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Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron
angular distribution with respect to the propagation axis of circularly polarized light. It has recently
been demonstrated in femtosecond multi-photon photoionization experiments with randomly ori-
ented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and
C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this
process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-
photon photoselection from randomly oriented molecules and successive one-photon ionization of the
photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio
calculations for the two-photon absorption and a single-center expansion of the photoelectron wave-
function in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces
the basic symmetry behavior expected under exchange of handedness and light helicity. When applied
to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which
a sufficient d wave character of the electronically excited intermediate state is crucial. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4973456]

I. INTRODUCTION

Photoelectron spectroscopy is a powerful tool for study-
ing photoionization dynamics. Intense short laser pulses for
the ionization, which easily drive multi-photon transitions,
allow to observe effects in table-top experiments that oth-
erwise would require synchrotron radiation. A recent exam-
ple is the photoelectron circular dichroism (PECD) of chiral
molecules.1–5 It refers to the forward/backward asymmetry
with respect to the light propagation axis in the photoelec-
tron angular distribution (PAD) obtained after excitation with
circularly polarized light.6–9 When the PAD is expanded in
Legendre polynomials, a PECD is characterized by the expan-
sion coefficients of the odd-order polynomials with the highest
order polynomial being determined by the order of the process,
i.e., the number of absorbed photons.6,10

A theoretical description of such experiments with intense
femtosecond laser pulses requires a proper account of the
multi-photon excitation pathways. In the pioneering work of
McClain and co-workers,11–13 a model for the simultaneous
absorption of two photons including the corresponding modi-
fied molecular selection rules was formulated. Two-photon cir-
cular dichroism was developed in Ref. 14, attributing the effect
to a difference in the absorption coefficient for the two left and
two right polarized photons. These approaches are based on
a perturbation expansion of the light-matter interaction. The
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strong-field approximation provides an alternative description
which is particularly suited for very intense fields.15,16

Multi-photon transitions driven by strong femtosecond
laser pulses may or may not involve intermediate states. In
recent experiments with bicyclic ketones,1–5 a 2+1-REMPI
process was employed. The nature of the intermediate state
remains yet to be clarified. A first theoretical study used the
strong-field approximation.17 While the standard strong-field
approximation using a plane wave basis for the photoelec-
tron was found to fail in describing PECD, accounting for
the Coulomb interaction between a photoelectron and pho-
toion in the Born approximation allowed for the observation
of PECD. However, the PAD did not agree with the experimen-
tal ones. This may be explained by the role of the intermediate
state in the REMPI process which necessarily is ignored in the
strong-field approximation.17

Here, we take the opposite approach, starting with a
perturbation theory treatment of the multi-photon process.
Thus, ionization is viewed as a (weak) one-photon transition
into the continuum, the “initial” state of which is prepared
by non-resonant two-photon absorption. Such an approach
is motivated by the moderate intensities, of the order of
1012 W/cm2, used in the experiments.1–5 Although clearly
in the multi-photon regime, such intensities can be described
comparatively well by low order perturbation theory.18–20

The non-resonant two-photon preparation step yields an
important difference compared to pure one-photon excita-
tion.6 In the latter case, the first order Legendre polynomial
alone accounts for the PECD.21–23 This results from the ran-
dom orientation of the molecules, or, in more technical terms,
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from integrating the differential cross section over the Euler
angles. In contrast, non-resonant two-photon excitation may
lead to an orientation-dependent probability distribution of the
molecules in the resonant intermediate state.2,24 In this case,
the maximum order of Legendre polynomials contributing to
the PAD is not limited to 2, but 6 for a 2+1 process. Whether
the two-photon absorption is orientation-dependent is deter-
mined by the two-photon transition matrix elements. Here,
we calculate the two-photon transition matrix elements using
state of the art ab initio methods. However, for molecules
as complex as camphor and fenchone, it is extremely chal-
lenging to model the complete photoionization process from
first principles, even when using the most advanced ab initio
methods. We therefore split the theoretical description into two
parts.

As long as all electrons remain bound, state of the art
quantum chemical approaches, for example, the coupled clus-
ter methods, can be used to accurately determine the electronic
wave functions. However, once an electron starts to leave the
ionic core, the standard basis sets of electronic structure theory
are not well adapted. An alternative is offered by a single-
center expansion into eigenfunctions of a hydrogen-like atom
for which both bound and continuum functions are known
analytically. The hydrogenic continuum functions properly
account for the long-range Coulomb interaction between the
ionic core and ejected electron but neglect the effect of short-
range correlations in the ionization step. The basis func-
tions for the single center expansion are chosen such as to
yield the simplest possible model that is able to reproduce
the laboratory-frame photoelectron angular distributions (LF-
PADs) resulting from a 2+1-REMPI process in randomly ori-
ented chiral molecules. The two descriptions are matched at
the resonant, electronically excited intermediate state by pro-
jecting the numerically calculated wavefunction onto the basis
functions of the single center expansion.

Our approach of calculating the PAD as a one-photon
absorption cross section for an effective “initial” state in a
single center expansion, while neglecting dynamical effects,
provides a simple, yet rather general model for PECD in ran-
domly oriented chiral molecules after 2+1 REMPI. It allows us
to analyze, beyond the examples of fenchone or camphor and
independent of details specific to those molecules, the role of
the laser polarization for each step in the 2+1 ionization pro-
cess and the conditions on the two-photon absorption matrix
elements for yielding PECD.

The remainder of the paper is organized as follows:
Our theoretical framework is introduced in Sec. II, whereas
Secs. III and IV present the application of the theory to the
examples of fenchone and camphor. In detail, Sec. II A defines
the PAD as one-photon photoionization cross section and
summarizes the single center expansion. To make connection
with experiment, the cross sections need to be transformed
from the molecule-fixed frame into the laboratory frame and
averaged over the random orientations of the molecules. The
corresponding expressions for a 2+1 REMPI process are pre-
sented in Sec. II B with the details of the derivation given in
Appendix B 1. The symmetry properties required for observ-
ing PECD are analyzed in Sec. II C. Section III is dedicated
to ab initio calculations for the intermediate, electronically

excited states and the two-photon absorption matrix elements.
Section III A presents the computational details and Sec. III B
the results. The one-center re-expansion required for matching
the numerical results to the single-center description derived in
Sec. II is described in Sec. III C. Our numerical results for the
PAD of camphor and fenchone and the corresponding PECD
are presented in Sec. IV with Sec. IV A dedicated to fenchone
and Sec. IV B to camphor. Our findings are summarized and
discussed in Sec. IV C. Section V concludes.

II. MODEL

We model the resonantly enhanced multi-photon pho-
toionization as a 2+1 process,24 assuming the last photon to
constitute a weak probe of the molecular state that is prepared
by non-resonant two-photon absorption. For simplicity, we
employ the strict electric dipole approximation. That is, con-
tributions from magnetic dipole terms, which are important for
circular polarization dependent differences in absorption cross
sections, and higher order electric and magnetic multipole
terms are neglected.

Defining two coordinates systems, the molecular frame
of reference R and the laboratory frame R′, ε ′%2

denotes the
polarization of the laser field with respect to the laboratory
frame (where we distinguish the polarization of the ioniz-
ing photon, ε ′%2

from that of the first two photons, ε ′%1
). For

convenience, we work in the spherical basis. Thus, ε ′%2
and

ε ′%1
correspond to the spherical unit vectors in the laboratory

frame, with %1,2 = ±1, 0 denoting left/right circular and linear
polarization of the laser beam which propagates in the positive
z′ direction (the relation between the spherical and Cartesian
unit vectors is found in Eq. (A7)). Primed (unprimed) coor-
dinates refer to the laboratory (molecular) frame of reference
throughout. Both frames, R′ and R, are related by an arbitrary
coordinate rotation D(αβγ), where ω = (α, β, γ) denotes the
Euler angles defining the orientation of R with respect to R′.

Consider a one-photon (1P) transition in a molecule whose
orientation with respect to R′ is given by the Euler angles ω.
The corresponding differential photoionization cross section,
when measured in the molecular frame R, reads, within per-
turbation theory and the electric dipole approximation and in
SI units,25

d2σ1P

dω dΩk
= c0

���〈Ψk |ε
′
%2
· r|Ψo〉

���
2
, (1)

where c0 = 4π2α~ωph withα being the fine-structure constant,
~ωph the energy of the ionizing photon, ~ the reduced Planck
constant, and r the position operator of the electron (or a sum of
the various position operators in the multi-electron case). The
polarization of the electric field in the laboratory frame of ref-
erence is specified by ε ′%2

, where %2 takes the value 0 for linear
and +1(�1) for left (right) circular polarization, respectively.
|Ψk〉 denotes an energy normalized molecular state with one
electron transferred to the ionization continuum with asymp-
totic electron linear momentum k. |Ψo〉 is the (bound, unity
normalized) molecular state prepared by the non-resonant two-
photon absorption, which is defined in the molecular frame
of reference. In Eq. (1), we employ the standard notation for
doubly differential cross sections in the molecular frame of
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Refs. 23, 26, and 27 that depend not only on the solid angleΩk
but also on the orientation of the molecule via the Euler angles
ω. We utilize a single-center approximation28 which allows
us to calculate the matrix elements in Eq. (1) explicitly. That
is, we project the multi-electron wave function obtained from
ab initio calculations, |Ψo〉, on one-electron basis functions and
neglect electron correlations in the continuum description. We
first discuss in Sec. II A our choice of |Ψo〉 and then explain
below in Sec. II B how to connect the differential ionization
cross section to the experimentally measured photoelectron
angular distributions.

A. Single center expansion

The “initial” state for the one-photon ionization is a multi-
electron wavefunction which is usually expanded in specially
adapted basis functions developed in quantum chemistry. In
contrast, the single center expansion is based on the fact
that any molecular wavefunction can be written as a linear
combination of functions about a single arbitrary point.28 Of
course, such an ansatz will converge very slowly, if the multi-
center character of the wavefunction is important. Writing the
wavefunction of the electronically excited state of the neutral
molecule, that is prepared by the two-photon absorption pro-
cess, as 〈r|Ψo〉 = Ψo(r), we expand it into eigenfunctions of a
hydrogen-like atom,

Ψo(r) =
∞∑

no=0

no−1∑
`o=0

`o∑
mo=−`o

a`o
mo

(no) Rno
`o

(r) Y `o
mo

(Ωr). (2)

Here, a`o
mo

(no) stands for the unknown expansion coefficients,
Rno
`o

(r) denotes the radial eigenfunctions of the hydrogen-like

atom, and Y `o
mo

(Ωr) are the spherical harmonics. Ωr = (ϑr, φr)
refers to the polar and azimuthal angles of the position vector r
in the molecular frame of reference. Note that all information
about the geometry and the symmetry properties of the “ini-
tial” electronically excited state is contained in the expansion
coefficients a`o

mo
(no). The number of basis functions must be

truncated in any actual calculation, i.e.,

Ψo(r) ≈
nmax

o∑
no=nmin

o

no−1∑
`o=0

`o∑
mo=−`o

a`o
mo

(no) Rno
`o

(r) Y `o
mo

(Ωr). (3)

Strictly speaking, all molecular orbitals that are involved
in Slater determinants describing the excited state should be
subject to the single center expansion. In the present model,
we employ an effective one-electron picture by expanding
only one representative virtual orbital around the single center,
namely the one that is additionally occupied in the supposedly
leading configuration for the respective excited state.

We will also ask what the simplest possible model is that
gives rise to PECD. In this case, we assume a single quantum
number n, n = no, to contribute to Eq. (2), i.e.,

Ψ
s
o(r) ≈

Lo,max∑
`o=0

`o∑
mo=−`o

a`o
mo

Rno
`o

(r) Y `o
mo

(Ωr), (4)

where Lo,max refers to the highest angular momentum state
appearing in the “initial” wavefunction. It follows from basic
symmetry arguments that the minimal value of Lo,max for

which a PECD can be expected is Lo,max = 2, that is, at least
d-orbitals are required.

We model the photoionization as a one-electron pro-
cess arising from a hydrogenic-like system exclusively, which
allows for neglecting the bound molecular part (the remaining
molecular parent ion) in |Ψk〉. Thus, the resulting continuum
wave functions,Ψk(r), are expanded into partial waves in a way
that allows for an explicit expression of the photoionization
cross section in terms of the scattering solid angleΩk,22,26,27,29

Ψk(r) = 4π
∞∑

l=0

l∑
m=−l

i`φk,`,m(r) Y ∗ `m (Ωk) Y `m(Ωr). (5)

Here, Y `m(Ωr) and Y `m(Ωk) correspond to the spherical harmon-
ics describing the orientation of the photoelectron position and
momentum, respectively, and φk,`,m(r) is the radial part of the
photoelectron wavefunction. For simplicity, we use here and
in the following Y ∗ `m (Ωk) as an abbreviation for (Y `m(Ωk))

∗
.

Modeling photoionization as a one-electron process, we can
approximate

φk,`,m(r) ≈ e−iδ`Gk,`(r), (6)

where Gk,`(r) are the well-known radial continuum wavefunc-
tions of the hydrogen atom, recalled in Appendix A 1, and
δ` stands for the Coulomb phase shift of the `th scattered
partial wave, with δ` = Γ(` + 1 − i/k).23,27,29 Note that we
expect the phase shift for molecules to depend on `o and mo

since the molecular potential of chiral molecules is not spher-
ically symmetric. Neglecting the mo-dependence of the phase
shift involves no approximation when using Eq. (2) since the
hydrogen eigenfunctions form a complete orthonormal basis.
However, this is not true anymore when truncating the basis, cf.
Eq. (3). Our ansatz thus involves an additional approximation,
namely Eq. (6).

By construction, Eq. (6) yields orthogonality between
bound and unbound wavefunctions which is required to avoid
spurious singularities26 and reproduce the correct threshold
behavior of the photoionization cross-sections.30 With the
approximation of Eq. (6), we account for the long-range
Coulomb interaction between a photoelectron and a point
charge representing the ionic core but neglect the short-range
static exchange. Also, dynamic changes in the electron dis-
tribution, such as adjustments of the electronic cloud due to
nuclear motion, as well as the interaction of the outgoing pho-
toelectron with the driving electric field upon photoionization
are neglected.

Inserting Eq. (6) into Eq. (5) yields

Ψk(r) = 4π
∞∑

l=0

l∑
m=−l

i`e−iδ`Gk,`(r) Y ∗ `m (Ωk) Y `m(Ωr), (7)

and we can evaluate the matrix element in Eq. (1). Because the
wavefunctions are given in the molecular frame of reference,
we need to rotate the spherical unit vector ε ′%2

in Eq. (1) into
that frame.23 Expanding the rotation operator D(αβγ) con-
necting r and r′ into irreducible rank 1 tensor representations,
cf. Appendix C, Eq. (1) becomes
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d2σ1P

dωdΩk
= c0

1∑
q=−1

1∑
q′=−1

D(1)
q,%2

(ω)D(1)
−q′,−%2

(ω)

× (−1)q′−%2〈Ψk |rq |Ψo〉〈Ψk |rq′ |Ψo〉
∗. (8)

Inserting Eqs. (4) and (7) to evaluate the overlap integrals
yields

d2σ1P

dω dΩk
= c0

∑
`,m

no`o,mo

∑
`′,m′

n′o,`′o,m′o

1∑
q=−1

1∑
q′=−1

(−i)`−`
′

ei(δ`−δ`′ )

× a`o
mo

(no) a∗`
′
o

m′o
(n′o)Ino

k
(`, `o)In′o

k (`′, `′o)

×Y `m(Ωk)Y ∗`
′

m′ (Ωk)D(1)
q,%2

(ω)D∗(1)
q′,%2

(ω)

×S`,m
`o,mo

(q)S∗`
′,m′

`′o,m′o
(q′). (9)

In Eq. (9), we have introduced radial and angular integrals
Ik(`, `o) and S`,m

`o,mo
(q), given by

Ino
k (`, `o) = Io

∫ +∞
0

r3 Gk,`(r) Rno
`o

(r) dr (10a)

for a fixed no in Eq. (2) with Io = 4π/3, and

S`,m
`o,mo

(q) =
∫

Y ` ∗m (Ωr) Y1
q (Ωr)Y `o

mo
(Ωr) dΩr

= (−1)−m b`,`o

(
` 1 `o

0 0 0

) (
` 1 `o

−m q mo

)
(10b)

with

b`,`o =
√

3 (2` + 1)(2`o + 1)/4π

and using Wigner 3j symbols.31–34 The angular integral
S`,m
`o,mo

(q) determines, for each spherical unit vector q = 0,±1,
the selection rules between the angular components of the
bound excited electronic state with quantum numbers `o, mo

and the partial wave components of the continuum wavefunc-
tion with quantum numbers `, m. Equation (10b) implies that
transitions are allowed if and only if ` + 1 + `o is even and
mo + q � m = 0 for all |`o − 1| ≤ ` ≤ `o + 1. This is a special
case of the more general rule for multipole transitions derived

in Ref. 10. The angular integrals can be evaluated analytically
using the standard angular momentum algebra, whereas the
radial integrals in Eq. (10a) are computed numerically.

The choice of basis to describe the radial part of the con-
tinuum wavefunction determines the weight with which each
excited state expansion coefficient a`o

mo
(no) contributes to the

PAD, cf. Eqs. (9) and (10a). Thus, choosing for example planes
waves, i.e., the eigenfunctions of the “free” photoelectron,
which is described in terms of the Bessel functions,31,32,34 and
does not take into account the Coulomb interaction between the
outgoing photoelectron and the remaining ion, would translate
into a PAD different from the one obtained with the hydro-
genic continuum wavefunctions of Eq. (7).35 Whether or not
the model is able to reproduce the measured Legendre coef-
ficients will to some extent depend on the choice of basis for
the radial part in Eq. (5).

The missing ingredients to determine the differential pho-
toionization cross section, Eq. (1), are the expansion coeffi-
cients, a`o

mo
(no), of the intermediate excited state wavefunction.

They can either be used as fitting parameters or determined
from ab initio calculations, see Sec. III.

