ energy shifts is
reported infigure 1 for the resonances in strontium, rubidium and cesiummentioned above. Except for the
ℓ = 2 resonance in 87Rb2, an almost linear behavior is observed up to high intensity.Moreover, in the limit of
vanishing field all slopes are nearly equal.

Before presenting a calculation of the slopes tofirst order of perturbation in section 4, we give here a simple
qualitative argument, based on perturbation theory, to justify the approximate proportionality to ℓ ℓ +( 1)of
the slope of the resonance position’s intensity-dependence at vanishing intensity. The asymptotic interaction
with thefield, given in reduced units by

 θ= − −( )h x cos 1 3 , (7)int
3 2

can be treated as a perturbation and therefore, tofirst order, in a single-channel approach. One has thus to
calculate thematrix element of hint with the (single-channel) field-freewave functions

 θ φℓ
=f x( , , )0 (see

equation (A.7) in appendix),



 

∫
θ φ θ φ

α ℓ= −

ℓ ℓ

ℓ

= =

∞
= −

ℓ

f x h f x

y x x

( , , ) ( , , )

( ) d (8)
x

0
int

0

0 2 3

0

⎡⎣ ⎤⎦
withm=0 and

α ℓ
ℓ ℓ

ℓ ℓ
= +

+ −
( )

2 ( 1)

3(2 3)(2 1)
. (9)

An integral similar to the one in equation (8) occurs in the expectation value of −R 3 for field-freewave functions
obtainedwith the exactHamiltonian (1), when ℓx0 is replaced byR=0. It is important to note that, for ℓ ⩾ 2,
the angular factor α ℓ( ) is nearly independent ofℓ and approximately equal to1 6. Theℓ-dependence of the
matrix element, equation (8), thus necessary arises from the radial part, i.e., the expectation value of −x 3 for the
field free wave functions.

Thefield-free resonance positions result from the competition between the van derWaals and centrifugal
interactions at intermediate distance, where the amplitude of the resonancewave function is very large.
Intermediate distances are already in the asymptotic zone, butwell before the location ℓx of the potential barrier,

i.e., < < ≪ℓ ℓx x x xasym 0 . Here σ=x Rasym asym and ℓ ℓ= +ℓ
−x [ ( 1)] 1 4 denotes the location of the inner

limit of the rotational barrier, i.e., it is the value of σ=x Rb b in table 2 for the consideredℓ. At this point the
centrifugal and van derWaals interactions exactly balance each other out. The amplitude of the s-wave (ℓ = 0)
radial wave function, 

ℓ=
=y x( )0

0 , is never resonant and thus always rather small in this x-range. Close to threshold,
the van derWaals interaction prevails. Treating the rotational kinetic energy as afirst order perturbation
introduces a resonant correction proportional to ℓ ℓ +( 1) in theℓ-wave radial wavefunction of thefield-free
molecule. At intermediate distance   ℓ ℓ≈ + +ℓ ℓ>

=
=
=y x y x z x( ) ( ) ( 1) ( )0

0
0
0 .When evaluating the integral in

equation (8), the zeroth order contribution is small, and in the first order, only the cross term 
ℓ=

= −y x x z x( ) ( )0
0 3

contributes significantly. As the energy varies, resonant behaviormight appear, with amaximumof the radial

Figure 1. Intensity dependence of the ‘ℓ-reduced’ energy shift δ ℓ ℓ +[ ( 1)],   δ = −ℓ ℓi( ) (0)r r , i.e., the shift of the resonance
position from itsfield free value, divided by ℓ ℓ +( 1). Shown are results obtainedwith the exactHamiltonian (1), converted to
reduced units, for 88Sr2 (red, ℓ = 4: full line; ℓ = 8: dotted line; ℓ = 12: dashed line; ℓ = 16: dotted–dashed line), 133Cs2 (blue,
ℓ = 5: full line; ℓ = 9: dotted line) and 87Rb2 (green, ℓ = 2: full line.
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integral and therefore an energy shift with respect to thefield-shifted dissociation limit approximately
proportional to  α ℓ ℓ ℓ +( ) ( 1), i.e., proportional to ℓ ℓ +( 1).

For non-zero non-resonant light, this result remains valid only as long as the interactionwith the light can be
considered as a pertubation compared to the centrifugal interaction, i.e., for  ℓ ℓ≪ + ℓx6 ( 1) 0 , in the x-
domainmainly contributing to the integral, i.e., for < <ℓ ℓx x x0 . Therefore, for a given intensity  , the
deviation of the reduced energy shift from the approximate universal law is larger for smallerℓ-values.

The observation of an approximately universal intensity-dependence of the reduced energy shifts can be
equivalently formulated as follows: In order to shift the position of two shape resonances withfield-free
rotational quantumnumbersℓ1 andℓ2 in twomolecules, 1 and 2, by the same amount, the reduced laser
intensities 1 and 2 must be related as

 ℓ ℓ ℓ ℓ+ ≈ +( ) ( )1 1 . (10)1 1 1 2 2 2

Weemphasize that this rule provides only the approximate slope of the energy variation at  → 0. To obtain the
energy variation itself, one also has to know the field-free reduced energy of the shape resonance, i.e., the s-wave
scattering length [13, 21].

4. Slopes at vanishing intensity fromperturbation theory

Since the intensity dependence of the shape resonance positions appears to be linear up to large values of thefield
intensity, it is interesting to study the behavior at very low intensity and calculate the slopes at  = 0. This
procedure requires only free-field calculations, that is a single-channelmodel. In principle, the perturbation
theory has here to be applied to a continuous spectrum.Wediscuss the example of the 88Sr2 shape resonances
withfield-free ℓ = 4, 8, 12, 16, whose positions andwidths are recalled in table 3.We present results
obtained by the single-channel nodal line technique, with a detailed description of the resonance profiles, and
compare them to those obtained by solving the Schrödinger equationwithHamiltonian (1), using a
discretization of the scattering continuum.