Two more steps are then required to connect the differ-
ential ionization cross section to the experimentally measured
PAD. First, the PAD is measured in the laboratory frame and
the differential ionization cross section thus needs to be rotated
from the molecular into the laboratory frame. Second, the ori-
entation of the molecule with respect to the laboratory frame,
defined by the polarization axis of the laser electric field, is
arbitrary. We therefore need to average over all possible ori-
entations, i.e., integrate over the Euler angles ω = (α, β, γ),
as we consider a randomly oriented initial ensemble of
molecules.6,7,36

B. Photoelectron angular distributions

Rotating the differential cross section from the molecu-
lar into the laboratory frame requires rotation of the contin-
uum state |Ψk〉 into |Ψk′〉 using the inverse of Eq. (A4). This
leads to

d2σ1P

dω dΩk′
= c0

∑
`,m

no,`o,mo

∑
`′,m′

n′o,`′o,m′o

∑
q,q′

(−i)`−`
′

ei(δ`−δ`′ ) a`o
mo

(no) a∗`
′
o

m′o
(n′o)Ino

k
(`, `o) In′o

k (`′, `′o)S`,m
`o,mo

(q)S∗`
′,m′

`′o,m′o
(q′)

×

`+`′∑
L= |`−`′ |

(
` `′ L
0 0 0

) (
` `′ L
m −m′ −(m − m′)

) L∑
µ=−L

D(1)
q,%2

(ω)D(1)
−q′,−%2

(ω)D(L)
m′−m,−µ(ω)PµL(cos ϑ′k) eiµϕ′k

× (2L + 1) ςµL(`, `′) (−1)m′+q′−%2 , (11)

where ς
µ
L(`, `′) is defined in Eq. (B5) in Appendix B 1.

PµL(cos ϑ′k) denotes the associate Legendre polynomials. A
detailed derivation of Eq. (11) is found in Appendix B 1.
Equation (11) provides the explicit expression for the dif-
ferential photoionization cross section of the 2+1 REMPI
process.

When averaging over all orientations in the second step,
we need to account for the fact that the probability for

non-resonant two-photon absorption from the ground state
to the intermediate electronically excited state is, depending
on the properties of the two-photon absorption tensor, not
isotropic.24 The differential ionization cross section in the lab-
oratory frame therefore needs to be weighted by the probability
of the electronically excited state to be occupied after absorp-
tion of the first two (identical) photons. Thus, the cross section
for photoemission into a solid angle dΩk′ around the axis k′
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in the laboratory frame, after one-photon transition from the
electronically excited intermediate state, is given by

d2σ2+1

dω dΩk′
= ρ2P(ω)

d2σ1P

dω dΩk′
, (12)

where ρ2P(ω) denotes the orientation-dependent probabil-
ity to reach the intermediate excited state by absorption of
two identical photons from the ground state. Equation (12)
assumes a molecule to have, in its electronic ground state,
an initial orientation of ω = (α, β, γ) with respect to the lab-
oratory frame of reference. Note that Eq. (12) makes an
additional assumption, namely the relative phase between
the two-photon and one-photon steps to be irrelevant for
the photoelectron spectrum and angular distribution. For
a discussion of similar approximations in related multi-
photon transitions between bound states, see, for instance,
Refs. 11 and 12.

The experimentally measured PAD contains contribu-
tions from all molecules in the sample, each of them with
a specific orientation ω. The total photoelectron signal is
therefore obtained by an incoherent summation over the con-
tributions from all molecules. This is equivalent to inte-
grating Eq. (12) over the Euler angles weighted by the
probability of two-photon absorption. The “averaged” pho-
toionization cross section in the laboratory frame therefore
reads

dσ2+1

dΩk′
=

∫
ρ2P(ω)

d2σ1P

dω dΩk′
dω, (13)

where the integration is carried out over the Euler angles
α, β, γ.

The orientation-dependent probability to reach the inter-
mediate excited state, ρ2P(ω), is obtained from the transition
probability for two-photon absorption from the ground state
|Ψg〉 to the intermediate electronically excited state |Ψo〉.24 The
latter in general is defined as37

A(2)
o,g = Ñ0(ωph) |M|2, (14a)

where M, in the strict electric dipole approximation,
exp(ik · r) ≈ 1, reads

M =
∑

n

{
(e1 · 〈Ψo |r|Ψn〉)(〈Ψn |r|Ψg〉 · e2)

~ωg − ~ωn + ~ωph,2

+
(e1 · 〈Ψo |r|Ψn〉)(〈Ψn |r |Ψg〉 · e2)

~ωg − ~ωn + ~ωph,1

}
. (14b)

In Eq. (14b), ej denotes the polarization direction (without
specifying a certain frame of reference) of photon j (j = 1, 2)
with energy ~ωph,j. To shorten notation, the polarization
independent quantity Ñ0(ωph) in Eq. (14a) contains all
prefactors,

Ñ0(ωph) =
2πe4

0

~3c2
(F1 ~ωph,1) I(ωph,2),

with e0 being the elementary charge, and where F1 and I(ωph,2)
refer to the incident laser-photon-flux (of type 1) and the energy
flux per unity frequency (of type 2), respectively.37 Evalua-
tion of Eq. (14b) requires a frame transformation, since the
wavefunctions involved in the two-photon transition matri-
ces are known in the molecular frame whereas the polar-
ization directions of the photons are given in the laboratory
frame of reference. As before, transformation of the polar-
ization directions from the laboratory frame to the molecular
frame is carried out by means of the Wigner rotation matri-
ces around the Euler angles ω = (α, β, γ). Consequently, the
orientation dependent two-photon absorption probability is
obtained as

ρ2P(ω) =

(
8π2~

3

)2

Ñ0(ωph)

�������

∑
q1,q2

D(1)
q1,%1

(ω)D(1)
q2,%1

(ω) Tq1,q2

�������

2

,

(15a)

where we have applied the properties of the rotation matrices
between both frames, detailed in Appendix A 3, to Eq. (14b).
In Eq. (15a), Tq1,q2 denotes the two-photon absorption tensor
in the molecular frame of reference, whose tensor elements
read

Tq1,q2 =
∑

n

〈Ψo |rq1 |n〉〈n|rq2 |Ψg〉

~ωg − ~ωn + ~ωph,2
+
〈Ψo |rq2 |n〉〈n|rq1 |Ψg〉

~ωg − ~ωn + ~ωph,1
,

(15b)

and %1 denotes the polarization direction in the labora-
tory frame of reference, i.e., %1 =±1, 0, driving the two-
photon absorption process, both photons having the same
polarization direction. Additionally, the indexes q1 and q2

take the values ±1, 0. Finally, rqk denotes the spherical
component of the position operator r̂, with qk =±1, 0. The
correspondence between the spherical and Cartesian compo-
nents of rk is detailed in Eq. (A7). Hence, it is straightfor-
ward to write Tq1,q2 in terms of the tensor elements writ-
ten in the Cartesian basis, Tαβog (ωph), for α, β = x, y, z, cf.
Eq. (C4). The correspondences are detailed in Eq. (A8), in
Appendix A 3.

A further step consists of normalizing the probability
density, such that the normalization condition∫

ρ2P(ω) dω = 1 (16)

is fulfilled. Using the properties of addition of angular
momenta, it is straightforward to find that the normalization
factor reads, upon integration of Eq. (15a) over the Euler
angles,

Ñ0(%1) = γ̃(ωph)B(%1), (17a)

where we have defined

B(%1) =
∑
q1,q2
q′1,q′2

Tq1,q2 T ∗q′1,q′2

2∑
Q=0

(2Q + 1)

(
1 1 Q
q′1 q′2 −q′1 − q′2

) (
1 1 Q
%1 %1 −2%1

) (
1 1 Q
q1 q2 −q′1 − q′2

) (
1 1 Q
%1 %1 −2%1

)
, (17b)
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with γ̃(ωph)≡ (8π2~/3)
2 Ñ0(ωph). To retrieve Eq. (17b), we

have made use of the properties involving the product
of two Wigner rotation matrices, as well as the integra-
tion involving a product of three Wigner rotations matri-
ces, and apply them to Eq. (15a). These properties are out-
lined in Eqs. (A9) and (B16), in Appendixes A 3 and B 3,
respectively.

Finally, the orientation dependent probability density
reads

ρ2P(ω) = N0(%1)

�������

∑
q1,q2

D(1)
q1,%1

(ω)D(1)
q2,%1

(ω) Tq1,q2

�������

2

(18)

with N0(%1)=B−1(%1). In order to alleviate notations, and
unless otherwise stated, we write N0 = N0(%1). It is impor-
tant to note, however, that in practice, computation of N0 is
not required, since this factor is common to all Legendre coef-
ficients, and all of them are given normalized with respect to
c0, which is also customary for the presentation of experimen-
tal data.1,4 Equations (13) and (18) provide a prescription for
calculating the partial alignment of molecules in multi-photon
ionization. This effect has been widely discussed in the liter-
ature, see, e.g., Refs. 2 and 21, but without stating an explicit
way for quantifying it.

Each component of the second-rank tensor Tq1,q2 deter-
mines a property of the system, namely, the average transition
rate. As a result of that the tensor Tq1,q2 has two types of sym-
metry properties. The first one is due to an intrinsic symmetry
originated from the property itself. For instance, Tq1,q2 defines
the probability of an absorption of two identical photons. Since
two photons of the same energy and polarization are not the

same, Tq1,q2 has to be symmetric. The second type of sym-
metry comes from the geometric symmetry of the molecule,
and that specifies which of the tensor components have to be
zero.38,39

In the isotropic case, ρ2P(α, β, γ) = 1, and evaluation of
Eq. (13) is analogous to integrating over Eq. (11), resulting
in the standard expressions for the differential photoioniza-
tion cross section:3,21–23,26,40 If the weak probe photon is
linearly polarized (ε ′%2

= ε ′0), only the Legendre coefficients c0

and c2 can become non-zero, whereas for circularly polarized
light, c0, c1, and c2 can have non-vanishing values. Moreover,
the laboratory frame PAD preserves the cylindrical symmetry
with respect to the propagation direction of the light z′, i.e.,
µ = %2 − %2 = 0 in Eq. (11).

The situation changes if the probability to populate the
intermediate electronically excited state becomes anisotropic.
If this probability depends on the initial orientation of the
molecule, given in terms of the Euler angles ω with respect
to the laboratory frame R′, the Wigner rotation matrices in
Eq. (15a) couple to those in Eq. (11). Upon integration over
the Euler angles in Eq. (13), this gives rise to higher order Leg-
endre polynomials in the PAD, as we show now. To evaluate
the angular momentum coupling in Eq. (13), we expand the
norm squared in Eq. (15a). Making use of the product rule for
Wigner rotation matrices, Eq. (15a) then becomes

ρ2P(ω) = N0

∑
q1,q2
q3,q4

(−1)q3+q4 Tq1,q2 T ∗q3,q4

4∑
K=0

g(K)
q1,q2,q3,q4

D(K)
s,0 (ω),

(19a)

with s = q1 + q2 � q3 � q4, and where we have defined

g(K)
q1,q2,q3,q4

(%1) =
2∑

Q=0

2∑
Q′=0

Q+Q′∑
K= |Q−Q′ |

γ(K)
Q,Q′

(
1 1 Q
q1 q2 −q1 − q2

) (
1 1 Q
%1 %1 −2%1

)

×

(
1 1 Q′

q3 q4 −q3 − q4

) (
1 1 Q′

%1 %1 −2%1

) (
Q Q′ K

q1 + q2 −q3 − q4 −s

) (
Q Q′ K

2%1 −2%1 0

)
(19b)

with γ(K)
Q,Q′
= (2Q + 1)(2Q′ + 1)(2K + 1). In Eq. (19a),

the orientation dependence is contained in D, the polar-
ization dependence in g, and the dependence on molecu-
lar parameters in T. The derivation of Eqs. (19), employ-
ing the standard angular momentum algebra, is presented in
Appendix B 2. We make once more use of the product rule
for two rotation matrices, namely those involving the laser
polarization in Eq. (11), cf. Eq. (A9a) in Appendix B 3.
Thus, a product of three rotation matrices is obtained when
inserting Eqs. (19) and (B12) into Eq. (12). Evaluating the
products of the Wigner 3j symbols, the differential cross sec-
tion, Eq. (12), for a specific orientation ω of the molecule
becomes

d2σ2+1

dωdΩk′
= co

∞∑
L=0

+L∑
µ=−L

bµL(ω) PµL(cos ϑ′k) eiµφ′k , (20a)

where the only orientation-dependent quantity, bµL(ω), is
given by

bµL(ω) =
∑
λ

κ(λ) DK
s,0(ω)Dνq−q′,0(ω)DL

m′−m,−µ(ω). (20b)

Note that the summation in Eq. (20b) runs over all indices, ex-
ceptL and µ, i.e., λ = {K , ν, Q, Q′, q, q′, qk , no, n′o, `, `′, `o, `′o},
with K = 1, 2, 3, 4 and ν = 0, 1, 2 appearing from the
coupling of the first and second Wigner rotation matrices in
Eq. (11), cf. Eq. (B11). The specific form of κµL(λ) is detailed
in Eq. (B15), in Appendix B 3.

We can now use the integral properties of a product
of three Wigner rotation matrices,31,32,34 cf. Eq. (B16) in
Appendix B 3. Integration of bL

µ,ν(ω) over the Euler angles then
yields



024306-7 Goetz et al. J. Chem. Phys. 146, 024306 (2017)

cµL,λ =

∫
bµL,λ(ω) d3ω

=
∑
λ

κ
µ
L(λ)

(
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 −µ

)
=

∑
λ

κ
µ
L(λ)

(
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 0

)
δµ,0. (21)

Note that the second Wigner symbol on the right-hand side of
Eq. (21) is non-zero only if µ = 0 and K + ν + L is even with
|K − ν | ≤ L ≤ K + ν. Because µ = 0, the terms depending
on the azimuthal angle in Eq. (11) do not contribute and we
retrieve cylindrical symmetry for the PAD of Eq. (13) which
can thus be expressed in terms of Legendre polynomials. Fur-
thermore, according to the fifth and sixth Wigner symbols in
Eq. (19b), K = 0, . . . , 4, because |Q − Q′ | ≤ K ≤ Q + Q′,
and 0 ≤ Q ≤ 2 according to the first and second Wigner
symbols in Eq. (19b). The same applies to Q′, reflecting the

addition of angular momentum in a two-photon absorption
process.

Making use, in Eq. (21), of the fact that the non-zero
contributions for ν are given by ν = 0, 1, 2, cf. Eq. (B11),
one obtains that L runs from 0 to 6, and higher orders give
only vanishing contributions. Therefore, the highest order
Legendre polynomial that contributes to the PAD is Lmax

= 6, as expected for a 2+1 process from the 2(m + n) � 1
rule.21

Finally, evaluating Eq. (13) with the help of Eq. (21) yields
the experimentally measured PAD that is obtained for an initial
ensemble of randomly oriented molecules,

dσ2+1

dΩk′
=

6∑
L=0

cL PL
(
cos ϑ′k

)
, (22a)

with coefficients

cL(%1, %2) = c̃o N0

∑
`,m

no,`o,mo

∑
`′,m′

n′o`
′
o,m′o

∑
q,q′

∑
q1,q2
q3,q4

2∑
ν=0

4∑
K=0

(−1)q3+q4 (2ν + 1)(2L + 1)a`o
mo

(no) a∗`
′
o

m′o
(n′o) Tq1,q2 T ∗q3,q4

× (−i)`−`
′

(−1)m′−q−%2 ei(δ`−δ`′ ) g(K)
q1,q2,q3,q4

(%1) Ino
k

(`, `o) In′o
k (`′, `′o) S`,m

`o,mo
(q) S`

′,m′

`′o,m′o
(q′) ς̂(`, `′)

×

(
` `′ L
m −m′ m′ − m

) (
` `′ L
0 0 0

) (
1 1 ν
q −q′ q′ − q

) (
1 1 ν
%2 −%2 0

) (
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 0

)
, (22b)

with c̃o = 4πco, and ς̂(`, `′) =
√

(2` + 1)(2`′ + 1). Deriva-
tion of Eqs. (22) is explicitly detailed in Appendix B 3.
Note that the coefficients cL(%1, %2) depend on the expan-
sion coefficients a`o

mo
(no) describing the intermediate electroni-

cally excited state, the two-photon absorption tensor elements,
Tq1,q2 , and the laser polarization directions of the two-photon
absorption step, %1, and of the one-photon ionization, %2.
Equation (22b) is the central result of our perturbation the-
ory, based on separating non-resonant two-photon absorption
and one-photon ionization. It connects the electronic structure
of the molecule directly to the Legendre coefficients of the
PAD which is accessible in experiment.

We would like to emphasize that the contribution of Leg-
endre polynomials with order higher than 2 in Eqs. (22) is
due to the orientation dependence of populating the interme-
diate electronically excited state by two-photon absorption
from the electronic ground state. That is, the density ρ(ω)
expresses the fact that molecules with a certain orientation
ω = ω1 have a larger probability to undergo non-resonant
two-photon absorption than molecules with some other orien-
tation ω = ω2. So although the molecules are assumed to be
completely randomly oriented with respect to the laser beam
axis when they are in their electronic ground state, an effec-
tive alignment results for those molecules that absorb two
photons. This effective alignment results from the selection
of certain orientations rather than rotational dynamics which
would occur on a much slower time scale. The contribution of
higher order Legendre polynomials to the PAD is then entirely
determined by the properties of the two-photon absorption
tensor and the electronically excited state. In order to inter-
pret the experimentally observed PADs for fenchone and

camphor in terms of their expansion in Legendre polyno-
mials, at least qualitatively, we estimate a`o

mo
(no) and Tq1,q2

using ab initio calculations or via fitting. Before present-
ing the corresponding details in Sec. III, we discuss below
the basic symmetry properties of these parameters of our
model as well as the dependence on the laser polarization
directions %1, %2.

C. PECD and symmetry

By definition, PECD is obtained if the sign of the odd
Legendre coefficients changes when the helicity of the elec-
tric field changes. Analogously, for fixed electric field helicity,
the odd Legendre coefficients change sign when enantiomers
are interchanged. We therefore first inspect sign changes in
the Legendre coefficients for molecules of opposite handed-
ness within our one-center expansion framework. The relation
between a given enantiomer and its mirror image is given by
the parity operator, which changes the coordinates r to �r. We
therefore check, in the following, that our model transforms
properly under parity.

Moreover, we determine the role that the excited state
coefficients a`o

mo
(no) and two-photon absorption tensor ele-

ments play for each Legendre coefficient that contributes to
the PAD. To this end, we rewrite Eq. (22b), expressing each
cL(%1, %2) explicitly in terms of a`o

mo
(no) and Tq,q′ ,

cL(%1, %2) =
∑

no,`o,mo
n′o,`′o,m′o

∑
q1,q2
q3,q4

γ
no,`o,m,n′o,`′o,m′o
q1,q2,q3,q4

(L, ε ′%1
, ε ′%2

)

× a`o
mo

(no) a∗`
′
o

m′o
(n′o) Tq1,q2 T ∗q3,q4

. (23)
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Equation (23) allows for determining each Legendre coeffi-
cient as a function of the intermediate electronically excited
state via a`o

mo
(no) and Tq,q′ , i.e., it connects the measured Leg-

endre coefficients to the electronic structure properties. We
can thus compare the contribution of different a`mo

(no) to
different Legendre coefficients cL, and explain differences,
observed, e.g., for different molecules, in terms of the elec-
tronic structure. This is important because investigation of
camphor and fenchone revealed, for example, the same order
of magnitude for the first and third Legendre coefficient in
camphor, in contrast to fenchone where c3 is about one order
of magnitude smaller than c1.1,4 This observation suggests
a significantly different electronic structure despite the fact
that the two bicyclic monoketones are constitutional iso-
mers which differ only in the position of the geminal methyl
groups.41

In the following, we discuss the behavior under parity
and the contribution of the a`o

mo
(no) and Tq,q′ to the cL(%1, %2)

separately for the excited state coefficients, the two-photon
absorption tensor, and the laser polarization.