4.1. Single-channel nodal line technique
The description of the pertubation of a shape resonance by aweak interaction takes a rather simple form in the
nodal line formalism. It is described in appendix, with no particular shape of the potentials involved in the zero
andfirst order expressions. In the case of interest here, the unperturbed asymptotic Schrödinger equation for the
radial wave function of waveℓ reads, in reduced units,

ℓ ℓ− − + + − =
x x x

y x
d

d

1 ( 1)
( ) 0, (11)

2

2 6 2
(0)

⎡
⎣⎢

⎤
⎦⎥

wherewe have omitted, compared to equation (5), the indexℓ of the radial function y(x) for simplicity. The
superscript denotes the order of perturbation theory. The perturbation is given by

  α ℓ= = −h v x
x

( )
( )

. (12)int 3

Let us recall that in the nodal line formalism (see section III B of paper I [14]), equation (11) is only solved in the
asymptotic x domain, >x x0 (here also the indexℓ is omitted for simplicity). The interactions in the inner zone
(potential, rotational kinetic energy) in the zeroth orderHamiltonian are accounted for by the choice of the
node position, equation (6). In the perturbative treatment of the interactionwith the non-resonant field,
contributions tofirst order coming from the inner zone have thus to be accounted for separately.

In afirst step, we ignore the variation of the node position to treat the problem in the outer zone. The
reduced slopes of position andwidth of the resonance can be obtained by calculating the perturbation of the
energy profile of the phaseshift characterizing the resonance structure (see appendix A 2 of paper I [14]). This

perturbation, written in the Born approximation [22], cf equation (A.8), is equal to    Δδ π= −( ) ( )d

d out out

Table 3.Position andwidth of the 88Sr2field-free shape resonances withℓ = 4, 8, 12 and 16, both in reduced and SI units, as calculated in
[14] in amulti-channel asymptoticmodel with the nodal line technique.

ℓ = 4 ℓ = 8 ℓ = 12 ℓ = 16

Position (red. units) 33.26 139.3 247.2 253.5

Position (mK) 2.872 12.03 21.35 21.89

Width (red. units) 11.48 0.9159 × −2.141 10 3 × −8.778 10 12

Width (μK) 991.3 79.11 0.018 49 × −7.582 10 10

5
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with

   

∫
π

Δδ

α ℓ

= −

= −
∞

x
y x x

( )
1 d

d
( )

( )
1

( ) d , (13)
x

out out

3
(0) 2

0

⎡⎣ ⎤⎦

where =F x y x( ) ( )0
(0) is the field-free energy-normalized physical regular radial function ( =F x( ) 00 0 ).

Assuming a Lorentzian shape of the derivative of the phaseshift with respect to energy, one obtains for this
derivative in equation (13) the right-hand side of equation (A.6). A simple fit procedure thus yields the slopes at
 = 0 of both position andwidth of the resonance (cf first line of tables 4 and 5), except for the extremely narrow
resonancewith ℓ = 16, for which the slopes cannot be obtained. The simplified formula of equation (A.9) gives
roughly the same result for the slope of the position as the fitting procedure (comparefirst and third lines of
table 4), except for the broadest resonance (ℓ = 4).

The nodal line formalism allows us to also account for themodifications due to the internal part of the non-
resonant field perturbationwhich changes the node position x0. One can calculate the displacement of the node

positionswith the completeHamiltonian (see paper I [14]): for instance, the slopes 
xd

d
0 of the intensity

dependence of the node positions at  = 0 are listed in the last line of table 4 for ℓ = 4, 8, 12, 16 in 88Sr2. If
no reliable data are available for the full potential, it is possible to use a ‘universal’ value for these slopes (see
equation (19) below).We show in the appendix that a simple relationship, equation (A.12), exists between the
intensity dependence of the node position and the correspondingmodification of the slope of the intensity

dependence of the phaseshift    Δδ π= −( ) ( )d

d in in , corresponding to the contribution of the inner zone, with

    π
Δδ

π
= − =

x

G x
( )

1 d

d
( )

d

d

1

( )
. (14)in in

0

2
0 0

2

Here G x( )0 0 is the value at x0 of the energy-normalized irregular solution of the Schrödinger equation, which is

orthogonal to the physical regular one, =F x y x( ) ( )0
(0) , which has a node at x0. Adding this quantity to the one

coming from equation (13) and repeating the above fitting procedure for the sumyields the total slopes of both
position andwidth of the resonance (see the second line in table 4 and table 5). The agreement with the slopes
calculatedwith the full potential is excellent (compare lines 2, 4 and 5 of table 4, and lines 2 and 3 of table 5).

Table 4.Reduced slopes (i.e., slopes in reduced units, divided by ℓ ℓ +( 1)) of the reso-
nance position’s intensity dependence for 88Sr2 andℓ = 4, 8, 12 and 16 fromdifferent
approaches. The first four lines are obtainedwith the single-channel perturbative
approach described in appendix: lines 1 and 3: including only the asymptotic outer part of
the perturbation, equation (13). Lines 2 and 4: taking also the inner part through the inten-
sity-dependence of the node position, equation (14), into account. The first two lines are
obtained by fitting the derivative of the phase shift with respect to  to equation (A.6). The
following two lines (marked by a star) correspond to the simplified formula,
equation (A.9), which ignores the intensity dependence of thewidth. The fifth line results
from a calculation similar to those reported in paper I [14], i.e., using an asymptotic sin-
gle-channelmodel with -dependent nodal lines. The last line lists the slopes of the node
position’s intensity-dependence used in paper I [14]; they are required to obtain the
reduced slopes in lines 2 and 4.

ℓ = 4 ℓ = 8 ℓ = 12 ℓ = 16

Outer −0.0791 −0.0710 −0.0602 —

Outer+inner −0.0931 −0.101 −0.100 —

Outer* −0.114 −0.0713 −0.0602 −0.0521

Outer+inner* −0.137 −0.101 −0.100 −0.102

Calc cf I −0.0941 −0.101 −0.100 −0.0954

xd d0 4.417 × −10 5 4.525 × −10 5 4.873 × −10 5 5.497 × −10 5

Table 5. Same as table 4 but for thewidth instead of the position of the
resonances (lines 3 and 4 are omitted since the simplified formula,
equation (A.9), does not give any information on the intensity dependence
of thewidth). The resonancewith ℓ = 16 is so extremely narrow that the
intensity-dependence of its width cannot be obtained.

ℓ = 4 ℓ = 8 ℓ = 12 ℓ = 16

Outer −1.44 −0.213 −0.000 089 1 —

Outer + inner −1.88 −0.324 −0.000 156 —

Calc cf I −1.69 −0.329 −0.000 160 —
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4.2. Full potential calculations anddiscretized continuum
Our calculations of the resonance positionswith the full potential employ aDVR [16]. This implies that the
continuum spectrum is discretized in afinite box of sizeRmax and represented bymeans of L2-normalizedwave
functionswith energies >E 0n . Energy-normalized discretized continuumwavefunctions are obtained by
multiplicationwith − −E E1 n n 1.When considering the full Hamiltonian (1), a resonance for partial waveℓ is

identified in the discretized spectrumby plotting the rotational constant μ〈 〉 R(2 )2 2 for theℓ-component of
the coupled channels wavefunction as a function of energy. Very narrow resonances, such as thosewith ℓ = 12
or ℓ = 16 in 88Sr2, cf table 3, appear as δ-functions at the corresponding resonance energy, independent of the
size of the boxRmax. For the other two

88Sr2 resonances considered here, with ℓ = 4 and ℓ = 8, thewidths are
broader. The resonances are thus described bymore than one eigenvalue of the discretized spectrum. The
resonance position is then obtained by fitting the rotational constants, computed using energy-normalizedwave
functions [23, 24], to a Lorentzian profile. Once resonance positions are obtained, their intensity-dependence
can befitted to a line in theweakfield regime. The corresponding slopes, divided by ℓ ℓ +( 1) are presented in
table 6 (lines 1 and 2). Their weak dependence on the size of the box indicates the accuracy of our continuum
discretization.

Analogously to the previous subsection, we treat the interactionwith the non-resonant light, i.e., the last
term in the fullHamiltonian (1), as a perturbation to the field-freeHamiltonian. This ismotivated by the
approximately linear dependence of the resonance positions onfield intensity up to fairly large intensity.We
distinguish between narrow and broad resonances. For a narrow resonance, which is associated to a single
discretized energy, time-independent perturbation theory provides the following first-order correction to the
resonance energy [25, 26]

Δ π ψ α ψ α α

ψ Δα ψ ℓ ℓ
ℓ ℓ

= − − +

+ + −
+ −

ℓ ℓ ℓ

ℓ ℓ

⊥ ( )E
I

c
R

R

2
( )

( )
2 2 1

(2 3)(2 1)
, (15)

n n n

n n

, , , 1 2

, ,

2

⎡⎣
⎤
⎦⎥

where ψ ℓn, is the field-free L2-normalizedwave function of the resonance.When using additionally the
asymptotic approximation for the interactionHamiltonian at sufficiently large distance, equation (2), thefirst-
order correction to the energy shift with respect to thefield-dressed dissociation limit, π α α= − +E c2 ( )/0 1 2 ,
becomes (in reduced units)

 Δ ψ ψ α ℓ= −ℓ ℓ ℓ
−x ( ), (16)n n n,

3
,

where α ℓ( ) is given in equation (9). Equation (16) is equivalent to equation (8). Equations (15) and (16) provide
an approximation to the slopes of the intensity dependence of the resonance positions, validwithin the limits of
aweak perturbation and for a narrow resonance.

For broad resonances, equations (15) and (16) can also be used.However, the complete profile of thematrix
element of the perturbation needs to be evaluated. To this end, energy-normalizedwave functions have to be
considered. In our example of 88Sr2, the resonance profiles aremade up by about 40 energies for ℓ = 4 and 5 for
ℓ = 8.We decompose the energy dependence of thematrix elements into a Lorentzian plus a slowly varying
background. This is important in particular for the resonance ℓ = 4, which is very broad such that it extends

Table 6.Reduced slopes (i.e., slopes in reduced units, divided by ℓ ℓ +( 1)) of the
resonance position’s intensity dependence for 88Sr2 and twodifferent sizesRmax of
the discretization box, computedwithHamiltonian (1) and aDVR (lines 1 and 2)
compared to perturbation theory (PT) using the full potential (lines 3 to 6). PT can
employ additionally the asymptotic approximation for the interaction term,
equation (16) (lines 3 and 4), or treat the full interactionwith the non-resonant
light, equation (15) (lines 5 and 6). For the narrow resonances ℓ= 12 and 16, the
reduced slopes are evaluated from a single L2-normalizedwave function, whereas
for the broad resonances, an integration over the Lorentzian resonance profile is
carried out (see text for details). These reduced slopes are to be compared to those
reported in table 4.