1. Role of the excited state expansion coefficients

In this section, we explicitly show that our single-center
expansion for the (2+1) REMPI process properly transforms
under parity. Note that the two-photon absorption process
conserves parity, which implies that exchanging enantiomers
results in a parity change of the expansion coefficients of
the intermediate electronically excited state, from a`o

mo
(no)

to (−1)`o a`o
mo

(no). For practical convenience, we define the
following quantity present in Eq. (22b) depending on `o

and mo:

PL = a`o
mo

(no)a`
′
o

m′o
(n′o)S `,m

`o,mo
(q) S `

′,m′

`′o,m′o
(q′)

(
` `′ L
0 0 0

)
. (24)

Upon application of the parity operator, Eq. (24) becomes

P̃L = (−1)`o+`
′
o a`o

mo
(no)a`

′
o

m′o
(n′o)

×S `,m
`o,mo

(q)S `
′,m′

`′o,m′o
(q′)

(
` `′ L
0 0 0

)
. (25)

Furthermore, we make use of the following property of the
Wigner 3j symbols:25,31,32,34(

j j′ J
m m′ M

)
= (−1)j+j′+J

(
j j′ J
−m −m′ −M

)
, (26)

and apply it to the first Wigner 3j symbol in the expres-
sions for S `,m

`o,mo
(q) and S `

′,m′

`′o,m′o
(q′), i.e., Eq. (10b), containing

triple zeros in the second row. The parity-transformed PL thus
becomes

P̃L = (−1)`o+`
′
o (−1)`+`o+`

′+`′o

×S `,m
`o,mo

(q) S `
′,m′

`′o,m′o
(q′)

(
` `′ L
0 0 0

)
. (27)

Applying Eq. (26) once more to the Wigner 3j symbol in
Eq. (27) allows for eliminating the explicit dependence of P̃L
on the partial waves ` and `′,

P̃L = (−1)`o+`
′
o (−1)`+`o+`

′+`′oS `,m
`o,mo

(q)S `
′,m′

`′o,m′o
(q′)

× (−1)`+`
′+L

(
` `′ L
0 0 0

)
= (−1)LS `,m

`o,mo
(q)S `

′,m′

`′o,m′o
(q′)

(
` `′ L
0 0 0

)
= (−1)LPL. (28)

Because PL and P̃L refer, by construction, to enantiomers of
opposite handedness, Eq. (28) implies a change of sign for L
odd, cf. Eqs. (22), when interchanging enantiomers, and no
sign change for L even. Our model properly reproduces this
basic symmetry behavior. The corresponding behavior under
change of the light helicity, keeping the same enantiomer, is
checked below in Sec. II C 2.

Next we check the dependence of the non-zero Legendre
coefficients contributing to the PAD on the maximum order
Lo,max of the excited state coefficients, a`o

mo
(no), cf. Eq. (4).

According to Equations (22b) and (22a) non-zero projection
of the electronically excited state onto d-orbitals (`o = 2) is
required to ensure that higher orders cL are non-zero. In fact,
an additional requirement to reach Lmax = 6 is that Lo,max ≥ 2.
This is straightforward to see by inspecting the term(

` `′ L
0 0 0

)
in Eq. (22b), defining the PAD for a (2+1) REMPI process. This
term vanishes unless ` + `′ + L is even and |` − `′ | ≤L ≤ ` + `′.
In order to reach Lmax = 6, the minimal requirement in terms
of the angular momentum for the continuum wavepacket is
`max = 3. Together with the selection rule `max = Lo,max + 1,
cf. Eq. (10b), this implies Lo,max = 2, i.e., presence of
d-waves in the resonantly excited state. Note that a contri-
bution from higher partial waves only modifies the algebraic
value of the Legendre coefficients but does not lead to higher
orders because, as we have already pointed out, the maximal
order of the Legendre coefficients is also limited by the term(

K ν L
0 0 0

)
in Eq. (22b).

Perhaps even more interestingly, for circular polarization
direction (%1 = %2 = ±1), c5 vanishes if the projection of the
electronically excited state onto `o = 3 is zero. In other words,
expansion of the electronically excited state in terms of s, p, and
d orbitals results in non-zero Legendre coefficients cL for L
up to 6, except for c5. In fact, we found c5 to appear only in the
presence of a non-vanishing contribution of f orbitals. This
does not result from selection rules as discussed before, but
rather from an accidental compensation of terms in the sum-
mations in Eq. (22b) which arises from the central symmetry
of our single center basis functions.

Given the experimental observation of Refs. 1 and 4, we
expect the electronically excited state for fenchone and cam-
phor to have non-vanishing projections onto s-, p-, d-, and
possibly f -orbitals. Also, the eventual expansion coefficients
of the electronically excited state will most likely be different
for fenchone and camphor to account for the different ratios
of c3 and c1 observed for the two molecules.1,4
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2. Role of polarizations ρ1 and ρ2

Having shown sign inversion for the odd Legendre coef-
ficients for enantiomers of opposite handedness and a fixed
circular polarization direction, we outline, in the following,
an analogous symmetry property that is relevant when con-
sidering the same enantiomer but inverting the polarization
direction. By definition, PECD requires all odd Legendre
expansion coefficients for a given enantiomer to change sign
when changing circular polarization from left to right, and vice
versa. In order to show that our approach also properly repro-
duces this behavior, we employ again the symmetry properties
of the Wigner 3j symbols in Eq. (22b) to Sec. II C 1. For the
sake of completeness, we consider the general case of inde-
pendent polarizations for the two-photon absorption and the
one-photon ionization processes.

First, we consider all terms in Eq. (22b) depending on ε ′%2
.

We apply Eq. (26) to the fourth and sixth Wigner 3j symbol in
Eq. (22b) for cL(−%1,−%2). This yields(

1 1 ν
−%2 +%2 0

)
= (−1)2+ν

(
1 1 ν
%2 −%2 0

)
(29a)

for the fourth Wigner 3j symbol, and(
K ν L
0 0 0

)
= (−1)K+ν+L

(
K ν L
0 0 0

)
(29b)

for the sixth Wigner 3j symbol in Eq. (22b) when the polar-
ization direction driving the ionization process is −%2. Next,
we evaluate the expression containing the information about
the polarization direction driving the two-photon absorp-
tion process. For ε−%1 , the term gK

%1
(q1, q2, q3, q4), defined in

Eq. (19b), reads

gK
−%1

(q1, q2, q3, q4) = (−1)K gK
+%1

(q1, q2, q3, q4), (29c)

when changing %1 to −%1. In Eq. (29c), we have applied Eq.
(26) to the second, fourth, and sixth Wigner 3j symbols in
Eq. (19b). The Legendre coefficient cL(−%1,−%2) involves,
according to Eq. (22b), the triple product of Eqs. (29), that is,

gK
−%1

(q1, q2, q3, q4)

(
1 1 ν
−%2 +%2 0

) (
K ν L
0 0 0

)
= (−1)LgK

+%1
(q1, q2, q3, q4)

(
1 1 ν
+%2 −%2 0

) (
K ν L
0 0 0

)
. (30)

This implies, according to Eq. (22b),

cL(−%1,−%2) = (−1)L cL(+%1,+%2), (31)

i.e., indeed, only odd Legendre coefficients change sign when
changing simultaneously the polarization directions %1 and %2,
whereas all even coefficients remain unchanged.

Next, we evaluate all non-vanishing Legendre coefficients
as a function of the polarization directions %1 and %2 without
making any assumptions on the two-photon absorption tensor
T. To this end, we first consider the case where the two-photon
absorption process is driven by linearly polarized light, %1 = 0.
The second Wigner 3j symbol in Eq. (19b) then becomes(

1 1 Q
%1 %1 −2%1

)
=

(
1 1 Q
0 0 0

)
.

It does not vanish if and only if Q = 0, 2; and analogously for the
fourth Wigner symbol in Eq. (19b) involving Q′. Furthermore,
the sixth Wigner 3j symbol in Eq. (19b) becomes(

Q Q′ K
0 0 0

)
,

which is non-zero only if K is even, because Q and Q′ are
even, and |Q−Q′ | ≤ K ≤ Q+Q′. As a consequence, because
both Q and Q′ are restricted to 0 and 2, K must be equal to
0, 2, or 4. Now, we consider the fourth Wigner 3j symbol in
Eq. (22b), namely (

1 1 ν
%2 −%2 0

)
, (32)

which contains the information about the photoionization tran-
sition. If the photoionization process is driven by linearly
polarized light (%2 = 0), the allowed values for ν in Eq. (32)
are ν = 0, 2. Therefore, the last Wigner symbol in Eq. (22b),(

K ν L
0 0 0

)
, (33)

has non-vanishing values only for |K − ν | ≤ L ≤ K + ν
and K + v + L must be even due to the triple zeros in the
second row. Because K = [0, 2, 4] for %1 = 0 and ν = 0, 2 for
%2 = 0, the maximal order of Legendre coefficients is Lmax

= 6 and the non-vanishing Legendre coefficients are those for
L = 0, 2, 4, 6, i.e., there are no odd Legendre polynomials in
the PAD for %1 = %2 = 0.

On the other hand, if we keep %1 = 0 but the photoioniza-
tion transition is driven by circularly polarized light (%2 = ±1),
the non-vanishing values in Eq. (32) are not anymore restricted
to even ν, but instead to ν = 0, 1, 2. Using these values for
ν together with the requirement |K − ν | ≤ L ≤ K + ν in
Eq. (33), we obtain, for K = 0, 2, 4 (due to %1 = 0), even as well
as odd Legendre polynomials in the PAD, i.e., L = 0, 1, . . . , 6.

Next we check whether PECD can arise, i.e., whether
the non-zero odd coefficients change sign under changing the
light helicity, for %1 = 0 and %2 = ±1. To this end, we explic-
itly write out the dependence of Eq. (22b) on the polarization
direction %2 driving the ionization step and define

ζK ,ν
L (%2) =

(
1 1 ν
%2 −%2 0

) (
K ν L
0 0 0

)
, (34a)

corresponding to the fourth and sixth Wigner 3j symbol in
Eq. (22b). For the opposite polarization direction −%2, this
quantity becomes

ζK ,ν
L (−%2) =

(
1 1 ν
−%2 %2 0

) (
K ν L
0 0 0

)
= (−1)2ν+K+L

(
1 1 ν
%2 −%2 0

) (
K ν L
0 0 0

)
= (−1)L ζK ,ν

L (%2), (34b)

where we have applied Eq. (26) to both Wigner 3j symbols in
Eq. (34b), together with the fact that K is even for %1 = 0,
as previously discussed. Finally, inserting Eq. (34b) into
Eq. (22b) yields

cL(%1 = 0,−%2) = (−1)LcL(%1 = 0,+%2). (35)
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As a consequence, also for linearly polarized light driving
the two-photon absorption process, odd Legendre coefficients
change sign when the polarization direction of the ionizing
field is changed from right to left, and vice versa. Whereas
K must be even for %1 = 0, ν = 0, 1, 2 for %2 = ±1, allow-
ing L to take odd and even values in Eq. (34b). This implies
that there is no need for circular polarization to drive the two-
photon absorption process: Two-photon absorption driven by
linearly polarized light followed by photoionization with cir-
cularly polarized light is sufficient for observing PECD in
chiral molecules. In Section II C 3 we investigate the spe-
cific role of the two-photon aborption tensor for all the cases
discussed above. Conversely, the two-photon transition may
be driven by circularly polarized light followed by photoion-
ization with linearly polarized light, i.e., %1 = ±1 and %2 = 0.
As shown in Eq. (B26) in Appendix B 4, such a configura-
tion leads to a PAD consisting exclusively of even Legendre
contributions.

In Eq. (31) we have shown that only odd Legen-
dre coefficients change sign when changing simultaneously
the polarization direction driving the two-photon absorption
and the one-photon ionization. In Appendix B 5, we show
that

cL(%1, %2) = (−1)LcL(%1,−%2), (36)

i.e., odd Legendre coefficients change sign when the polar-
ization direction of the photoionization transition is changed,
whereas the polarization of the field driving the two-photon
absorption is kept fixed. This suggests the polarization direc-
tion of the ionizing field alone to impose the sign for all
odd Legendre coefficients; the polarization direction in the
two-photon absorption process plays no role. To verify this
statement, we calculate cL(−%1, %2) in Appendix B 6 and find
indeed

cL(−%1, %2) = cL(+%1, %2). (37)

That is, the two-photon process determines only the degree of
anisotropy prior to ionization.

To summarize, using linearly polarized light for both two-
photon absorption and one-photon ionization results in a PAD
consisting only of even Legendre polynomials, i.e., vanishing
PECD. In contrast, when the (2+1) REMI process is driven
by circularly polarized light, higher order odd Legendre poly-
nomials may contribute, depending on the geometric proper-
ties of the resonantly excited state. The occurrence of non-
zero Legendre coefficients for all polarization combinations is
summarized in Table I below.

3. Role of two-photon absorption tensor

The number of Legendre coefficients that contribute to
PECD in our model of the 2+1 REMPI process is determined
by how anisotropic the ensemble of electronically excited
molecules is. This, in turn, follows from the properties of the
two-photon absorption tensor. Here, we check the conditions
that Tq1,q2 , in order to give rise to this anisotropy. To this end,
we introduce the two-photon absorption amplitude A2P(ω),
where for convenience the multiplying factor in Eq. (18) has

been dropped,

A2P(ω) =
∑
q1

∑
q2

D(1)
q1,%1

(ω)D(1)
q2,%1

(ω) Tq1,q2 , (38)

i.e., ρ2P(ω) ∝ |A2P(ω)|2, cf. Eq. (18). For simplicity, we define
Ã2P(ω) such that A2P(ω)= 4π

3 Ã2P(ω). We first check the
’trivial’ case of an isotropic two-photon absorption tensor, i.e.,
a two-photon tensor that is diagonal in the Cartesian basis with
equal elements. In this case, Ã2P(ω) becomes

Ã2P(ω) = +D(1)
0,%1

(ω)D(0)
0,%1

(ω) Tzz

−
1
2
D(1)
−1,%1

(ω)D(1)
+1,%1

(ω)
(
Txx + Tyy

)
−

1
2
D(1)
+1,%1

(ω)D(1)
−1,%1

(ω)
(
Txx + Tyy

)
,

where we have employed the transformation between spherical
and Cartesian basis, cf. Eq. (A7). Taking the elements to be
equal, T xx = T yy = T zz = 1 without loss of generality, Ã2P(ω)
can be written as

Ã2P(ω) = D(1)
0,%1

(ω)D(1)
0,%1

(ω) − 2D(1)
−1,%1

(ω)D(1)
+1,%1

(ω)

=
∑
µ=0,±1

(−1)µD(1)
µ,%1(ω)D(1)

−µ,%1
(ω)

=
∑
µ=0,±1

(−1)−%1D(1)
µ,%1(ω)D∗(1)

µ,−%1
(ω)

= (−1)−%1 δ%1,−%1 , (39)

where we have used Eq. (B10). That is, for an isotropic two-
photon tensor, it is not possible to reach an anisotropic distri-
bution by absorption of two identical photons. The PAD for the
(2+1) REMPI process then reduces to the well-known one for
one-photon ionization of randomly oriented molecules, i.e.,
only P0 and P2 contribute if %2 = 0, and P0, P1, and P2 are
non-zero for %2 = ±1.

In what follows, we discuss a general two-photon absorp-
tion tensor, decomposing it as

T = αo13× 3 +
*.
,

βxx 0 0
0 βyy 0
0 0 βzz

+/
-
+

*.
,

0 Txy Txz

Txy 0 Tyz

Txz Tyz 0

+/
-

≡ TId + Td + Tnd, (40)

where we have split the diagonal elements into TId and Td in
order to differentiate between isotropic and anisotropic two-
photon tensors. The contributions of odd and even Legendre
polynomials to the PAD as a function of Lo,max, the number
of partial waves in the electronically excited state, the polar-
izations ε ′%1

and ε ′%2
, and the two-photon absorption tensor are

summarized in Table I. If the complete (2+1) REMPI process is
driven by linearly polarized light and only α0 , 0, then Po and
P2 contribute to the PAD as just discussed. If the two-photon
absorption tensor is anisotropic, even Legendre polynomials
of higher order can appear. For a molecule characterized by
such a two-photon absorption tensor, odd Legendre polyno-
mials can contribute to the PAD if the polarization of the
ionization step is circular (ε ′%2

= ε ′
±1). Analogously, both even

and odd Legendre polynomials can appear if ε ′%1
= ε ′%2

= ε ′
±1.

Note that anisotropy of the two-photon tensor is sufficient, i.e.,
it does not matter whether the anisotropy is due to diagonal or
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TABLE I. Contribution of Legendre coefficients to the PAD as a function of the partial wave cut-off in Eq. (4) and the polarizations ε ′%1
and ε ′%2

of two-photon
absorption and photoionization, respectively, for an isotropic and anisotropic two-photon absorption tensor T within the strict electric dipole approximation.
• contributing to the PAD. − not contributing to the PAD.

ε ′0/ε
′
±1 ε ′

±1/ε
′
0 ε ′0/ε

′
0 ε ′

±1/ε
′
±1 ε ′

±1/ε
′
∓1

Isotropic s p d f s p d f s p d f s p d f s p d f

c0 • • • • − − − − • • • • − − − − − − − −

c1 − − • • − − − − − − − − − − − − − − − −

c2 • • • • − − − − • • • • − − − − − − − −

c3 − − − − − − − − − − − − − − − − − − − −

c4 − − − − − − − − − − − − − − − − − − − −

c5 − − − − − − − − − − − − − − − − − − − −

c6 − − − − − − − − − − − − − − − − − − − −

ε ′0/ε
′
±1 ε ′

±1/ε
′
0 ε ′0/ε

′
0 ε ′

±1/ε
′
±1 ε ′

±1/ε
′
∓1

Anisotropic s p d f s p d f s p d f s p d f s p d f

c0 • • • • • • • • • • • • • • • • • • • •

c1 − − • • − − − − − − − − − − • • − − • •

c2 • • • • • • • • • • • • • • • • • • • •

c3 − − • • − − − − − − − − − − • • − − • •

c4 − • • • − • • • − • • • − • • • − • • •

c5 − − − • − − − − − − − − − − − • − − − •

c6 − − • • − − • • − − • • − − • • − − • •

non-diagonal elements of the Cartesian tensor. The latter case
is the one discussed in Ref. 2, where a “nearly” diagonal
two-photon absorption tensor was used. In other words, an
anisotropic tensor with non-zero off-diagonal elements in the
Cartesian basis also yields the pattern in the lower part of
Table I.