Rmax (a0) ℓ = 4 ℓ = 8 ℓ = 12 ℓ = 16

Non-PT ×1 105
−0.1026 −0.1029 −0.1013 −0.0952

Non-PT ×2 105
−0.1010 −0.1030 −0.1017 −0.0952

PT 〈 〉−x 3 ×1 105
−0.107 −0.0856 −0.0900 −0.0827

PT 〈 〉−x 3 ×2 105
−0.105 −0.0854 −0.0904 −0.0827

Full PT ×1 105
−0.111 −0.0933 −0.1011 −0.0952

Full PT ×2 105
−0.109 −0.0931 −0.1017 −0.0952
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down to the threshold (see table 3). Thefinalmean value of the perturbation is determined by integrating the
matrix elements, equations (15) and (16), over the Lorentzian.

For both broad and narrow resonances, the values obtainedwith perturbation theory are reported in table 6
for two different sizes of the discretization box, where equation (16)was employed in lines 3 and 4 and
equation (15) in lines 5 and 6, togetherwith the results frommulti-channel calculations with the full
Hamiltonian (1) (lines 1 and 2). The results are convergedwith respect to the continuumdiscretization since the
differences between the two sizes of the box are very small, below 2%, for allℓ values and all treatments. For the
non-perturbativemulti-channel calculations, the excellent agreement between the asymptoticmodel (with the
reduced slopes reported in line 5 of table 4) and the full Hamiltonian (lines 1 and 2 of table 6) found in [14] is
confirmed: the values differ by less than 2%, except for ℓ = 4, where the difference is of the order of 10%. This
observation for ℓ = 4 ismost likely due to the different choice of profile used in the analysis—the lowest
eigenvalue of the delaymatrix in the nodal linemethod as opposed to the rotational constant, i.e., themean value
of −R 2, in the full potential calculations. For broad resonances these two profiles are known to be rather different
[13]. The otherwise good agreement allows to assess the accuracy of the perturbation theory treatment, in
particular in formof the single-channel nodal line technique, when using intensity-dependent nodal lines.

For the narrow resonances, with ℓ = 12 and ℓ = 16, the reduced slopes obtainedwithin perturbation
theory using the full interactionwith the non-resonant light, cf equation (15) and lines 5 and 6 of table 6, are very
close to themulti-channel calculations (lines 1 and 2 of table 6), deviating by atmost 2%. A somewhat larger
deviation, of about 10%, is observed for the reduced slopes obtainedwhen neglecting the −R 6 contribution to
the polarizability anisotropy at short range, cf equation (16) and lines 3 and 4 of table 6. A similar difference
between the two perturbation theory treatments is also observed for ℓ = 4 and ℓ = 8. A small deviation from
the asymptoticmodel for the interactionwith the non-resonant field thus persists at short range. The agreement
between themulti-channel calculations (lines 1 and 2 of table 6) and the single-channel perturbation theory
treatment accounting for the full interactionwith the non-resonant light, using equation (15) and referred to as
’full PT’ in lines 5 and 6 of table 6, for ℓ = 4 and ℓ = 8 is slightly worse than for the narrow resonances, with a
difference of about 10%. The values obtained fromnodal line technique, both perturbative (line 2 of table 4) and
non-perturbative (line 5 of table 4) are closer to themulti-channel results for ℓ = 8, but for ℓ = 4 the difference
also amounts to about 10%. For ℓ = 8, 12 and 16, the perturbative nodal line technique yields themost accurate
valueswhen contributions from the inner part are accounted for in addition to the −x 3 approximation of
equation (12). It is due to the fact that the intensity-dependence of the nodal lines is evaluated using this
complete formula, cf equation (14).

To summarize, all values obtained for the reduced slopes within perturbation theory in tables 4 and 6 are
close to the non-perturbative ones and very similar for the twomethods. In other words, the perturbative single-
channel approximationworks verywell, both in the nodal line technique, provided intensity-dependent nodal
lines are considered, and in the full potential calculations with a discretized continuum, provided an integration
over the resonance profile is carried out for broad resonances which do not reduce to a δ-function.Moreover,
and importantly so, the perturbative values of the ‘ℓ-reduced’ slopes are the same for differentℓ. The
perturbation theory treatment thus confirms our heuristic scaling rule, equation (10).

5. Systematic single-channel calculations: general trends

The good agreement between perturbation theory and full potential calculations shown in the previous section
indicates that a single-channel approximationmay be sufficient formany purposes. Specifically, we use the
single-channel approximation in section 5.1 to predict the position andwidth of shape resonances (without any
non-resonant field). This extends the approach of [13], simplifying the required calculations. Second, in section
5.2, we employ the single-channel approximation to investigate universality of the intensity-dependence of
shape resonances exposed to non-resonant light.

5.1. Field-free case
In the single-channel asymptoticmodel using the nodal line technique, the only parameter relevant for the
partial waveℓ is the node position, ℓx0 , which determines the position andwidth of shape resonances. The
characteristics of the resonances can be determined using the complex energymethod, described in section A 3
of paper I [14], for narrow resonances, or employing the energy profile of the phase shift, see section A 2 in
paper I [14], for broad resonances close to the top of the potential barrier. The resonance position as a function
of node position is shown infigure 2 for evenℓ ranging from2 to 20 and for node positions

⩽ ⩽ℓx0.139 0.176.0 Infigure 2, a single abscissa is used for the various ℓx0 , which is as if the dependence of the
nodal lines on energy and angularmomentumhad been neglected, i.e., it is equivalent to = ℓx x00 0 , or

= =A B 0 in equation (6). The resonance position shows a pseudo-periodic dependence onnode position: for
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eachℓ value, separate branches appear successively, with discontinuities occuring atℓ-dependent values ℓx0

such that =ℓ ℓ+J x(1 (2 )) 0(2 1) 4 0
2 , where νJ denotes a regular Bessel function.When this condition is fulfilled, a

bound level with angularmomentumℓ reaches the threshold and becomes a shape resonance. Correspondingly,
the number of boundℓ-levels is decreased by one, as is the number of nodes of the resonance wave function
inside the potential barrier, < <ℓ ℓx x x0 . Between two consecutive discontinuities, along a given branch, the

resonance energy increases from threshold, reaches the top of the potential barrier, ℓ ℓ= +ℓv 2[ ( 1) 3]top
3 2,

and even passes over the top of the barrier, with the resonance profile becoming very broad. The dependence of
the reduced s-wave scattering length on x00 (see equation (12) of [13]) is also shown infigure 2. It exhibits an
analogous pseudo-periodic pattern, and the presence of an ℓ = 0 bound level just at threshold corresponds, as is
well known, to infinite scattering length. One can see infigure 2 that, for a given value of the scattering length,
there is nevermore than one resonance below the top of a particularℓ-potential barrier; andwhen a resonance
appears in a particularℓ-channel, resonances also appear in the ℓ ± p4 (p integer) channels. In order to
properly account for the contribution of the potential and centrifugal term at short range, <x x00, the nodal
lines need to depend on both energy and angularmomentum [13]. The results presented infigure 2 can easily be
extended to energy- and angularmomentum-dependent node positions ℓx0 : the dependence on angular
momentum simply introducesℓ-dependent translations parallel to the horizontal axis. The energy-dependence
modifies the shape of the curves shown infigure 2 only slightly. The position andwidth offield-free resonances
of anymolecule can be estimated from figure 2, once the nodal lines ℓx0 , equation (6) have been chosen (we use

in this section the ’universal’ asymptoticmodel [13], with = = −A A x( ) 8G
00

7 , = =B B x( ) 4G
00

5 andC=0,
resulting in nodal lines depending only on x00). The results of the transformation  →ℓx x( ) ( )r r0 00 are
presented infigure 3, with the abcissa nowbeing actually x00. In addition, for the figure to bemore compact, we
have divided ℓ

r by the height of the corresponding rotational barrier
ℓvtop. Figure 3 is useful to predict, at least

roughly, the position of shape resonances of amolecule with s-wave scattering length aS: the resonances lie on
the vertical line located at the abcissa =a x a( ) S00 (with aS in reduced units). The dashed vertical lines in figure 3

Figure 2. (b), (c): energies (takenwith respect to the threshold) andwidths of evenℓ-wave field-free shape resonances as a function of
the node position ℓx0 in a single-channel asymptoticmodel with energy- and angularmomentum-independent nodal lines. The
energies, ℓ

r , are represented by continuous lines; and the curves  γ±ℓ ℓ 2r , where γℓ denotes the resonancewidth, are drawn as
dashed lines. The tops of the potential barriers, ℓ ℓ= +ℓv 2[ ( 1) 3]top

3 2, are indicated by the horizontal dot-dashed lines ((c):
ℓ⩽ ⩽10 20, i.e., gray: ℓ = 10; orange: ℓ = 12; dark brown: ℓ = 14; light purple: ℓ = 16; rose: ℓ = 18; red: ℓ = 20. b: ℓ⩽ ⩽2 8:

purple: ℓ = 2; light blue: ℓ = 4; dark blue: ℓ = 6; green: ℓ = 8.) (a): s-wave scattering length, in reduced units.
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indicate the examples of 88Sr2 and
86Sr88Sr studied in paper I, with the scattering lengths equal to aS = −2 a0 [27]

or−0.013 reduced units and =a 97.9S a0 [28] or 0.664 reduced units, respectively. Note that, for a given

molecule, the resonance energies relative to the barrier tops, ℓ ℓvr top, generally decrease regularly with
increasingℓ. Note also that shape resonances with ℓ = p4 (p integer, not too high) appear at threshold for a
reduced scattering lengthwith large absolute value, whereas shape resonances with ℓ = +p4 2 appear at
threshold for a reduced scattering length close to 0.48. This property had been derived analytically byGao [29]
by solving the Schrödinger equation for a −x 6 potential plus centrifugal term limited at →x 0G

0 by an infinite

repulsive wall [29, 30].With this potential, analytical values for the reduced s-wave scattering length ℓa G and the

wall position ℓx G
0 for which the last, least-bound rotational levels ℓ = 1, 2, 3, 4 modulo 4 are located exactly at

the dissociation limit, have been obtained [29, 30]. For →x 000 , the ’universal’ asymptotic nodal linemodel
becomes equivalent toGao’s universalmodel.