As indicated, the point group symmetry of the molecule
determines which tensor components of Tq1,q2 must be zero.
This tensor pattern is a property of the states involved in
the transition and is determined by the symmetry of the ini-
tial and final states. For instance, in molecular systems with
point groups T and O, the photon absorption tensor becomes
more selective. The 2+1 process between two states that trans-
form like the totally symmetric representation of these point
groups will only take place with linearly polarized laser light.
In this case the isotropic part TId of Eq. (40) can remain
nonzero. If the 2+1 process involves initial and final states
that transform like non-totally symmetric representations of
the point group, the tensor pattern changes and thus the ten-
sor might have isotropic or anisotropic parts. This determines
whether the 2+1 process is allowed or not. We refer the
reader to Refs. 38 and 39 for more detailed discussion of this
issue.

III. AB INITIO CALCULATIONS

The theoretical framework to model PECD presented
above involves a number of molecular parameters. These can
either be obtained by fitting the theoretical PAD to the experi-
mental results or from ab initio calculations. Below we provide
ab initio results for the two-photon absorption tensor for non-
resonant transitions from the electronic ground state to the
lowest-lying electronically excited states of fenchone and cam-
phor. To assess the quality of these calculations, we employ

different basis sets and different levels of treating electronic
correlation.

A. Computational details

The linear response coupled cluster method with single
and double (CC-SD) cluster amplitudes is used to calculate the
intermediate electronically excited state and the two-photon
absorption tensor in the electric dipole approximation. More-
over, time-dependent density functional theory (TD-DFT) cal-
culations with the b3lyp exchange-correlation functional are
performed. The molecular structure was energy minimized
in all cases by performing DFT calculations with the b3lyp
exchange-correlation functional and the def2-TZVP basis set
on all atoms, using the turbomole program package.42 In Fig. 1,
the energy-minimized molecular structures of fenchone and
camphor are shown, where the black vectors represent the
Cartesian coordinate system located at the center of mass of
the molecular systems. These structures and orientations corre-
spond to the ones used subsequently for the calculation of the
two-photon absorption tensors. Cartesian coordinates of the
oriented structures are reported in the supplementary material.

Calculations for the two-photon transition strength tensor
were performed using the dalton program package.43 Details
of the implementation of the two-photon absorption tensors
within the linear response coupled cluster (CC) scheme are
found in Refs. 44 and 45. The orbital unrelaxed methodol-
ogy was employed in the linear response calculations of the
two-photon absorption tensors on the coupled cluster level.
Electrons occupying the 11 energetically lowest-lying molec-
ular orbitals that are dominated by 1s orbitals of the various
carbon atoms or the oxygen were excluded from the correlation
treatment on the coupled cluster levels (so-called frozen core
approximation). The evaluation of the two-photon absorption

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004702
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FIG. 1. The oriented structures of fenchone (left) and
camphor (right). The black vectors represent the Carte-
sian coordinate system located at the center of mass of the
molecular systems. The blue and red vectors refer to the
eigenvectors of the right and left two-photon tensors cor-
responding to the third excited state (for more information
see Appendix C).

tensor was performed at the CC-SD/Rydberg-TZ level of the-
ory. It is worth noting that the two-photon transition strength
tensor T i ,j, (i, j = x, y, z) is calculated in the coupled cluster
framework as a symmetric product of two-photon transition
moments from initial to final state and from final to initial
state (the left and right two-photon transition moments). As
explained in more detail in Appendix C, in coupled cluster
theory, the symmetrized biorthogonal structure inhibits iden-
tification of the left and right two-photon absorption tensors.
Thus, using the results of coupled cluster theory directly in
the calculation of PAD might be problematic, because the
model constructed in Sec. II depends on only one two-photon
absorption tensor. We present a solution to this problem in
Appendix C. In Fig. 1, the eigenvectors of the left and right two-
photon absorption tensors for the third exited state of fenchone
and camphor are shown (blue and red vectors).

To benchmark the quality of the electronic structure cal-
culations, electronic excitation energies for transitions to the
energetically lowest lying singlet states are performed on the
CCSD and approximate second order coupled cluster (CC2)
level for the n-aug-cc-pVNZ hierarchy of basis sets (see
below). The turbomole program package42 was used for cal-
culations on the CC2 level within the resolution of the identity
(RI) approximation. Select results were compared to conven-
tional CC2 calculations with the molpro program package,46

confirming that the RI approximation has little impact on the
computed excitation energies (typically less than 10 meV).
CCSD calculations for excitation energies were performed
with molpro. Again, electrons occupying the 11 energetically
lowest-lying molecular orbitals were kept frozen in all coupled
cluster calculations.

The following basis sets were employed:

• Turbomole-TZVP with H:[3s,1p], C:[5s,3p,1d], O:[5s,
3p,1d].
• Rydberg-TZ with H: [2s], C: [5s,3p,1d], O:[5s,4p,3d,2f],

“q”:[1s,1p,1d], where “q” is a “dummy” center, posi-
tioned at the center of mass of the molecule. Primi-
tive diffuse s, p, d Gaussian basis functions with the
exponent coefficients equal to 0.015 a0 were placed
on this center. With this basis we can expect quite a
reliable description of the higher excited states (which,

according to Ref. 47, are diffuse Rydberg states) but
most likely not for the lowest lying excited state.
• The (n-aug-)cc-pVNZ hierarchy of basis sets which are

correlation consistent polarized valence N-tuple zeta
basis sets, with N = D, T, Q, referring to double-ζ ,
triple-ζ , and quadruple-ζ , respectively. On the oxygen
nucleus, these basis sets have been also augmented by
further diffuse functions with n = s, d, t, q implying sin-
gle, double, triple and quadruple augmentation, respec-
tively. We used the procedure described in Ref. 48 for
producing these aforementioned augmented basis sets.

The single center re-expansion is performed in two
steps. First, the orbitals of the hydrogen atom are calcu-
lated with a large uncontracted basis set [13s11p9d8f]. For
manually adjusting the phases of the atomic orbitals, we
have computed numerically the radial part of the hydro-
genic wavefunction using the following procedure. The atomic
wavefunction

|ψi〉 =
∑

j

| χj〉Cji (41)

is considered, where | χj〉 is a gaussian basis function and reads

| χj〉 =
1√

2−3/2−ljα
−1/2−lj
j Γ[ 1

2 + lj]
e−αjr2

rlj , (42)

where Γ refers to the gamma function. The Cji, the atomic
orbital coefficients, are calculated by using the quantum chem-
ical software Turbomole. The angular part can be chosen as
the so-called real valued spherical harmonic and the integral
over the angular part is

〈Yljmj (θ, φ)|Ylkmk (θ, φ)〉 = δlj lk δmjmk . (43)

In this way, one can calculate the radial part of Eq. (41) and
compare it with Eq. (A3b) (which was used originally for the
re-expansion of the the electronically excited state of the neu-
tral molecules under investigation (see Eq. (2)) and thus adjust
the phases of atomic orbitals.

In the second step, the relevant molecular orbitals were
calculated by projecting them onto bound hydrogen-like atom
orbitals placed at the center-of-mass of camphor and fen-
chone, respectively, which is called the blowup procedure in
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the Turbomole context.42 This calculation was carried out at
the Hartree Fock(HF)/TZVP level of theory.

B. Results and discussion

The excitation energies of the lowest lying excited states
for fenchone and camphor are presented in Tables II–VII.
The labeling of the states follows the one for the absorption
spectra of Ref. 47. The states B, C, and D are compara-
tively close in energy. In principle, the order in which the
states are obtained in the calculations is unknown and the
states may be interchanged due to an insufficient level of
the correlation treatment or the smallness of the basis set.
Nevertheless, we suppose that if the difference between the
theoretical excitation energies and the experimental ones is
smaller than the energy difference between the two states,
then the order of the states is correctly reproduced. Table II
shows that the quite accurate excitation energies for the states
B, C, and D are obtained in the CC-SD calculations with
the Rydberg-TZ basis set for both camphor and fenchone.
The A state is less accurately described with this basis set,
while the TDDFT result for state A is very close to the cor-
responding experimental value. For Rydberg states, it is well
documented that the TDDFT method has severe limitations,49

and we observe, indeed, relatively large deviations between
the computed excitation energies into Rydberg states and the
corresponding experimental excitation energies as shown in
Table II. We thus did not perform the calculation of excita-
tion energies into even higher Rydberg states for the present
molecular systems.

Tables III and IV report more detailed information on the
electronic structure of fenchone, obtained by employing both
the CC2 and CCSD methods with systematically improved
basis sets. Enlarging the set of augmenting diffuse functions

TABLE II. Experimental and calculated excitation energies (in eV) for fen-
chone (top) and camphor (bottom) obtained by TD-DFT and CC-SD/Rydberg-
TZ used for subsequent calculation of the two-photon transition tensor.

State Experiment47 DFT-b3lyp CC-SD

A/n→ π∗ 4.25 4.24 4.44
B/n→ 3s 6.10 5.41 6.19
C1/n→ 3p 6.58 5.75 6.53
C2 5.82 6.60
C3 5.86 6.62
D1/n→ 3d 7.14 7.04
D2 7.09
D3 7.10
D4 7.12
D5 7.14

A/n→ π∗ 4.21 4.15 4.37
B/n→ 3s 6.26 5.53 6.33
C1/n→ 3p 6.72 5.87 6.73
C2 5.90 6.75
C3 5.98 6.78
D1/n→ 3d 7.28 7.21
D2 7.27
D3 7.29
D4 7.31
D5 7.33

on the O atom improves the excitation energies of the molecule
under investigation. The energy of state A changes only mildly
with increasing number of diffuse functions and increasing the
multiple zeta quality. Excitation energies for the state A evalu-
ated at the CC2/d-aug-ccpVQZ and CC-SD/t-aug-pVDZ level
of theory are in good agreement with the experimental one
reported in Ref. 47. For state B, a similar dependence on chang-
ing the augmented basis sets on the O atom and increasing
the multiple zeta quantity can be observed. Furthermore, we
report a quite clear description for all members of the n→ 3p
Rydberg transitions, corresponding to the C band of the experi-
mental spectrum reported in Ref. 47, whose individual compo-
nents are experimentally not resolved. The theoretical spacing
among all components of the band C approaches the experi-
mental one when increasing the augmented basis sets on the O
atom and the multiple zeta quality. Strictly speaking, the the-
oretical spacing among all components of the C band is less
than 0.1 eV which is in general in line with the experimen-
tal finding. The D state is composed of the n → 3d Rydberg
transition. Here, we again report all individual components,
which were not resolved experimentally. The theoretical spac-
ing among all components of the D band, which is less than
0.1 eV on average, approaches the experimental finding when
increasing the augmented basis sets on the O atom and the
multiple zeta quality. For the state A, the CC2 and CC-SD
produce the results close to each other, whereas for Rydberg
states, deviation between the results obtained by employing the
CC2 and CC-SD methods is getting larger as was seen previ-
ously for different molecular systems.50 Based on the results
of the excitation energies evaluated at CC2/t-aug-cc-pVDZ,
d-aug-cc-pVTZ, t-aug-cc-pVTZ, d-aug-cc-pVQZ, as well as
CC-SD/t-aug-cc-pVDZ, we estimate the excitation energies
for fenchone at CC-SD/t-aug-cc-pVQZ as described in the
following. We add ∆E1 (which is the energy difference calcu-
lated using the CC2 method for basis sets d-aug-cc-pVQZ and
d-aug-cc-pVTZ) as well as∆E2 (which is the energy difference
evaluated using CC2 for basis sets t-aug-cc-pVTZ and t-aug-
cc-pVDZ) to the excitation energies calculated at the CC-SD/
t-aug-ccpVDZ level of theory. This procedure allows to esti-
mate only few excitation energies of the fenchone molecule
at the CCSD/t-aug-cc-pVQZ level of theory. This way of esti-
mation does not work for all Rydberg states because the CC2
method is not accurate enough for calculating the excitation
energies of these states. We should mention that the direct
calculation at the CCSD/t-aug-cc-pVQZ level of theory was
beyond our computational facilities. The corresponding results
are shown in Table V. In order to justify this way of estima-
tion, we employed it for acetone, for which it is possible to
calculate the excitation energies at the CC-SD/t-aug-cc-pVQZ
level of theory. This allows us to compare the excitation ener-
gies at the CC-SD/t-aug-cc-pVQZ level of theory with the
estimated ones. The corresponding results are presented in
Tables S7 and S8 of the supplementary material. It can be seen
that the estimate values are very close to the corresponding
ones calculated at the CC-SD/t-aug-cc-pVQZ level of theory.
As an important remark, the excitation energies produced in
Table II using the CC-SD/Rydberg-TZ level of theory are
closer to the experimental values than those generated using
the CC-SD/t-aug-cc-pVDZ level of theory or the estimated

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004702
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TABLE III. Lowest vertical electronic singlet excitation energies (in eV) for fenchone as computed with the CC2
and CCSD method. The column heading indicates the basis set, but augmented basis functions were only used on
O and deleted from H and C. Thus, for H and C the cc-pVDZ basis set was used throughout.

cc-pVDZ aug-cc-pVDZ d-aug-cc-pVDZ t-aug-cc-pVDZ

State Expt.47 Transition CC2 CCSD CC2 CCSD CC2 CCSD CC2 CCSD

A 4.25 n→ π∗ 4.38 4.35 4.36 4.35 4.35 4.35 4.34 4.34
B 6.10 n→ 3s 7.32 7.94 7.23 7.77 5.80 6.39 5.56 6.15
C1 6.58 n→ 3p 7.92 8.27 7.72 8.07 6.18 6.85 5.99 6.71
C2 8.07 8.52 7.93 8.31 6.28 6.97 6.01 6.74
C3 8.11 8.76 7.99 8.66 6.38 7.10 6.03 6.79
D 7.14 n→ 3d 8.22 8.83 8.20 8.78 7.71 8.00 6.65 7.39

8.57 8.95 8.28 8.79 7.92 8.31 6.76 7.57
8.63 9.02 8.36 8.81 8.15 8.59 6.84 7.63
8.72 9.25 8.53 8.87 8.25 8.74 6.89 7.68
8.74 9.31 8.59 9.10 8.29 8.76 7.26 7.95

8.27 9.02 9.35 8.85 9.20 8.33 8.79 7.36 8.04
9.19 9.52 9.03 9.35 8.50 8.96 7.46 8.06

values at the CC-SD/t-aug-cc-pVQZ level of theory (see
Tables III and V).

For camphor, the calculated excitation energies for state
A, the lowest excited state, are in reasonable agreement with
experiment for all methods and basis sets, cf. Tables II, VI,
and VII. Here, we again observe that enlarging the set of aug-
ment diffuse functions on the O atom and the multiple zeta
quality improves the results for the excitation energies. Fur-
thermore, increasing the augmented basis sets on the O atom
and the multiple zeta quality leads to a decrease (of less than
0.1 eV) in the theoretical spacing among all components of the
C and D states, which again is in line with the experimental
finding.47 The estimated excitation energies at CC-SD/t-aug-
cc-pVQZ level of theory are calculated in the same way as for
fenchone. These results are shown in Table V. We should men-
tion that the excitation energies produced in Table II using the
CC-SD/Rydberg-TZ level of theory are better than those gen-
erated using the CC-SD/t-aug-cc-pVDZ level of theory or the
estimated values at the CC-SD/t-aug-cc-pVQZ level of theory
(see Tables V and VI).

In the following, we report the two-photon absorption ten-
sor elements for fenchone and camphor calculated with the
TD-DFT and CC-SD methods. The computational details for
the coupled cluster calculations are presented in Appendix C.
The elements of the two-photon absorption tensor for fenchone
and camphor in the Cartesian basis are generally independent
because the molecules have the C1 point group symmetry.38

However, as we consider absorption of two photons with the
same frequency, the two-photon tensor must be symmetric.38

Table VIII presents the results for fenchone. The A state in
terms of the excitation energy is of no real concern for our
present purposes because the wavelength and spectral width
of the laser pulses employed in the 2+1 REMPI process1,4

practically rule out that A is the relevant intermediate state.
As inferred from Table VIII, changing the method accounting
for the electron correlations, i.e., TD-DFT and CC-SD, alters
considerably the skeleton of the two-photon transition matrix
and in particular there are changes in the signs of matrix ele-
ments when employing different electron correlation methods.
As the excitation energies for the B and C states, calculated

TABLE IV. Lowest vertical electronic singlet excitation energies (in eV) for fenchone as computed with the CC2
method. The column heading indicates the basis set, but augmented basis functions were only used on O and
deleted from H and C.

State Expt.47 cc-pVTZ aug-cc-pVTZ d-aug-cc-pVTZ t-aug-cc-pVTZ d-aug-cc-pVQZa

A 4.25 4.32 4.29 4.29 4.27 4.28
B 6.10 6.83 6.15 6.01 5.68 5.96
C1 6.58 7.51 7.40 6.32 6.13 6.36
C2 7.53 7.50 6.39 6.14 6.41
C3 7.69 7.62 6.46 6.17 6.45
D 7.14 7.90 7.70 7.58 6.83 7.36

7.97 7.82 7.68 6.95 7.56
8.19 8.05 7.80 7.02 7.68
8.30 8.22 8.08 7.04 7.77
8.48 8.40 8.19 7.20 7.88

8.27 8.63 8.47 8.20 7.28 8.04
8.77 8.66 8.22 7.32 8.06

aIn this calculation, the basis set cc-pVQZ on C and O atoms is used.
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TABLE V. The estimated lowest vertical electronic singlet excitation ener-
gies (in eV) for fenchone and camphor at CC-SD/t-aug-cc-pVQZ level of
theory.

State Fenchone Camphor

A 4.45 4.17
B 6.22 6.52
C1 6.89 7.00
C2 6.90 7.02
C3 6.92 7.06
D 7.79 7.73

7.81
7.88

with the CC-SD/Rydberg-TZ level of theory, are in good agree-
ment with experimental ones, cf. Table II, we expect the cor-
responding two-photon absorption tensor elements to be more
reliable for the evaluation of PECD than those obtained with
TD-DFT. We therefore use the two-photon absorption tensor
elements calculated at the CC-SD/Rydberg-TZ level of theory
for calculating PAD in Sec. IV.