For completeness, figure 4 presents thewidths of the field-free resonances, calculated in the single-channel
asymptoticmodel, as a function of resonance energy. These widths are already visible infigure 2, where they are
represented by the distance between the dotted lines around each resonance. Figure 4 shows the general trend of
thewidths as a function of the energy relative to the top of the barrier: At threshold, the resonances have a
vanishingwidth, which rapidly increases when the resonance energy increases (note the logarithmic scale). At

Figure 3. (b): Energy divided the heigth of the potential barrier, ℓ ℓvr top, ofℓ-wave field-free shape resonances ( ℓ⩽ ⩽2 20 even) as a

function of the node position x00 (in reduced units) of the s-wave thresholdwave function ( =ℓ= x( ) 00
00 ) in the universal single-

channel asymptoticmodel with energy- and angularmomentum-dependent nodal lines ( =A AG =B BG). The relative energies for
two ℓ + p4 -series (with integer p), ℓ = …2, , 18 and ℓ = …4, , 20, are represented by continuous lines; and the three adjacent
series by dashed lines (same color code as infigure (2). The horizontal black dotted–dashed line indicates the top of the potential
barriers. (a): s-wave scattering length, a x( )S 00 , as a function of node position. The vertical dashed black lines correspond to
88Sr2(x00∼ 0.1545) and 86Sr88Sr(x00∼ 0.1590).

Figure 4.Resonance widths γℓ as a function of resonance position, divided by the heigth of the centrifugal barrier, ℓ ℓvr top, forℓ-
wave field-free shape resonances (withℓeven, ℓ⩽ ⩽2 20, same color code as infigure 2), obtained by single-channel calculations
with energy- and angularmomentum-independent nodal lines. The abscissas 0 and 1 correspond to a resonance at threshold and a
resonance at the top of the centrifugal barrier, respectively, and the dashed black vertical line indicates the top of the barriers.
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the top of the potential barrier, the resonance width is rather huge, between 1 and 100 reduced units. This
general behavior is observed for all partial waves.

5.2. Universality in the non-resonant light control of shape resonances at low intensity
The linearity of the intensity dependence of the resonance positions observed in paper I [14] and the validity of
perturbation theory at low intensity suggest amore detailed investigation of the field-dressed resonances in the
universal asymptoticmodel. To this aim, we determine the position of the field-dressed resonances,  ℓ ( )r , at
very smallfield intensity ( = 0.01 reduced units) as a function of node position ℓx0 , in the range

⩽ ⩽ℓx0.139 0.1760 , and for partial waveswith evenℓ-value, with ℓ⩽ ⩽2 20. For the same partial wave and

the same ℓx0 value, the resonance positionwithout non-resonant field is denoted by ℓ (0)r .When determining
these two resonance positions, the contribution of the non-resonant field is accounted for only in the ‘outer’
zone, > ℓx x0 . The contribution of thefield to the ‘ℓ-reduced’ slope of the resonance position’s intensity-
dependence in the outer zone can therefore be quantified as

   
ℓ ℓ

=
−

+

ℓ ℓ( ) (0)

( 1)
. (17)r r

out

The contribution of the non-resonant field in the ‘inner’ zone results, as described in I [14], in a change of the
node position proportional to the field intensity.With equation (6), this change becomes  =ℓx Cd d0 . The
contribution of thefield to the ‘ℓ-reduced’ slope in the inner zone becomes

 
ℓ ℓ

=
+

ℓ

ℓ

ℓ

x

x1

( 1)

d (0)

d

d

d
, (18)r

in
0

0

where thefirst derivative is evaluated from the dependence of ℓ (0)r on ℓx0 , reported infigure 2. The second
derivative is taken to be equal to the value ofC, =C CG, in the universal asymptoticmodel (cf equation (13) in
paper I [14]),

= − +C x x12 3 48. (19)G
C00

4 4

Here, σ=x RC C is the position, in reduced units, at which the asymptotic expansion for the polarizabilities is
truncated (see section 2 of paper I [14]). In the universalmodel, the total reduced slope is equal to
  = +in out and depends for eachℓ-value on the resonance position, ℓ (0)r . Calculating  ℓ( (0))r for the

same energy ℓ (0)r but using different branches for the node ℓx0 (see figure 2) results in almost the same value.
This proves the adequacy of our treatment of the different interactions (potential, rotational energy, laser field
interaction) in the inner zone. Figure 5 presents the total ‘ℓ-reduced’ slopes  as a function of thefield-free
resonance position relative to the heigth of the potential barrier, ℓ ℓv(0)r top. Although a large number ofℓ values
and, in principle, any value of the scattering length is included in the calculations, strikingly, the slopes infigure 5
are contained in a rather small interval. The largest deviations occur for the lowestℓ-values, ℓ = 2 or 4. For a
fixedℓ-value, the slope increases slightly (i.e., its absolute value decreases) with increasing resonance energy, or,
equivalently, with increasing node position ℓx0 . The absolute value of the ‘ℓ-reduced’ slope decreases withℓ. It
presents a less pronounced variationwhenℓ increases. Forℓ larger than approximatively 8, the ‘ℓ-reduced’
slope is roughly independent ofℓ, with only aweak dependence on the energy relative to the barrier height,

Figure 5. ‘ℓ-reduced’ slopes,  δ ℓ ℓ +[ ( 1)], calculatedwith a single-channel universal asymptoticmodel in the limit  → 0, as a
function of ℓ ℓv(0)r top for evenℓ values ℓ⩽ ⩽2 20 (same color code as infigure 2). The contribution of the interactionwith the
non-resonant light in both outer zone, > ℓx x0 , and inner zone, < ℓx x0 , are accounted for, cf equations (17) and (18). The ‘ℓ-
reduced’ slopes obtained by solving themulti-channel Schrödinger equation for 88Sr2 ℓ = 4, 8, 12, 16 (red), 133Cs2 ℓ = 5, 9
(blue) and 87Rb2 ℓ = 2 (green), cffigure 1, are indicated by stars. The corresponding ‘ℓ-reduced’ slopes deduced from the universal
asymptoticmodel are indicated by open circles with the same colors as the stars. The values predicted in paper I [14] for the ℓ = 2 and
ℓ = 6 resonances in 86Sr88Sr, using amulti-channel asymptoticmodel, are indicated by black open circles.
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ℓ ℓv(0)r top. Themean value of the total ‘ℓ-reduced’ slopes is   = = − ±ℓ( 0) 0.11 0.2r at the dissociation limit

and   = = − ±ℓ ℓv( ) 0.05 0.2r top at the top of the potential barrier.
The ‘ℓ-reduced’ slopes obtained by solving themulti-channel Schrödinger equationwithHamiltonian (1)

for the ℓ = 4, 8, 12 and 16 resonances of 88Sr2, the ℓ = 2 resonance of 87Rb2 and the ℓ = 5 and 9 resonances of
133Cs2, reported infigure 1, are in very good agreement with the values obtained from the universal asymptotic
model, even for the highestℓ values. The universalmodel thus appears suitable to predict, at least
approximately, the ‘ℓ-reduced’ slope for any diatomicmolecule.Moreover, wefind the heuristic scaling
observed in table 3 to roughly hold in reduced units and for any value of the reduced scattering length. The
approximate scaling rule therefore seems to be generally applicable, for a large number ofℓ values and for any
dimer.

6. Conclusions

Wehave applied first order perturbation theory to the asymptoticmodel for shape resonance control of
diatomicmolecules interacting with non-resonant light developed in [14].Ourwork is the first to employ an
asymptoticmodel using the nodal line technique [10] to treat the perturbation of continuum states in the
framework of collision theory, i.e., the Born approximation. As in earlier studies applying this approach to shape
resonances [13, 14], wefind it crucial to properly account for interactions at short range.

The perturbation theory treatment has beenmotivated by observing a linear dependence of the resonance
position on non-resonant field intensity for severalmolecules with different scattering lengths and shape
resonances in different partial waves. Comparisonwith fullmulti-channel calculations has revealed the
perturbative approach to be valid for not too low valuesℓ of the partial waves. The advantage of the perturbative
approach is that it results in a single-channelmodel which facilitates calculations significantly. Although the
non-resonant field couples partial waveswithℓ and ℓ ± 2, wefind the single-channel perturbation
approximation to be valid up to comparatively high intensity.We rationalize this finding as follows: Thefirst
order perturbation correction to the resonance energy is related to the expectation value of −x 3 (where x denotes
the interatomic separation in reduced units). Themain contribution to the corresponding radial integral comes
from x values just before the centrifugal barrier. In this range, the amplitude of the scatteringwave functions is
rather small, implyingweak coupling, except at energies where a resonance appears. Since, close to threshold,
resonances exist simultaneously only forℓ and ℓ ± 4, the resonances themselves are not strongly coupled by the
non-resonant field. Therefore an overall only weak channelmixing is observed, justifying the perturbative
approach.

We have analyzed the linear dependence of the resonance position on non-resonant field intensity by
introducing reduced slopes, i.e., slopes divided by ℓ ℓ +( 1).We have observed an almost identical value for the
reduced slope of several shape resonances in strontium, rubidium and cesium. The approximately identical
dependence of the reduced slope on energy, relative to the height of the centrifugal barrier, is reproduced by
systematic calculations using the universal asymptoticmodel, where the field-free scattering length is the only
free parameter. Our universalmodel is equivalent to themulti-channel quantumdefect treatment of shape
resonances developed byGao [20, 21, 29]. Fixing the value of thefield-free scattering length in the universal
model allows for predicting the position offield-free shape resonances [13, 21]. The corresponding predictions
of our perturbative approach are less accurate for lower partial waves. In contrast, the slopes of the intensity-
dependence of the resonances are well predicted even for highℓ-values.

For all partial waves except for ℓ = 2, the reduced slopes are found to vary regularly and in a small intervall
from the dissociation limit, where the resonances emerge, to the top of the centrifugal barrier, where the
resonances start to dissolve. This behavior is independent of the specificmolecule, it depends neither on its
reducedmass, nor on itsC6 coefficient, polarizability or scattering length, characteristic of the short range
interaction. The stability of the reduced slope, derived here first by generalizing observations for a small number
ofmolecules and partial waves, presents a universal trend forfield-dressed shape resonances.

The perturbative treatment developed here allows for a simple and efficient approach to determine the
intensity-dependence in non-resonant light control of shape resonances since it requires single-channel
calculations using the field-free resonance functions only. The slopes predicted by perturbation theory are
sufficient to estimate, at least approximately, the non-resonant field intensities that are required to shift afield-
free resonance to a desired position. This is important for utilizing non-resonant light control inmolecule
formation via photoassociation [16] or Feshbach resonances [17]. In addition to tuning the position andwidth
of shape or Feshbach resonances, non-resonant light control can also be employed to change the s-wave
scattering length. This will be studied in detail elsewhere [31].
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Appendix. Perturbation of a shape resonance in the nodal line asymptoticmodel

The description of the pertubation of a shape resonance by aweak interaction takes a rather simple form in the
nodal line formalism. For simplicity, the following derivation assumes the use of reduced units, but no particular
forms for the radial potentials involved in the zero orderH0 andfirst orderH1Hamiltonians.