Table IX presents the two-photon absorption tensor ele-
ments for camphor. Changing the method accounting for the
electron correlations, TD-DFT or CC-SD, alters considerably
the skeleton of the two-photon transition matrix. For camphor,
similar observation as mentioned for fenchone can be men-
tioned here; the A state is very unlikely to be the intermediate
state probed in the 2+1 REMPI process. As inferred from
Table IX, changing the method accounting for the electron
correlations, i.e., TD-DFT and CC-SD, alters considerably the
skeleton of the two-photon transition matrix and in particu-
lar there are changes in the signs of matrix elements when
employing different electron correlation methods.

C. Single center re-expansion of molecular
wavefunctions

In order to match the ab initio results with our model
for the 2+1 REMPI process, we perform a single center

re-expansion of the relevant molecular orbitals (see Figs. 2
and 3) obtained from a HF calculation with the TZVP
basis set, projecting them onto hydrogenic atomic orbitals
placed at the center-of-mass of the molecule. The hydro-
genic orbitals are chosen in the form ϕ =

∑
i ãiRi(r)Υi(θ, φ),

where i denotes a complete set of quantum numbers, i
≡ (no, `o, mo). Ri(r) are the radial functions of the hydrogen
and Υi(θ, φ) the real spherical harmonics. The transforma-
tion between the expansion coefficients ãi and ai, defined in
Eq. (2) with the standard complex spherical harmonics, is given
in Appendix A 4.

The projection quality of the orbitals 42 (highest occupied
molecular orbital (HOMO) for the electronic ground state)
and 43 (one of the two singly occupied molecular orbitals
(SOMOs) for state A) for both camphor and fenchone is rather
low. It amounts to 28% and 45% for fenchone and to 24%
and 51% for camphor. This is expected for the HOMO and
SOMO which are localized orbitals. In contrast, for the orbitals
representative of the Rydberg states B and C in all cases the
projection quality is higher than 90% for the corresponding
SOMO. For these states, the results of the re-expansion are
presented in the supplementary material. We find the B state
to be of s-type, that is, the s-wave contributes more than all
other waves together; whereas the C states are of p-type. This
is in agreement with the results of Refs. 47 and 51, where these
states were also found to be of s- and p-type, respectively. The
d wave contributions for SOMOs corresponding to the B and
C1, C2, and C3 states in fenchone and camphor are 2%, 3%,
5%, and 6%, respectively.

IV. PHOTOELECTRON ANGULAR DISTRIBUTIONS

The experimental measurements indicate a PECD effect
of 10% for fenchone and 6.6% for camphor.4 We first check
the range of PECD that our model allows for. To this end, we
optimize, as a preliminary test, PECD, allowing all molecular
parameters, i.e., two-photon absorption tensor elements and
excited state expansion coefficients, to vary freely. We expand
up to d and f waves for a single quantum number no, taken

TABLE VI. Lowest vertical electronic singlet excitation energies (in eV) for camphor as computed with the CC2
and CCSD method. The column heading indicates the basis set, but augmented basis functions were only used on
O and deleted from H and C. Thus, for H and C the cc-pVDZ basis set was used throughout.

cc-pVDZ aug-cc-pVDZ d-aug-cc-pVDZ t-aug-cc-pVDZ

State Expt.47 Transition CC2 CCSD CC2 CCSD CC2 CCSD CC2 CCSD

A 4.21 n→ π∗ 4.27 4.25 4.23 4.25 4.22 4.24 4.22 4.24
B 6.26 n→ 3s 7.40 8.05 7.32 7.87 5.83 6.44 5.64 6.34
C1 6.72 n→ 3p 7.69 8.10 7.46 7.90 6.25 6.93 6.07 6.81
C2 8.04 8.35 7.81 8.11 6.30 7.00 6.09 6.84
C3 8.23 8.84 8.11 8.63 6.60 7.32 6.15 6.93
D 7.28 n→ 3d 8.38 8.90 8.19 8.69 7.43 7.85 6.75 7.56

8.47 8.98 8.24 8.78 7.79 8.10 6.84 7.67
8.56 9.03 8.33 8.28 7.91 8.46 6.90 7.73
8.62 9.22 8.36 8.90 8.14 8.62 7.05 7.82
8.79 9.27 8.62 9.02 8.25 8.71 7.26 7.85

7.94 8.91 9.36 8.77 9.16 8.28 8.84 7.35 7.95
9.04 9.51 8.83 9.45 8.33 8.85 7.39 8.05

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004702
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TABLE VII. Lowest vertical electronic singlet excitation energies (in eV) for camphor as computed with the
CC2 method. The column heading indicates the basis set, but augmented basis functions were only used on O and
deleted from H and C.

State Expt.47 cc-pVTZ aug-cc-pVTZ d-aug-cc-pVTZ t-aug-cc-pVTZ d-aug-cc-pVQZa

A 4.21 4.20 4.17 4.17 4.15 4.17
B 6.26 6.94 6.85 5.98 5.78 6.02
C1 6.72 7.41 7.32 6.39 6.22 6.43
C2 7.66 7.57 6.43 6.23 6.47
C3 7.75 7.63 6.67 6.30 6.65
D 7.28 7.85 7.65 7.31 6.95 7.28

7.97 7.82 7.66 7.02 7.62
8.13 8.04 7.93 7.08 7.63
8.19 8.09 7.98 7.19 7.72
8.28 8.19 8.02 7.25 7.94

7.94 8.62 8.53 8.08 7.27 7.96
8.66 8.63 8.17 7.34 7.99

aIn this calculation, the basis set cc-pVQZ on C and O atoms is used.

to be no = 3 and 4, respectively. The optimization target is
to maximize (or minimize, depending on the sign) PECD in
order to determine the upper bounds. Following the definitions
in Refs. 4 and 17, we define an optimization functional,

J =
1
c0

(
2c1 −

1
2

c3 +
1
4

c5

)
, (44)

where the Legendre coefficients are calculated according to
Eq. (22b). All optimizations are carried out using the genetic
algorithm for constrained multivariate problems as imple-
mented in Ref. 52, using 500 iterations. We find numeri-
cal bounds of about 35% for both expansion cut-offs. The
experimentally observed PECD effects are well within these
bounds.

We now present calculations of the PAD for fenchone and
camphor, using two different strategies to evaluate Eqs. (22).
First, we aim at identifying the minimal requirement in terms
of structure and symmetry properties of the intermediate elec-
tronically excited state for reproducing, at least qualitatively,
the experimental data. To this end, we minimize the difference

TABLE VIII. Two-photon transition matrix elements (in units of a2
0 E−1

h
with a0 being the Bohr radius and Eh being the Hartree energy) at the
b3lyp/Rydberg-TZ level of theory (top) and symmetric effective two-photon
transition matrix elements at the CC-SD/Rydberg-TZ level of theory (bottom)
for fenchone. The specific orientation used is shown in Fig. 1.

States T xx
go T xy

go T xz
go T yy

go T xz
go T zz

go

A +0.50 +0.50 +0.50 +0.20 −0.30 −0.30
B +1.60 −0.70 −2.60 +20.80 +8.20 −0.70
C1 −40.60 −11.50 −6.30 +1.60 +1.40 −1.60
C2 +3.20 +1.30 +2.40 +5.30 −1.20 −1.40
C3 −8.60 −3.00 −5.00 −1.90 +8.70 +0.10

State T̃ xx
go T̃ xy

go T̃ xz
go T̃ yy

go T̃ yz
go T̃ zz

go

A −0.11 −0.03 +0.08 −0.27 +0.20 −0.27
B +1.58 +17.10 +7.50 −1.67 −0.24 −2.48
C1 −0.21 −7.57 −4.10 +1.13 +1.02 +0.96
C2 −21.24 +5.45 −1.32 −6.00 −1.87 −2.02
C3 −28.67 −1.54 +4.10 −7.88 +0.04 −6.69

between theoretically and experimentally obtained Legendre
coefficients, δj = |(cj − cexp

j )/cexp
j |, taking the excited state

expansion coefficients, a`o
mo

, cf. Eq. (4), as optimization param-
eters, with no = 3 fixed. This allows for Lo,max = 2, i.e., s, p,
and d waves. Second, we test the agreement between theo-
retically and experimentally obtained Legendre coefficients
when utilizing the expansion coefficients and two-photon ten-
sor elements obtained by ab initio calculations, cf. Section III.
Here, our aim is to explain the differences observed experi-
mentally in the PADs for fenchone and camphor in terms of
the intermediate electronically excited state.

In the first approach, treating the excited state coefficients
as optimization parameters, the optimization can be performed
for the odd Legendre moments only, focussing on reproducing
PECD, or for both odd and even Legendre moments, in order
to reproduce the complete PAD. The different experimental
uncertainties for odd and even Legendre coefficients4 motivate
such a two-step approach. Moreover, optimizing for the odd
Legendre coefficients alone allows to quantify the minimal
requirements on the intermediate electronically excited state
for reproducing PECD.

In the second approach, when using the ab initio two-
photon absorption tensors and expansion coefficients, we need

TABLE IX. The same as Table VIII but for camphor.

States T xx
go T xy

go T xz
go T yy

go T xz
go T zz

go

A −0.30 +0.50 −1.90 −0.40 −1.00 −0.10
B +10.90 −5.40 −8.30 −8.30 −13.40 −4.10
C1 −3.50 −4.80 −0.70 −1.90 +1.40 −3.40
C2 −4.20 +1.00 +2.20 −0.30 0.00 +1.10
C3 −23.70 −5.50 −3.10 −3.20 −2.20 −2.90

State T̃ xx
go T̃ xy

go T̃ xz
go T̃ yy

go T̃ yz
go T̃ zz

go

A −0.35 −0.27 −0.48 +0.41 −0.03 −1.17
B +1.29 +9.36 +12.63 +6.58 +4.67 +7.55
C1 +7.48 +0.41 +0.82 −3.46 −3.54 −5.11
C2 +3.07 +0.28 −4.10 +4.10 +1.92 −5.88
C3 −21.48 +0.98 +2.83 −1.95 −1.13 −0.81
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FIG. 2. The molecular orbitals 43, 44, 45, 46 and 47 of fenchone corresponding to the excited states A, B, C1, C2 and C3, respectively. These molecular orbitals
are calculated at the HF/TZVP level of theory.

to account for the unavoidable error bars of the ab initio results.
To this end, we also utilize optimization, allowing the two-
photon tensor matrix elements to vary, whereas the excited
state coefficients are taken as is from the re-expansion of the
ab initio wavefunctions.

A. Fenchone

We start by addressing the question of how many par-
tial waves are required in the intermediate electronically ex-
cited state to yield odd Legendre coefficients with L > 1, as
observed experimentally. To this end, we consider the expan-
sion of the intermediate electronically excited state, cf. Eq. (3),
with Lo,max = 2 and Lo,max = 3, i.e., up to d and f waves, for the
states B and C, and employ the two-photon tensor elements
from the CCSD/Rydberg-TZ calculations, cf. Table VIII.
The results are presented in Table X. Presence of f -waves is
required to obtain a non-zero coefficient c5, as expected from
Table I. Allowing for f waves (with n0 = 4) results in a perfect
match for the odd coefficients for states C1, C2, and C3, cf. the
upper part of Table X. In contrast, for state B, c3 and c5, while
having the correct sign, are off by an order of magnitude. Modi-
fying the optimization weights improves c5 for state B, but only
at the expense of the agreement for c1 and c3. State B can there-
fore be ruled out as an intermediate electronically excited state.
This is further confirmed by the lower part of Table X, showing
the results for both odd and even Legendre coefficients in the
optimization target. For state B, the sign of c6 does not match
the experimental one. Fitting both odd and even Legendre coef-
ficients also allows to differentiate between the C states—only
state C3 reproduces the correct sign of c6. For all other Legen-
dre moments, signs and order of magnitude of the coefficients
match the experimental ones for all three C states. Fitting to
all and not just the odd Legendre coefficients decreases the
agreement between theoretical and experimental results for all
C states. This may indicate that the model, with a single no, is

not capable of reproducing the full complexity of the process,
or it may be due to different experimental error bars for even
and odd Legendre coefficients. In our fitting procedure, we
have neglected the experimental error bars to keep the calcu-
lations manageable. The experimental error bars for the even
Legendre coefficients are much larger than for the odd ones,4

and ignoring them may introduce a bias into the optimization
procedure that could also explain the decreased agreement.

While already Table X suggests that C3 is likely the
intermediate electronically excited state probed in the 2+1 pho-
toexcitation process, the ultimate test consists of using ab initio
results for all parameters in Eqs. (22), i.e., the excited state
expansion coefficients and the two-photon tensor elements,
and comparing the resulting Legendre coefficients to the exper-
imental data. The results are shown in Table XI (“fixed tensor
elements”). Choosing a slightly larger photoelectron energy,
specifically 0.58 eV instead of 0.56 eV, with the shift of 0.02 eV
well within the error bars of the calculated excitation energies,
considerably improves the agreement between theoretical and
experimental values, in particular for the c1 coefficient.

Additionally, we allow the tensor elements to vary within
a range of ±20% to account for unavoidable errors in the
electronic structure calculations. The best tensor elements
within the error range are obtained by minimization. The
corresponding functional is defined as

Γ =
1

Γ(0)

6∑
j=1

ωj
*
,

cj − cexp
j

cexp
j

+
-

2

, (45)

where ωj are optimization weights and Γ(0) is the value of the
functional using the fixed tensor elements. Table XI confirms
state B to be ruled out, since it does not reproduce correctly
even a single sign of the odd coefficients. For all states C,
the correct signs are obtained for the lower order Legendre
coefficients, up to c4. State C1 yields the correct sign of c6

only if the tensor elements are allowed to vary within ±20%;

FIG. 3. The molecular orbitals 43, 44, 45, 46 and 47 of camphor corresponding to the excited states A, B, C1, C2 and C3, respectively. These molecular orbitals
are calculated at the HF/TZVP level of theory.
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TABLE X. Legendre coefficients for the PAD of fenchone (calculated at a photoelectron energy of 0.56 eV and
normalized with respect to c0), obtained by fitting to the experimental values with the excited state coefficients a`o

mo
as free parameters. Only odd (top) and both odd and even (bottom) contributions were accounted for in the fitting
procedure. The Rydberg states B, C1, C2, and C3 of fenchone are characterized by their two-photon absorption
tensor, cf. Table VIII.

State B State C1 State C2 State C3

Coeffs. Expt.4 d waves f waves d waves f waves d waves f waves d waves f waves

c1 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067 −0.067
c3 +0.008 +0.080 +0.080 +0.008 +0.008 +0.008 +0.008 +0.008 +0.008
c5 +0.004 . . . +0.0005 . . . +0.004 . . . +0.004 . . . +0.004

c1 −0.067 −0.028 −0.041 −0.045 −0.036 −0.040 −0.048 −0.045 −0.046
c2 −0.580 −0.076 −0.102 −0.274 −0.176 −0.146 −0.226 −0.224 −0.246
c3 +0.008 +0.006 +0.005 +0.006 +0.008 +0.003 +0.004 +0.006 +0.005
c4 −0.061 −0.004 −0.004 −0.021 −0.012 −0.012 −0.011 −0.012 −0.019
c5 +0.004 . . . +0.0001 . . . +0.001 . . . +0.002 . . . +0.001
c6 −0.008 +0.0002 +0.0003 +0.0007 +0.0001 +0.0006 +0.001 −0.002 −0.002

the same holds for C2 and the sign of c5. C3 does not repro-
duce the correct sign of c5, but the value of c5 is very small
and close to zero when accounting for the error bars. In terms
of PECD, the most important coefficient for fenchone is c1,
since its experimental value is an order of magnitude larger
than that of the other odd coefficients. For c1, the best agree-
ment is obtained for state C3, differing from the experimental
value by a factor of five. In contrast, the difference is by a
factor of about twenty for state C1, and even larger for state
C2. While c1 is too small by more than an order of magnitude
for states C1 and C2, c3 is overestimated by a factor of five
for C1 and a factor of three for C2. For states C1 and C2, the
largest odd Legendre coefficient is thus c3, unlike the experi-
mental result where it is c1. In contrast, the theoretical result
for c3 is in quantitative agreement for state C3 which therefore
yields the correct ordering of the odd Legendre coefficients
in terms of their magnitude. We thus conjecture that for fen-
chone, state C3 is most likely the intermediate electronically
probed state in the experiment, despite the fact that c5 is very
close to zero. The reason for the discrepancy exclusively for
c5, while all other coefficients match the experimental ones at
least qualitatively, is not entirely clear. A necessary condition
for non-vanishing c5 is, according to Table I, that the d-wave
contribution of the intermediate state to be non-vanishing. The
results shown in Table XI thus suggest that our calculations

underestimate the d-wave character of C3. This may be caused
by an improper description of long-range interaction between
the photoelectron and the remaining ion, i.e., by the fact that
the true potential felt by the photoelectron is neither central
nor point-like, or by the interaction between the laser field and
the photoelectron whose time dependence is neglected in our
model. Finally, the error bars of the two-photon tensor ele-
ments may be larger than 20%. Indeed, allowing error bars of
±50% in the two-photon absorption tensor elements removes
the disagreement for c5 and state C3. At the same time, these
error bars do not significantly improve the agreement for the
other two states. For example, the coefficient c1 is �0.0061 for
state C1 and �0.0045 for state C2, leaving the conclusion that
state C3 is the intermediate resonance unchanged.

A systematic increase of the two-photon tensor error bars
for state C3 is presented in Table XII. We compare minimiza-
tion of the functional (45) with equal weights for all Legendre
coefficients (upper part of Table XII) to that with a ten times
larger weight of c5 (lower part of Table XII). The motivation
behind the second choice is to see whether the correct sign
can be obtained for c5 without the need to increase the error
bars to a very high value. When increasing the error bars of
the two-photon tensor elements, while using the same opti-
mization weights in Eq. (45), the value of c5 is increased until
it changes sign. The overall value of the functional decreases

TABLE XI. Legendre coefficients for the PAD of fenchone (calculated at a photoelectron energy of 0.58 eV and
normalized with respect to c0), obtained by employing the excited state coefficients and two-photon tensors from
the ab initio calculations. When including error bars, the tensor elements are allowed to vary within ±20%.

State B State C1 State C2 State C3

Coeffs. Expt.4 Fixed Error bars Fixed Error bars Fixed Error bars Fixed Error bars

c1 −0.067 +0.003 +0.003 −0.004 −0.003 −0.002 −0.001 −0.013 −0.015
c2 −0.580 −0.238 −0.193 −0.272 −0.217 −0.409 −0.358 −0.250 −0.213
c3 +0.008 −0.039 −0.029 +0.050 +0.038 +0.033 +0.025 +0.008 +0.010
c4 −0.061 −0.095 −0.113 −0.084 −0.105 +0.010 −0.015 −0.023 −0.048
c5 +0.004 −0.001 −0.001 +0.003 +0.002 −0.004 +0.003 −0.0004 −0.00 004
c6 −0.008 −0.003 −0.005 +0.003 −0.001 −0.004 −0.017 −0.013 −0.007
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TABLE XII. Legendre coefficients for the PAD of fenchone (calculated at a
photoelectron energy of 0.58 eV and normalized with respect to c0), obtained
by employing the excited state coefficients and two-photon tensor elements
from the ab initio for state C3 and increasing error bars of the two-photon
tensor elements. Minimization of the functional in Eq. (45) carried out with
equal (top) and unequal (bottom, ω5 = 10ω,ωj=1,. . .,4,6 = ω) optimization
weights.

Expt.4 Fixed ±20% ±30% ±50%

c1 −0.067 −0.012 −0.015 −0.016 −0.016
c2 −0.580 +0.250 −0.213 −0.210 −0.212
c3 +0.008 +0.008 +0.010 +0.010 +0.010
c4 −0.061 −0.023 −0.045 −0.048 −0.048
c5 +0.004 −0.0004 −0.000 04 −0.000 01 +0.000 02
c6 −0.008 −0.013 −0.007 −0.007 −0.007

Γ (equal ωj) 1.0 0.714 0.711 0.705

Expt.4 Fixed ±20% ±30% ±50%

c1 −0.067 −0.012 −0.015 −0.018 −0.022
c2 −0.580 +0.250 −0.223 −0.227 −0.268
c3 +0.008 +0.008 +0.010 +0.011 +0.014
c4 −0.061 −0.023 −0.045 −0.0504 −0.033
c5 +0.004 −0.0004 +0.000 04 +0.0004 +0.001
c6 −0.008 −0.013 −0.006 −0.001 −0.001

Γ (unequal ωj) 1.0 0.775 0.710 0.686
Γ (equal ωj) 1.0 0.720 0.917 0.994

monotonically, as expected. When the optimization weight of
c5 is taken 10 times larger than those of all other Legendre coef-
ficients, assuming an error range of ±20% for the two-photon
tensor elements of state C3 already yields the correct sign for
all Legendre coefficients. Increasing the error range in this case
further improves the magnitude of c5, until it differs from the
experimental one by a factor of four for error bars of ±50%.
However, this comes at the expense of the agreement for all
other Legendre coefficients except c1. It is quantified by eval-
uating Γ in Eq. (45) with equal weights, using the optimized
two-photon tensor elements obtained with unequal weights.

Overall, already the two-photon tensor elements taken
directly from the ab initio calculations yield a satisfactory
agreement for the PAD between theory and experiment for
state C3. The agreement is further improved by allowing the
two-photon tensor elements to vary within a range of ±20%
to account for the error bars of the ab initio calculations. All
Legendre coefficients except c3 are sensitive to a variation
within this range. Except for c5, i.e., underestimation of the
excited state f -wave character, a surprisingly good agreement
between theoretical and experimental values is obtained, with
the numerical values differing from the experimental ones up
to a factor of five. The semi-quantitative agreement between
theory and experiment is further illustrated in Fig. 4 where
we compare calculation results for two specific photoelectron
energies, 0.56 eV and 0.58 eV, to the experimentally obtained
Legendre coefficients. The differences for the Legendre coef-
ficients for 0.56 eV and 0.58 eV indicate the dependence of
our results on the error bar of the calculated excitation energy
of the intermediate electronically excited state. Additionally,
Fig. 4 also shows the result of integrating over a normal dis-
tribution of photoelectron energies centered at 0.56 eV with

FIG. 4. Comparison of experimentally obtained and theoretically calculated
Legendre coefficients in the PAD for S-(+)-fenchone, using state C3 and right
circular polarization. The calculations were carried out for a fixed photoelec-
tron energy of 0.56 eV, respectively 0.58 eV, as well as integrating over a
Gaussian distribution of photoelectron energies (denoted by ρ(E)) centered at
0.56 eV with a FWHM of 200 meV.

a full width at half maximum (FWHM) of 200 meV. This
accounts for the experimental averaging over photoelectron
energies.4 The disagreement between theoretical and experi-
mental results amounts to a factor of about two which trans-
lates into a “mean” PECD of 3% and 4% for the fixed and
±20% adjustable tensor elements, respectively, compared to
the experimental value of 10.1%.4

The dependence of the calculated Legendre coefficients
on the photoelectron energy is investigated in more detail in
Fig. 5. A non-monotonic behavior is observed for all orders.
Such a non-monotonic behavior of the Legendre coefficients
as a function of the photoelectron energy has already been
reported for c1 in the one-photon ionization of randomly
oriented molecules.53 It reflects the dependence of the Leg-
endre coefficients on the radial part of the photoelectron
wavefunction.

This dependence is studied further in Table XIII, where we
compare the Legendre coefficients obtained with the Kummer

FIG. 5. Dependence of the calculated Legendre coefficients on photoelec-
tron energy for the PAD of state C3 for S-(+)-fenchone, using right circular
polarization.
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TABLE XIII. Legendre coefficients in the PAD of fenchone for state C3 and different photoelectron energies,
obtained with hydrogenic continuum functions which include the Coulomb interaction between photoelectron
and photoion and plane waves where this interaction is neglected. ρ(E) stands for integration over a Gaussian
distribution of photoelectron energies centered at 0.56 eV with a FWHM of 200 meV.

Hydrogenic continuum functions Plane waves photoelectron
photoelectron energy (eV) energy (eV)

Coeffs. Expt.4 0.36 0.58 0.75 ρ(E) 0.36 0.58 0.75 ρ(E)

c1 −0.061 −0.002 −0.012 −0.058 −0.037 +0.002 +0.006 +0.002 −0.017
c2 −0.580 −0.341 −0.250 −0.385 −0.411 +0.034 +0.012 −0.029 −0.126
c3 +0.008 −0.008 +0.008 +0.170 +0.005 −0.006 −0.061 −0.012 +0.009
c4 −0.061 +0.002 −0.023 −0.008 −0.030 +0.114 −0.178 −0.001 −0.051
c5 +0.004 −0.001 −0.0004 +0.192 −0.000 03 +0.0001 −0.004 −0.001 +0.000 01
c6 −0.008 −0.004 −0.007 +0.001 −0.004 +0.001 −0.013 +0.006 −0.004

confluent functions, i.e., the hydrogenic continuum wavefunc-
tions defined in Appendix A 1, to those obtained with plane
waves. The latter completely neglect the Coulomb interaction
between a photoelectron and photoion.54–56 The plane waves
clearly fail to reproduce the experimentally observed PECD,
see in particular the values for 0.58 eV. Moreover, their values
vary drastically with photoelectron energy. This difference is
most likely explained by the highly oscillatory nature of plane
waves even at short distances, in contrast to the hydrogenic
scattering functions. Our finding is in line with the observation
of Ref. 17 for the strong field approximation where plane waves
fail completely to produce any PECD. In our model, non-zero
odd Legendre coefficients are obtained, but a description of the
photoelectron continuum that accounts for the Coulomb inter-
action between a photoelectron and photoion provides clearly
better results.

B. Camphor

We now turn to camphor, for which the experimentally
recorded photoelectron spectrum peaks at 0.52 eV.4 Analo-
gously to our discussion for fenchone, we first investigate
possible candidates for the intermediate resonance by con-
sidering the respective two-photon tensor alone and treating
the excited state expansion coefficients as free optimization

parameters. The results are displayed in Table XIV, comparing
the optimization that targets only the odd Legendre coefficients
to that considering both odd and even cj. For all states, a non-
zero c5 coefficient is only obtained by including f -waves in
the electronically excited state (corresponding to no = 4), as
expected. When expanding up to f -waves, all four candidates
allow for odd Legendre coefficients close to the experimental
ones, unlike the case of fenchone, where state B could already
be ruled out at this stage. However, states C2 and C3 do not
allow for the correct sign of c3, when the optimization targets
both odd and even Legendre coefficients.

Once again, the ultimate test to rule out a given state con-
sists of using both two-photon tensor elements and excited
state expansion coefficients obtained from the ab initio cal-
culations. The corresponding results are shown in Table XV.
First of all, Table XV confirms that states C2 and C3 are not
the intermediate resonance probed in the experiment, since
both states yield the wrong sign for both c1 and c3. Compar-
ing the remaining two candidates, states B and C1, a much
better agreement is observed for C1 which yields the cor-
rect signs for all Legendre coefficients. In contrast, state B
only yields correct signs for the lower orders, c1, c2, and c3.
When accounting for the error bars in the two-photon tensor,
a correct sign is additionally obtained for c4, but the signs
for c5 and c6 still cannot properly be reproduced with state B

TABLE XIV. Legendre coefficients for the PAD of camphor (calculated at a photoelectron energy of 0.52 eV and normalized with respect to c0), obtained by
fitting to the experimental values4 with the excited state coefficients a`o

mo as free parameters. Only odd (top) and both odd and even (bottom) contributions were
accounted for in the fitting procedure. The Rydberg states B, C1, C2, and C3 of camphor are characterized by their two-photon absorption tensor, cf. Table VIII.

State B State C1 State C2 State C3

Coeffs. Expt.4 d waves f waves d waves f waves d waves f waves d waves f waves

c1 +0.026 +0.026 +0.024 +0.028 +0.026 +0.020 +0.027 +0.025 +0.026
c3 −0.053 +0.038 −0.025 −0.038 −0.040 −0.032 −0.042 −0.042 −0.047
c5 +0.008 . . . +0.004 . . . +0.006 . . . +0.006 . . . +0.005

c1 +0.026 +0.099 +0.096 +0.051 +0.054 +0.054 +0.041 +0.040 +0.048
c2 −0.670 −0.198 −0.248 −0.130 −0.209 −0.135 −0.170 −0.193 −0.230
c3 −0.053 −0.034 −0.022 −0.023 −0.020 +0.037 +0.043 +0.028 +0.013
c4 +0.012 +0.013 +0.013 +0.014 +0.013 +0.017 +0.018 +0.011 +0.019
c5 +0.008 . . . +0.001 . . . +0.001 . . . +0.002 . . . +0.002
c6 −0.001 −0.001 −0.001 −0.001 −0.001 −0.003 −0.002 −0.001 −0.003
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TABLE XV. Legendre coefficients for the PAD of camphor (calculated at a photoelectron energy of 0.52 eV and normalized with respect to c0), obtained by
employing the excited state coefficients and two-photon tensor elements from the ab initio calculations. When including error bars, the tensor elements are
allowed to vary within ±20%.

State B State C1 State C2 State C3

Coeffs. Expt.4 Fixed Error bars Fixed Error bars Fixed Error bars Fixed Error bars

c1 +0.026 +0.003 +0.002 +0.002 +0.001 −0.002 −0.002 −0.001 −0.001
c2 −0.678 −0.384 −0.383 −0.389 −0.401 −0.395 −0.395 −0.421 −0.425
c3 −0.053 −0.025 −0.022 −0.020 −0.017 +0.005 +0.008 +0.004 +0.003
c4 +0.012 −0.066 −0.050 +0.020 +0.023 +0.004 −0.002 −0.008 +0.0001
c5 +0.008 −0.002 −0.001 +0.0001 +0.0001 +0.001 +0.001 +0.0003 +0.001
c6 −0.001 +0.043 +0.035 −0.026 −0.023 −0.008 −0.001 +0.005 −0.0004

TABLE XVI. The same as Table XV but for a photoelectron energy of 0.58 eV.

State B State C1 State C2 State C3

Coeffs. Expt.4 Fixed Error bars Fixed Error bars Fixed Error bars Fixed Error bars

c1 +0.026 +0.033 +0.030 +0.026 +0.027 −0.005 −0.009 −0.004 −0.002
c2 −0.678 −0.450 −0.498 −0.477 −0.502 −0.431 −0.427 −0.432 −0.437
c3 −0.053 −0.029 −0.031 −0.024 −0.022 −0.003 −0.0002 +0.001 −0.003
c4 +0.012 −0.074 −0.034 +0.003 +0.009 −0.022 −0.036 −0.026 −0.018
c5 +0.008 −0.001 −0.001 +0.0001 +0.0001 +0.0002 +0.001 +0.0002 +0.0001
c6 −0.001 +0.030 +0.024 −0.015 −0.011 −0.020 −0.010 +0.0001 +0.003

as intermediate resonance. As to the state C1, not only all
signs but also the correct order of magnitude for c2, c3 and
c4 is observed, whereas the values are too small by one order
of magnitude for c1 and by two orders for c5 and too large
by one order of magnitude for c6. Allowing the two-photon
absorption tensor for state C1 to vary within an error range of
±20% does not yield any significant improvement. It therefore
does not seem to be the unavoidable error in the two-photon
tensor elements that is important.

A second source of error in the ab initio calculations is
found in the excitation energy of the intermediate electroni-
cally excited state. This is reflected in the photoelectron energy.
We thus present results for a second photoelectron energy,
0.58 eV in Table XVI. For state C1, all signs still match,
and the correct order of magnitude is now obtained for c1

to c4. In particular, c1 is now in quantitative agreement with
the experimental value, and c2 and c3 differ by less than a
factor of 1.5, respectively 2.5. Despite the disagreement in
the numerical values for c5 and c6, C1 is clearly the state
that best matches the experimental data—the results obtained
for states B, C2, and C3 show the same deficiencies as in
Table XV.

The agreement with the experimental data obtained for
state C1 can be further improved by allowing for larger error
bars in the two-photon tensor elements. This is demonstrated
in Table XVII. In fact, the agreement can be made fully quan-
titative, except for c5, when increasing the error bars up to
±50%, as indicated by the small value of the optimization
functional. In comparison to fenchone, cf. Table XII, mini-
mization results in significantly smaller values for Γ, as the
error range is increased. Also, the higher order Legendre coef-
ficients are found to be more sensitive to modifications of

TABLE XVII. Legendre coefficients for the PAD of camphor (calculated at a
photoelectron energy of 0.58 eV and normalized with respect to c0), obtained
by employing the excited state coefficients and two-photon tensor elements
from the ab initio calculations for state C3 and increasing error bars of the
two-photon tensor elements. Minimization of the functional Γ in Eq. (45) is
carried out with equal optimization weights.

coeffs. Expt.4 fixed ±20% ±30% ±50%

c1 +0.026 +0.026 +0.027 +0.026 +0.022
c2 −0.678 −0.477 −0.502 −0.515 −0.529
c3 −0.053 −0.024 −0.022 −0.020 −0.014
c4 +0.012 +0.003 +0.009 +0.012 +0.012
c5 +0.008 +0.0001 +0.0001 +0.0001 +0.0003
c6 −0.001 −0.015 −0.011 −0.008 −0.001

Γ 1.0 0.50 0.26 0.01

the two-photon tensor elements than the lower ones. This
is not surprising since the higher order coefficients depend
more strongly on the anisotropy induced by the two-photon
absorption. Analogously to fenchone, c5 has the correct sign
but remains too small by one order of magnitude. This indi-
cates once more that we underestimate significantly the d-wave
contribution to the intermediate electronically excited state. It
amounts to just 6% for both fenchone and camphor in our
calculations.

The discussion above is summarized and illustrated
in Fig. 6 which shows, besides the Legendre coefficients
for photoelectron energies of 0.52 eV and 0.58 eV, those
obtained when integrating over a normal distribution of pho-
toelectron energies, centered at 0.52 eV, with a FWHM of
200 meV. The latter mimics the spectral bandwidth in the
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FIG. 6. Comparison of experimentally obtained and theoretically calculated
Legendre coefficients in the PAD for R-(+)-camphor, using state C1 and right
circular polarization. The calculations considered fixed photoelectron energies
of 0.52 eV and 0.58 eV as well as an integration over a Gaussian distribution
of energies centered at 0.58 eV with a FWHM of 200 meV.

experiment. Introducing a distribution of photoelectron ener-
gies slightly worsens the agreement between theory and exper-
iment. This can be attributed to the striking sensitivity of the
Legendre coefficients on photoelectron energy, as shown in
Fig. 7. A further improvement of the theoretical model would
thus require experimental data for more than one photoelectron
energy and with better energy resolution.

C. Discussion and summary

Before concluding our paper, we briefly summarize our
main findings. Our model describing the one-photon photoion-
ization of an “initial” state that is prepared by non-resonant,
orientation-dependent two-photon absorption using a single-
center approximation of the photoelectron continuum and
ideas from optimal control allows for PECD as defined in
Eq. (44) of up to 35%. This is, within our model, the maximum
PECD that could be expected for an ensemble of randomly ori-
ented chiral molecules. The upper limit below 100% is due to

FIG. 7. Dependence of the calculated Legendre coefficients in the PAD
of camphor, state C1, on the photoelectron energy within the range of
0.50 eV–0.58 eV using right circularly polarized light.

the random orientation of the molecules and, possibly, due to
the underlying approximations made within our model. One
might thus speculate whether a better treatment of, e.g., static
exchange or contributions from the magnetic dipole interac-
tion would allow for raising this limit even higher. It is, at
any rate, already significantly higher than the largest PECD
observed experimentally so far.1–5 This encourages studies of
molecules beyond bicyclic ketones, both experimentally and
theoretically.

Our model accounts for the electronic structure of the
experimentally investigated examples of fenchone and cam-
phor in terms of their two-photon absorption tensor and inter-
mediate electronically excited state based on ab initio calcula-
tions. In both cases, there are several candidate electronic states
which could serve as the intermediate resonance. For fenchone,
knowledge of the two-photon tensors of the candidate states
alone already suggests state C3 to be the intermediate reso-
nance. Calculations employing both two-photon tensors and
excited state wavefunctions confirm this conjecture, in partic-
ular if the calculations account for error bars in the two-photon
tensor. Compared to the other electronically excited states
that could be accessed by the two-photon excitation, state C3
has a much larger d-wave component than all other states.
The largest disagreement is observed in the Legendre coeffi-
cient c5, suggesting that our model underestimates the f -wave
component of state C3. For the lower order Legendre coeffi-
cients, a semi-quantitative agreement between theoretical and
experimental values is obtained.