We consider a shape resonance associated to aHamiltonianH0 with position r0 andwidth γ0. Let us assume
that the resonance is characterized by a Lorentzian profile of the derivative δ ′( )0 of the phaseshift with respect
to energy, (see for instance equation (1.185) in [22]),


 

δ
γ

γ
′ =

− +( ) ( )
( )

2

2
. (A.1)

r

0
0

0
2

0

2

In the nodal line asymptotic formalism, the energy-normalized radial wave function y(0) for anyℓ value at any
value of scattering energy  = k2 can be obtained from two separate inward integrations inwhich the asymptotic
behavior of the energy-normalized solution is imposed to be either πkx ksin( ) or πkx kcos( ) , with
respective solutions f x( )0 and g x( )0 (see section A 2 in I). The condition imposed to the physical solution y(0) is
to vanish at the node position =x x0. The corresponding phaseshift is given by

δ = −
f x

g x
tan ( )

( )

( )
. (A.2)0

0 0

0 0

⎡⎣ ⎤⎦

The solution y(0) is identical to the regular wave function F x( )0 associated toH0, with an asymptotic behavior
δ π+kx ksin( ( ))0 (see [13]),

 δ δ= +F x f x g x( ) cos ( ) ( ) sin ( ) ( ). (A.3)0 0 0 0 0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

The linearly independent solution associated to F x( )0 is the irregular wave function G x( )0 given by

 δ δ= − +G x f x g x( ) sin ( ) ( ) cos ( ) ( ). (A.4)0 0 0 0 0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Let us add a small perturbation characterized by aHamiltonian =H v x( )1 , where the parameter 
characterizes the strength of the perturbation.We assume the profile of the resonance to remain Lorentzian in
the presence of this small perturbation, with the new profile depending on  ,

 
   

δ
γ

γ
′ =

− +( )
( )

( ) 2

( ) ( ( ) 2)
. (A.5)

r
2 2

Close to  = 0, the -dependence of δ′( ) is related to the derivatives at  = 0 of the -dependencies of
position andwidth:

  


 
 


 
 

δ
γ

γ

γ γ

γ

′ =
−

− +

+
− −

− +

( )

( ) ( )

( ) ( )

( ) ( )

d

d
( )

d

d
2

d

d

1

2

2

2

. (A.6)

r r

r

r

r

0 0

0
2

0

2 2

0
2

0

2

0
2

0

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The -dependence of the phaseshift can be related to theHamiltonianH1: for any  , the additional phaseshift
Δδ ( )out coming from the perturbation in the outer asymptotic domain >x x0 is given, tofirst order in  , by

the Born approximation (see for instance equation (4.38) in [22]):
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 
 ∫

Δδ Δδ

π

∼

= −
∞

v x y x x

( ) tan ( )

( ) ( ) d , (A.7)
x

out out

(0) 2

0

⎡⎣ ⎤⎦
where x0 is the position of the node, such that

 
 ∫

Δδ

π π= − = −
∞

v x y x x

d

d
( )

( ) ( ) d ( ). (A.8)
x

out

(0) 2
out

0

⎡⎣ ⎤⎦
The derivative with respect to  of the last equation has to be fitted to equation (A.6), allowing us to

determine the derivatives with respect to intensity at  = 0 of position andwidth of thefield-dressed resonance.
For narrow resonances, the -dependence of thewidth is weak and the corresponding term in 

γd

d
can be

neglected compared to the other one. This implies that the integral in equation (A.8) has a Lorentzian shape,
with the same center r0 andwidth γ0 as δ ′( )0 (equationA.1) . If we call m the value of the integral  ( )out at
 = r0, we deduce the slope of the -dependence of the resonance position at  = 0 to be

     ∫π γ=+ =
−∞

∞d

d
2 ( )d , (A.9)r m out

which is equal to the strength of the interaction integrated over thewhole energy-profile. For an attractive
potential <v x( ) 0, the integral  ( ) and therefore the slopes 


d

d
r are negative and Δδ ( )out , equation (A.7), is

positive.
The nodal line formalism also allows to account for the perturbation due to the internal part of the

perturbationH1 at <x x0, which introduces a shift Δx proportional to  in the node position. A simple
relationship between Δx and the correspondingmodification tofirst order in  of the phaseshift Δδ ( )in can be
obtained from equation (A.2)

Δδ = −
+

( )
x

W g f

f x g x

d

d
( )

,

( ) ( )
, (A.10)

0
in

0 0

0 0
2

0 0
2

where = ′ − ′W g f g f g f( , )0 0 0 0 0 0 denotes theWronskian (here the derivatives are takenwith respect to x).
Employing the property =F x( ) 00 0 and the relation between the pairs of functions f g( , )0 0 and F G( , )0 0 ,

π
= =

+ = + =

( ) ( )W g f W G F

f x g x F x G x G x

, ,
1

,

( ) ( ) ( ) ( ) ( ) , (A.11)

0 0 0 0

0 0
2

0 0
2

0 0
2

0 0
2

0 0
2

wefind

Δδ
π

= −
x G x

d

d
( )

1

( )
. (A.12)

0
in

0 0
2

Finally, the contribution of the inner zone to the variation of the phaseshift is, for any value of energy,

    Δδ
π

π= − = −
x

G x

d

d
( )

d

d

1

( )
( ). (A.13)in

0

0 0
2 in

For an attractive potential v(x), the shift in the node position is negative (see the value ofCG in equation 19) and
Δδ ( )in is positive.

This additional correction to the phaseshift coming from the inner part of the perturbation also results in a
shift of the resonance position. This contribution equation (A.13) is to be added to the slope due to the
asymptotic part of the perturbation equation (A.8). As above the derivative with respect to  of the total slope of
the change in the phaseshift associatedwith the perturbationH1

       Δδ Δδ Δδ π= + = −d

d
( )

d

d
( )

d

d
( ) ( ), (A.14)out in

has to befitted to equation (A.6) to determine the slopes at  = 0 in the variation of the energy position and
width of thefield-dressed resonances.
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