We find a proper account of the Coulomb interaction
between photoelectron and photoion to be crucial. When
replacing, in our expansion of the photoelectron continuum
wavefunction, hydrogenic basis functions by plane waves, no
agreement with the experimental values is obtained. This is
in line with an earlier study of PECD using the strong-field
approximation,17 where plane waves completely fail to pro-
duce any PECD, as well as with other studies based on the dif-
ferential photoionization cross section investigating molecular
interference or molecular tomography.35,54–56

In contrast to fenchone, knowledge of the two-photon ten-
sors for camphor is not sufficient to point to a single state as
the intermediate resonance. However, calculations account-
ing for the ab initio two-photon absorption matrix elements
and excited state wavefunctions strongly suggest state C1 to
be the intermediate resonance, in particular when including
error bars of the two-photon absorption tensor. The agree-
ment is found to depend very strongly on the photoelectron
energy, with semi-quantitative agreement found for a slightly
larger value than the experimental one. Such an energy shift
could be explained by the error bars of the calculated excitation
energy or by the dynamic Stark shift, which is neglected in our
model.

V. CONCLUSIONS AND OUTLOOK

We have derived a theoretical model to study PECD after
(2+1) resonantly enhanced multi-photon ionization in ran-
domly oriented chiral molecules. The model is based on a
perturbative treatment of the light-matter interaction within
the electric dipole approximation and combines an ab initio
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description of the non-resonant two-photon absorption with
a single-center expansion of the photoelectron wavefunction
into hydrogenic continuum functions. This allows to account
for the Coulomb interaction between a photoelectron and
photoion as well as electronic correlations in the transition
to the intermediate electronically excited state. It assumes
separability of the 2+1 process into an initial two-photon
photoselection step with subsequent one-photon photoioniza-
tion and neglects static exchange and dynamic correlations
in the interaction of the photoelectron with the parent ion as
well as the time-dependence of the laser pulse and the pos-
sible multi-center character of the continuum wavefunction.
The model correctly reproduces the basic symmetry behavior
expected under exchange of handedness and exchange of light
helicity.

Making use of the fundamental selection rules for two-
photon absorption and one-photon ionization, we have shown
which Legendre coefficients may be expected in the photo-
electron angular distributions, depending on the basic geo-
metric properties in the electronic structure of the molecules
as well as the possible combinations of polarization for two-
photon absorption and one-photon ionization. We have identi-
fied the role of the two-photon absorption tensor and inter-
mediate state wavefunction—it is the partial wave decom-
position of the latter which determines PECD whereas the
two-photon absorption tensor (in the electronic dipole approx-
imation) merely introduces an anisotropic distribution of pho-
toexcited molecules. Notably, the anisotropy is achieved by
selection and not by rotational dynamics which would occur
on a much slower time scale than that of femtosecond laser
excitation.

We have applied our theoretical framework to fenchone
and camphor, which have been studied extensively in recent
experiments.1–5 The ab initio calculations employed the cou-
pled cluster method as well as density functional theory. Due
to the Rydberg-like character of the intermediate electroni-
cally excited state, diffuse basis functions needed to be added
to the standard basis sets. This has allowed to reach a reason-
able agreement with experimental values for the excited state
energies.

We have used the electronic structure data to calculate the
photoionization cross section. Accounting for the basic struc-
ture of the two-photon absorption tensor alone has already
allowed us to qualitatively reproduce the experimental results
for fenchone and camphor. The minimal requirement was
identified to be a contribution of d-waves in the intermedi-
ate electronically excited state. Such a contribution can be
expected if the two-photon absorption tensor is anisotropic.
Employing the ab initio data in the calculation of the pho-
toelectron angular distribution, we have obtained a semi-
quantitative agreement between theoretical and experimental
Legendre coefficients characterizing the photoelectron angular
distribution.

The satisfactory agreement of our model with the exper-
imental data encourages a number of follow-up studies. First
of all, a fully time-dependent description should be employed,
following the lines of Ref. 57, because the photoelectron
angular distributions depend on the polarization as well as
the dynamics.53 Based on the model developed here, an

extension to time-dependent studies is straightforward, but will
require substantial numerical effort. It will then be possible to
model excitation where the pump and ionization pulses occur
at a time delay such that the intermediate state structure and
dynamics as well as possible non-radiative relaxation path-
ways can be probed. A time-dependent extension of the
basic model presented here will also allow to investigate
the dependence of the photoelectron angular distribution
on the laser parameters, including intensity, central fre-
quency, spectral bandwidth and varying polarization. The
latter would be a first step towards the coherent control of
PECD.

In parallel to accounting for time-dependent effects, the
electronic structure treatment may be improved. In particu-
lar, the multi-center character of the continuum wavefunc-
tion can be accounted for by employing Dyson orbitals in
the calculation of the photoionization cross section.30,56,58,59

Moreover, a perturbative treatment of the static exchange for
the photoelectron and extension to beyond the electric dipole
approximation should be straightforward. The former would
allow for a detailed study of the dependence of the angular
distribution on the photoelectron energy, including low photo-
electron kinetic energies. It would thus open the way toward
investigating the role of the chiral ionic core in the dynam-
ics leading to the photoelectron angular distributions. The
ability of the photoelectron wave function to probe the asym-
metry of the molecular potential was found to be important
in PECD after one-photon photoionization.60 An extension
to beyond the electric dipole approximation would allow for
a unified theoretical treatment of further observables beyond
PECD, such as circular dichroism in laser mass spectrometry
of photoions,61–63 as well as comparison with different levels
of electronic structure theory.64

SUPPLEMENTARY MATERIAL

See supplementary material for the expansion coefficients
of the intermediate state wavefunctions obtained in the single
center re-expansion and the Cartesian coordinates obtained in
the geometry optimization.
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APPENDIX A: USEFUL PROPERTIES

In the following, for completeness we summarize the
properties of the continuum wavefunctions, rotation matrices

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-004702
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and complex spherical harmonics in Appendixes A 1, A 3,
and A 4.

Furthermore, we provide details of the derivation of the
one-photon transition rate, two-photon absorption tensor, and
the photoionization cross section in Appendixes B 1–B 3 as
well as the behavior of the Legendre coefficients under change
of helicity in the one-photon photoionization and two-photon
absorption processes in Appendixes B 4–B 6.

1. Radial continuum wavefunctions
of the hydrogen atom

An explicit expression of the radial continuum wavefunc-
tions is given in terms of the Kummer confluent hypergeomet-
ric functions,25

Gk,`(r) = CE,` (2kr)` e−ikrF1(` + 1 + i/k, 2` + 2, 2ikr). (A1)

The factor

CE,` ≡

√
2µk

π~2

|Γ(` + 1 − i/k)|
(2` + 1)!

eπ/2k ,

where Γ(·) refers to the Euler Gamma function, ensures proper
normalization such that∫ ∞

0
GE,`(r)GE′,`(r)r2dr = δ(E − E ′) .

In order to avoid numerical instabilities when generating the
radial continuum wavefunctions, Eq. (A1) may be written in
integral form,65

Gk,`(r) =

√
2µk

π~2
|Γ(` + 1 − i/k)|−1 eπ/2k (2kr)` e−ikr

×

∫ 1

0
s`+i/k(1 − s)`−i/k e2ikrs ds. (A2)

2. Bound state wavefunctions of the hydrogen atom

As for the radial part of bound states for hydro-
genic wavefunctions, Rno

`o
(r), cf. Eq. (2), they can also be

expressed in terms of the Kummer confluent hypergeometric
functions,65

Rno
`o

(r) =

(
4k3

no

(no + `o − 1)!

[(no + `o)!]3

)1/2 (
2kno r

) l

×F1(`o + 1 − no, 2`o + 1, 2kno r) e−kno r , (A3a)

with

kno ≡
1

1 + me
Mn

1
no ao

≈
1

no ao
, (A3b)

where me, Mn, and ao refer to the masses of the electron and
that of the nucleus and the Bohr’s radius, respectively.

3. Rotation matrices

We summarize here some useful properties that are uti-
lized in the derivation of the photoionization cross section,
following the standard angular momentum algebra as found in
Refs. 25, and 31–34. Any irreducible tensor field f k

mk
of rank

k is transformed from the molecular frame to the laboratory
frame as follows:31,32

f k
mk

(r′) = D(αβγ) f k
mk

(r)

=

+k∑
m′k=−k

f k
m′k

(r)D(k)
m′k ,mk

(αβγ), (A4)

whereD(j)
m′j ,mj

(αβγ) = 〈j, m′ |D(αβγ)|j, m〉 refers to the Wigner

rotation matrix of rank j, and the subscripts mk and m′k stand
for the projection of the total angular momentum k onto
the z axis in the molecular, respectively, laboratory frame.
Conversely, the inverse of the transformation (A4) is given
by

f k
mk

(r) = D−1(αβγ)f k
mk

(r′)

=

+k∑
m′k=−k

f k
m′k

(r′)D†,(k)
m′k ,mk

(αβγ). (A5)

We express all vector quantities in spherical coordinates,

r′ =

√
4π
3

r
∑
µ=0,±1

(−1)µY1
µ(Ωr′)ε

′
−µ, (A6)

where ε ′−µ refers to the spherical unit vector in the labora-
tory frame, and µ = 0,±1 denotes linear, left, and right unit
components, respectively. The correspondence between the
components of an arbitrary vector operator V in spherical and
Cartesian basis is given by31,32,66

V−1 =
1
√

2

(
Vx − iVy

)
,

V0 = Vz,

V+1 = −
1
√

2

(
Vx + iVy

)
.

(A7)

Transforming the spherical components rq, with q = ±1, 0
into the Cartesian basis using Eqs. (A7) and (C4), we find the
two-photon absorption tensor in the spherical basis,

T−1,−1 =
1
2

(
Txx − 2iTxy − Tyy

)
,

T−1,0 =
1
√

2

(
Txz − iTyz

)
,

T−1,+1 = −
1
2

(
Txx + Tyy

)
,

T0,0 = Tzz,

T0,+1 = −
1
√

2

(
Tzx + iTzy

)
,

T+1,+1 =
1
2

(
Txx + 2iTxy − Tyy

)
.

(A8)

Because Tα, β = Tβ,α, with α, β = x, y, z, cf. Eq. (C4), it can be
straightforwardly shown, using Eq. (A7), that Tq1,q2 = Tq2,q1 .

In the derivations we make heavy use of the product rule
for two Wigner rotation matrices of ranks k and k ′,

D(k)
µ,ν(ω)D(k′)

µ′,ν′(ω) =
k+k′∑

J= |k−k′ |

(2J + 1)D∗(J)
−µ−µ′,−ν−ν′(ω)

×

(
k k ′ J
µ µ′ −µ − µ′

) (
k k ′ J
ν ν′ −ν − ν′

)
,

(A9a)

together with the following symmetry property:
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TABLE XVIII. Definition of the non-normalized real spherical harmonics in
Cartesian coordinates.

Designation Real spherical harmonic

S0 1
PZ z
PY y
PX x
D0 (−x2 − y2 + 2z2)/

√
12

D1a xz
D1b yz
D2a xy
D2b (x2

� y2)/2
F0 (−3x3 − 3y3 + 2z3)/

√
60

F1a (−x3 − xy2 + 4xz2)/
√

40
F1b (−y3 − x2y + 4yz2)/

√
40

F2a xyz
F2b (x2z � y2z)/2
F3a (x3 − 3xy3)/

√
24

F3b (y3 − 3x2y)/
√

24

D(k)
µ,ν = (−1)µ−νD∗(k)

−µ,−ν(ω), (A9b)

where (∗) denotes the complex conjugate.

4. Conversion to complex spherical harmonics

The standard complex spherical harmonics Y `m(Ω) are
related to the real spherical harmonics Υ`, |m |(Ω) by

Y `m(Ω) =




1√
2

(
Υ`, |m |(Ω) − iΥ`,−|m |(Ω)

)
if m ≤ 0

Υ`,0(Ω) if m = 0

(−1)`
√

2

(
Υ`, |m |(Ω) + iΥ`,−|m |(Ω)

)
if m ≥ 0

.

Therefore the excited state expansion coefficients a`o
mo

(n),
defined in Eq. (2), are connected to the coefficients in the basis
of real spherical harmonics by

a`o
mo

(n) =




1√
2

(
ã`o

mo
(n) + iã`o

mo
(n)

)
if m ≤ 0

ã`o
0 (n) if m = 0

(−1)`o
√

2

(
ã`o

mo
(n) − iã`o

mo
(n)

)
if m ≥ 0

.

The naming of the real spherical harmonics used in the re-
expansion of the molecular wavefunctions is explained in
Table XVIII.

APPENDIX B: DERIVATIONS
1. One-photon transition rate

This section is devoted to deriving the rate for the pho-
toionization transition from the intermediate electronically
excited state to the continuum, driven by an electric field with
polarization ε ′%2

. The starting point is the doubly differen-
tial cross section in the molecular frame given in Eq. (7). It
contains the laboratory-frame product ε ′%2

· r′, which, using

Eq. (A6), becomes

ε ′%2
· r′ =

√
4π
3

r Y1
%2

(Ωr′) ≡ r′%2
. (B1)

This is rotated into the molecular frame, employing Eq. (A4),
resulting in

ε ′%2
· r′ =

√
4π
3

r
∑

q=0,±1

D(1)
q,%2

(ω)Y1
q (Ωr). (B2)

Inserting Eq. (B2) into Eq. (7) yields the photoionization cross
section in the molecular frame as a function of the Euler angles
ω ≡ (α, β, γ), cf. Eq. (8). Evaluating Eq. (8) requires evalua-
tion of the product 〈Ψk |rq |Ψo〉〈Ψk |rq′ |Ψo〉

∗. Inserting Eqs. (4)
and (7) yields, for a fixed polarization direction q,

〈Ψk |rq |Ψo〉 =
∑
`,m

no,`o,mo

(−i)`eiδ` Ino
k (`, `o)S`,m

`o,mo
(q)

× a`o
mo

(no) Y `m(Ωk)

with Ino
k (`, `o) and S`,m

`o,mo
(q) defined in Eqs. (10a) and (10b)

such that Eq. (8) comprises the product Y `m(Ωk)Y ∗`
′

m′ (Ωk). Using
the symmetry properties of the spherical harmonics, we can
write

Y `m(Ωk)Y ∗`
′

m′ (Ωk) = (−1)m′Y `m(Ωk)Y `
′

−m′(Ωk)

= (−1)−m
`+`′∑

L= |`−`′ |
γ̃(`, `′,L)

×

(
` `′ L
m −m′ m′ − m

) (
` `′ L
0 0 0

)
YL

m−m′(Ωk)

(B3a)

with

γ̃(`, `′,L) =
√

(2` + 1)(2`′ + 1)(2L + 1)/4π (B3b)

and Ωk = (ϑk, φk) referring to polar and azimuthal angles of
the momentum vector in the molecular frame of reference. In
order to express the photoionization direction in the laboratory
frame, we need to apply the inverse transformation (A5) to
YL

m−m′(Ωk′), i.e.,

YL
m−m′(Ωk) = D−1(ω) YL

m−m′(Ωk′)

=

L∑
µ=−L

D†(L)
µ,m−m′(ω)YL

µ (Ωk′)

=

L∑
µ=−L

(−1)m′−m−µD(L)
m′−m,−µ(ω)YL

µ (Ωk′)

=

L∑
µ=−L

√
(2L + 1)

4π
(L − µ)!
(L + µ)!

× (−1)m′−m D(L)
m′−m,−µ(ω)PµL(cos ϑ′k) eiµϕ′k .

(B4a)

Using Eq. (B4a), Eq. (B3a) then becomes
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Y `m(Ωk)Y ∗`
′

m′ (Ωk) = (−1)m′
`+`′∑

L= |`−`′ |
(2L + 1) ςµL(`, `′)

×

(
` `′ L
m −m′ m′ − m

) (
` `′ L
0 0 0

)
×

L∑
µ=−L

D(L)
m′−m,−µ(ω)PµL(cos ϑ′k) eiµϕ′k

(B4b)

with

ς
µ
L(`, `′) =

√
(2` + 1)(2`′ + 1)

16π2

(L − µ)!
(L + µ)!

. (B5)

In Eqs. (B4), we have used the equality between spherical har-
monics and the associated Legendre polynomials, including
the Condon-Shortley phase convention,25,31,66

YL
µ (ϑ′k , ϕ′k) = (−1)µ

√
(2L + 1)

4π
(L − µ)!
(L + µ)!

PµL(cos ϑ′k) eiµϕ′k .

(B6)

Inserting Eqs. (B4) into Eq. (9), we obtain the differ-
ential one-photon cross section in the laboratory frame
of reference for a fixed molecular orientation defined in
Eq. (11).

2. Two-photon absorption tensor

The probability of two-photon absorption, Eq. (15a), of
a molecule that is oriented with angles ω = (α, β, γ) with
respect to the laboratory frame of reference contains the prod-
uct D(1)

q1,%1
(ω)D(1)

q2,%1
(ω)D∗(1)

q3,%1
(ω)D∗(1)

q4,%1
(ω). Using Eqs. (A9),

we obtain

D(1)
q1,%1

(ω)D(1)
q2,%1

(ω) = (−1)q1+q2

2∑
Q=0

(2Q + 1)D(Q)
q1+q2,2σ1

(ω)

×

(
1 1 Q
q1 q2 −q1 − q2

) (
1 1 Q
%1 %1 −2%1

)
,

(B7a)

and analogously for D∗(1)
q3,%1

(ω)D∗(1)
q4,%1

(ω),

D∗(1)
q3,%1

(ω)D∗(1)
q4,%1

(ω) =
2∑

Q′=0

(2Q′ + 1)D(Q′)
−q3−q4,−2%1

(ω)

×

(
1 1 Q′

q3 q4 −q3 − q4

) (
1 1 Q
%1 %1 −2%1

)
.

(B7b)

Inserting Eqs. (B7) into (15a) and using

D(Q)
q1+q2,2%1

(ω)D(Q′)
−q3−q4,−2%1

(ω) =
4∑

K=0

(2K + 1)D∗(K)
s,0 (ω)

(
Q Q′ K

q1 + q2 −q3 − q4 −s

) (
Q Q′ K

2%1 −2%1 0

)
with s = q1 + q2 � q3 � q4, the orientation-dependent probability of two-photon absorption becomes

ρ2P(ω) =
∑
q1,q2

Tq1,q2

∑
q3,q4

T ∗q3,q4
(−1)q3+q4

2∑
Q=0

(2Q + 1)

(
1 1 Q
q1 q2 −q1 − q2

) (
1 1 Q
%1 %1 −2%1

)

×

2∑
Q′=0

(2Q′ + 1)

(
1 1 Q′

q3 q4 −q3 − q4

) (
1 1 Q′

%1 %1 −2%1

) 4∑
K=0

(2K + 1)

(
Q Q′ K

q1 + q2 −q3 − q4 −s

) (
Q Q′ K

2%1 −2%1 0

)
D(K)

s,0 (ω)

≡
∑
q1,q2

Tq1,q2

∑
q3,q4

(−1)q3+q4 T ∗q3,q4

4∑
K=0

g(K)
q1,q2,q3,q4

D(K)
s,0 (ω), (B8)

cf. Eqs. (19). Two useful properties of the Wigner 3j symbols
utilized throughout this work involve odd permutations of two
columns,34 (

j j′ J
m m′ M

)
= (−1) j+j′+J

(
j′ j J
m′ m M

)
, (B9)

as well as the unitary condition for the Wigner rotation
matrices,34

J∑
M=−J

D(J)
M,M′(ω)D∗(J)

M,M̃
′(ω) = δM′,M̃

′ . (B10)

3. Cross section for (2+1) photoionization

In order to simplify the expression of the cross section for
the (2+1) REMPI process, we utilize the properties defined in

Eqs. (A9), to the product involving the first and second Wigner
3j symbols in Eq. (11),

D(1)
q,%2

(ω)D(1)
−q′,−%2

(ω) = (−1)q′−q
2∑
ν=0

(2ν + 1)D(ν)
q−q′,0(ω)

×

(
1 1 ν
q −q′ q′ − q

) (
1 1 ν
%2 −%2 0

)
.

(B11)

This allows for exploiting, in the integration over the Euler
angles, the well-known properties for integrating over a prod-
uct of three Wigner 3j symbols. With Eq. (B11), Eq. (11) takes
the following form:
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d2σ1P

dωdΩk′
= co

∑
`,m
`o,mo

∑
`′,m′
`′o,m′o

∑
q,q′

(−i)`−`
′

ei(δ`−δ`′ ) a`o
mo

a`
′
o

m′o
Ik (`, `o) Ik (`′, `′o)S`,m

`o,mo
(q)S`

′,m′

`′o,m′o
(q′)

×

`+`′∑
L= |`−`′ |

(2L + 1)

(
` `′ L
0 0 0

) (
` `′ L
m −m′ −(m − m′)

) L∑
µ=−L

ς
µ
L(`, `′) (−1)m′−q−%2 PµL(cos ϑ′k) eiµϕ′k

×

2∑
ν=0

(2ν + 1)

(
1 1 ν
q q′ q′ − q

) (
1 1 ν
%2 −%2 0

)
D(ν)

q−q′,0(ω)D(L)
m′−m,−µ(ω). (B12)

Inserting Eqs. (B8) and (B12) into Eq. (12), the PAD measured in the laboratory frame, resulting from a fixed molecular orientation
ω reads

d2σ2+1

dωdΩk′
= N0co

∑
`,m
`o,mo

∑
`′,m′
`′o,m′o

∑
q,q′

(−i)`−`
′

ei(δ`−δ`′ ) a`o
mo

a∗`
′
o

m′o
Ik (`, `o) Ik (`′, `′o)S`,m

`o,mo
(q)S`

′,m′

`′o,m′o
(q′)

×

`+`′∑
L= |`−`′ |

(2L + 1)

(
` `′ L
0 0 0

) (
` `′ L
m −m′ −(m − m′)

) 2∑
ν=0

(2ν + 1)

(
1 1 ν
q q′ q′ − q

) (
1 1 ν
%2 −%2 0

)

×
∑
q1,q2

Tq1,q2

∑
q3,q4

(−1)q3+q4 T ∗q3,q4

4∑
K=0

g(K)
q1,q2,q3,q4

L∑
µ=−L

ς
µ
L(`, `′)(−1)m′−q−%2 PµL(cos ϑ′k) eiµϕ′k

×D(K)
s,0 (ω)D(ν)

q−q′,0(ω)D(L)
m′−m,−µ(ω), (B13)

with s = q1 + q2 � q3 � q4. Equation (B13) may be written in the more compact form of Eqs. (20), namely,

d2σ2+1

dωdΩk′
= N0co

∞∑
L=0

+L∑
µ=−L

bµL(ω)PµL(cos ϑ′k) eiµφ′k . (B14a)

In Eq. (B14a), the only orientation-dependent quantity, bµL(ω), is given by

bµL(ω) =
∑
λ

κ(λ) DK
s,0(ω)Dνq−q′,0(ω)DL

m′−m,−µ(ω), (B14b)

with κµL(λ) defined as

κ
µ
L(λ) = (−i)`−`

′

ei(δ`−δ`′ ) a`o
mo

a`
′
o

m′o
Ik (`, `o) Ik (`′, `′o)S`,m

`o,mo
(q)S`

′,m′

`′o,m′o
(q′) ςµL(`, `′)

×

(
` `′ L
0 0 0

) (
` `′ L
m −m′ −(m − m′)

) (
1 1 ν
q q′ q′ − q

) (
1 1 ν
%2 −%2 0

)
×Tq1,q2 (−1)q3+q4 T ∗q3,q4

g(K)
q1,q2,q3,q4

(2ν + 1)(2L + 1)(−1)m′−q−%2 , (B15)

where λ comprises all summation indices, except for L
and µ, as described in Appendix B 3. Next, according to
Eq. (13), we need to average over all initial orientations,
i.e., integrate the doubly differential cross section over the
Euler angles. To this end, we utilize the following inte-
gration property involving the product of three Wigner 3j
symbols:31,32,34

∫
D(K)

s,0 (ω)D(ν)
q−q′,0(ω)D(L)

m′−m,−µ(ω) d3ω

=

(
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 −µ

)
(B16)

with d3ω ≡ d3(α, β, γ) = dα d(cos(β)) dγ/8π2. Finally, fol-
lowing Eq. (13), integration of Eq. (B13) over the Euler angles
ω ≡ (α, β, γ), using Eq. (B16), gives the expression of the

laboratory frame PAD resulting from a randomly ensemble of
molecules in the context of a (2+1) REMPI process, defined
in Eqs. (22). In particular, due to the second Wigner 3j symbol
in Eqs. (B16), it is clear that the integral vanishes if µ , 0.
As a consequence, this requirement translates into cylindrical
symmetry of the PAD measured in the laboratory frame, as
µ also appears in the azimuthal angle dependent term eiµϕ′k

in Eq. (B13). Thus, we retrieve the expression defined in
Eqs. (22).

4. Non-zero Legendre coefficients for two-photon
absorption with circularly polarized light
and ionization with linear polarization

In this section, we show that a (2+1) REMPI process
for which the two-photon absorption process is driven by
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circular polarized light, followed by linearly polarized light
for the radiative process, leads within the electric dipole
approximation exclusively to even Legendre coefficients. To
this end, we exploit the symmetry as well as invariance
properties of Eq. (22b), by making a change of variables
for q1, q2, q3, and q4 in Eq. (22b) that keeps cL(%1, %2)
unchanged and also keeps s = q1 + q2 � q3 � q4 invariant
(in order to keep the fifth Wigner 3j symbol in Eq. (22b)
unchanged). A change of variables fulfilling this property
reads

*....
,

q′1
q′2
q′3
q′4

+////
-

=

*....
,

0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

+////
-

*....
,

q1

q2

q3

q4

+////
-

, (B17)

i.e., it interchanges q1 
 −q3 and q2 
 −q4.
For simplicity, we define the quantity,

Λθ (%1) =
∑

K

∑
q1,q2

∑
q3,q4

(−1)q3+q4 gK
q1,q2,q3,q4

(%1)Tq1,q2 T ∗q3,q4

×Wθ (s) (B18a)

with

Wθ (s) =

(
K ν L
s q − q′ m′ − m

)
. (B18b)

Eqs. (B18) appear in Eq. (22b). In Eqs. (B18), s = q1 + q2 � q3

� q4 and θ stands for the indices (θ ≡ K , ν, m, m′, q, q′,L).
Analogously, Λ′θ (%1) is defined using the primed dummy
variables q′k , for k = 1, . . ., 4 with the symmetry property
Λθ (%1) = Λ′θ (%1). Of course, we have

cL(%1, 0) = c′L(%1, 0). (B19)

Using Eq. (B17), the tensor elements appearing in Eq. (22b)
then transform according to

Tq′1,q′2
= T−q3,−q4 = (−1)q3+q4 T ∗q3,q4

(B20a)

and

T ∗q′3,q′4
= T ∗−q1,−q2

= (−1)q1+q2 Tq1,q2 . (B20b)

Using Eqs. (B20), Eqs. (B18) reads, upon transformation,

Λ
′
θ (%1) =

∑
q1,q2

∑
q3,q4

(−1)q3+q4 gK
−q3,−q4,−q1,−q2

(%1)

×Tq1,q2 T ∗q3,q4
Wθ (s), (B21)

with Λθ (%1)=Λ′θ (%1). Next, we evaluate the quantity
gK
−q3,−q4,−q1,−q2

(%1) present in Eq. (B21) using Eq. (19b), we

find

g(K)
−q3,−q4,−q1,−q2

(%1)

=

2∑
Q=0

2∑
Q′=0

Q+Q′∑
K= |Q−Q′ |

γ(K)
Q,Q′

(
1 1 Q′

−q3 −q4 q3 + q4

) (
1 1 Q′

%1 %1 −2%1

)

×

(
1 1 Q
−q1 −q2 q1 + q2

) (
1 1 Q
%1 %1 −2%1

)
×

(
Q′ Q K

−q3 − q4 q1 + q2 s

) (
Q′ Q K
2%1 −2%1 0

)
, (B22)

where we have interchanged the dummy indices Q and Q′.
Application of Eq. (26) to the first and third Wigner 3j symbol
in Eq. (B22) gives(

1 1 Q′

−q3 −q4 q3 + q4

)
= (−1)Q′

(
1 1 Q′

q3 q4 −q3 − q4

)
(B23a)

and(
1 1 Q
−q1 −q2 q1 + q2

)
= (−1)Q

(
1 1 Q
q1 q2 −q1 − q2

)
, (B23b)

respectively. Next, we permute the first and second column in
the fifth Wigner 3j symbol in Eq. (B22), following Eq. (B9),
which yields(

Q′ Q K
−q3 − q4 q1 + q2 s

)
=

(
Q Q′ K

q1 + q2 −q3 − q4 s

)
× (−1)Q+Q′+K . (B23c)

Finally, inserting Eqs. (B23) into Eq. (B22) together with
the property Λθ (%1) = Λ′θ (%), we find∑

K

∑
q1,q2

∑
q3,q4

(−1)q3+q4 gK
q1,q2,q3,q4

(%1) Tq1,q2 T ∗q3,q4
Wθ (s)

=
∑

K

∑
q1,q2

∑
q3,q4

(−1)q3+q4 gK
q1,q2,q3,q4

(%1)

× (−1)K Tq1,q2 T ∗q3,q4
Wθ (s) (B24)

with Wθ (s) invariant as s invariant, and where gK
q1,q2,q3,q4

(%1)
is defined in Eq. (19b). Equation (B24) means that the sum-
mations over K and qk are invariant under the transformation
gK → (−1)K gK . Using Eq. (B24), we find for %1 = ±1 and
%2 = 0,

c′L(%1, 0) = N0c̃o

∑
`,m

no,`o,mo

∑
`′,m′

n′o`
′
o,m′o

∑
q,q′

∑
q1,q2
q3,q4

2∑
ν=0

4∑
K=0

(−1)q3+q4 (2ν + 1)(2L + 1)a`o
mo

(no) a∗`
′
o

m′o
(n′o) Tq1,q2 T ∗q3,q4

× (−i)`−`
′

(−1)m′−q−%2 ei(δ`−δ`′ ) g(K)
q1,q2,q3,q4

(%1) Ino
k

(`, `o) In′o
k (`′, `′o) S`,m

`o,mo
(q) S`

′,m′

`′o,m′o
(q′) ς̂(`, `′)

×

(
` `′ L
m −m′ m′ − m

) (
` `′ L
0 0 0

) (
1 1 ν
q −q′ q′ − q

) (
1 1 ν
0 0 0

) (
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 0

)
× (−1)K (−1)K+ν+L

= (−1)LcL(%1, 0). (B25)
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In Eq. (B25), the factors (�1)K and (−1)ν+K+L arise from
Eq. (B24) and from application of the property defined in
Eq. (26) to the sixth Wigner 3j symbol in Eq. (B25), respec-
tively. Furthermore, we used the property that ν is even, i.e.,
only even ν contribute to the summation, due to the triple zeros
in the second row of the fourth Wigner 3j symbol. Finally, using
Eq. (B19), it follows that for %2 = 0,

cL(%1, 0) = (−1)L cL(%1, 0). (B26)

Because no assumptions have been made on the polarization
direction %1, Eq. (B26) shows that only even Legendre coeffi-
cients are present in the PAD if the radiative photoabsorption
is driven by linearly polarized light, i.e., %2 = 0, independently
of the polarization direction, %1, driving the non-resonant two-
photon absorption process. As a consequence, only even Leg-
endre orders contribute to the PAD if %1 = ±1, 0 and %2 = 0,
translating into a vanishing PECD.

5. Behavior of Legendre coefficients when changing
the helicity of the one-photon photoionization

The easiest way to prove Eq. (36) consists of making
the change of variables defined in Eq. (B17), and evaluate
c′L(%1,−%%), using the property

cL(%1,−%2) = c′L(%1,−%2), (B27)

where the unprimed (primed) quantities in Eq. (B27) refer to
the Legendre coefficients before (after) the change of variables,
respectively.

Keeping ε %1 fixed while changing the polarization direc-
tion %2 transforms the fourth Wigner 3j symbol in Eq. (22b)
according to (

1 1 ν
−%2 %2 0

)
= (−1)ν

(
1 1 ν
%2 %2 0

)
, (B28)

where we have used Eq. (26). Inserting Eqs. (B24) and (B28)
in Eq. (22b), for c′L(%1,−%2) gives

c′L(%1,−%2) = N0c̃o

∑
`,m

no,`o,mo

∑
`′,m′

n′o`
′
o,m′o

∑
q,q′

∑
q1,q2
q3,q4

2∑
ν=0

4∑
K=0

(−1)q3+q4 (2ν + 1)(2L + 1)a`o
mo

(no) a∗`
′
o

m′o
(n′o) Tq1,q2 T ∗q3,q4

× (−i)`−`
′

(−1)m′−q−%2 ei(δ`−δ`′ ) g(K)
q1,q2,q3,q4

(%1) Ino
k

(`, `o) In′o
k (`′, `′o) S`,m

`o,mo
(q) S`

′,m′

`′o,m′o
(q′) ς̂(`, `′)

×

(
` `′ L
m −m′ m′ − m

) (
` `′ L
0 0 0

) (
1 1 ν
q −q′ q′ − q

) (
1 1 ν
%2 −%2 0

) (
K ν L
s q − q′ m′ − m

) (
K ν L
0 0 0

)
× (−1)K (−1)ν (−1)K+ν+L = (−1)L cL(%1,+%2). (B29)

In Eq. (B29), the factors (�1)K and (−1)ν arise from the invari-
ance property defined in Eq. (B24) for the transformation
defined in Eqs. (B17) and (B28), respectively. Application of
the property defined in Eq. (26) to the sixth Wigner 3j symbol
in Eq. (B29) gives rise to the factor (−1)K+ν+L. The terms
in K and ν compensate, giving rise to the factor in (−1)L

alone. Finally, using (B27) and comparing Eq. (22b) for %1

and %2 and Eq. (B29) for %1 and −%2 determines the proof for
Eq. (36), i.e.,

cL(%1,−%2) = (−1)L cL(%1,+%2). (B30)

6. Behavior of Legendre coefficients when changing
the helicity of the two-photon absorption process

In this section, we present the proof of Eq. (37). To
verify that it is the polarization direction of the ionizing
field alone which imposes the sign for all odd Legendre
coefficients, whereas the polarization direction of the two-
photon absorption plays no role, we define the following
transformation:

*....
,

q′1
q′2
q′3
q′4

+////
-

=

*....
,

0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

+////
-

*....
,

q1

q2

q3

q4

+////
-

, (B31)

which interchanges the indices q1
 −q4 and q2
 −q3

while keeping Eq. (22b) unchanged and s invariant. In

particular, the tensor elements appearing in Eq. (22b) then
transform according to

Tq′1,q′2
= T−q4,−q3 = (−1)q3+q4 T ∗q4,q3

= (−1)q3+q4 T ∗q3,q4
(B32a)

and

T ∗q′3,q′4
= T ∗−q2,−q1

= (−1)q1+q2 Tq2,q1 = (−1)q1+q2 Tq1,q2 ,

(B32b)

where we have made use of the correspondence between
the components of a vector operator in spherical and Carte-
sian basis, defined in Eq. (A7) in Appendix A 3, in Tqk ,qk′

,
for qk , qk′ =±1, 0, together with the fact that the two-photon
absorption tensor is symmetric in Cartesian coordinates, i.e.,
T i ,j = T j ,i for i, j = (x, y, z).

TABLE XIX. Axiality and rhombicity for fenchone and camphor. T r and T a

are given in units of a2
0 E−1

h .

Fenchone Camphor

Left Right Left Right

T r −7.44 −3.78 −6.76 −3.50
T a 12.50 6.38 11.00 5.68
R −0.59 −0.59 −0.61 −0.61
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We define Λθ (%1), according Eqs. (B18) and we study
the symmetry properties of Λ′θ (%1) upon transformation
defined in Eq. (B31). In particular, because the quantity given
by

(−1)q′1+q′3 Tq′1,q′2
Tq′3,q′4

Wθ (s′) (B33)

is (as for the earlier transformation defined in Eq. (B17))
invariant under the transformation defined in Eq. (B31),

we may neglect it in the following, avoiding cumbersome
notations. We outline, however, that a full notation was used
in Appendix B 4. Therefore, given such invariance proper-
ties, we may consider the behavior of gK under exchange
%1→ −%1 alone, and neglect the extra terms depending
on K , q1, . . ., q4 in the expression for Λ′θ (s). Because %1 is
changed to −%1 while %2 is kept fixed, we consider gK (−%1)
which becomes, upon the transformation defined in Eq. (B31),

g(K)
q′1,q′2,q′3,q′4

(−%1) =
2∑

Q=0

2∑
Q′=0

Q+Q′∑
K= |Q−Q′ |

γ(K)
Q,Q′

(
1 1 Q′

−q4 −q3 q4 + q3

) (
1 1 Q′

−%1 −%1 +2%1

)

×

(
1 1 Q
−q2 −q1 q2 + q1

) (
1 1 Q
−%1 −%1 +2%1

) (
Q′ Q K

−q4 − q3 q3 + q2 s

) (
Q′ Q K
−2%1 +2%1 0

)
(B34)

where we have interchanged the indexes Q and Q′. Next we
apply the symmetry property given in Eq. (26), followed by an
odd permutation of the first and second columns, according to
Eq. (B9), to the first Wigner 3j symbol in Eq. (B34). We find(

1 1 Q′

−q4 −q3 q4 + q3

)
=

(
1 1 Q′

q3 q4 −q3 − q4

)
. (B35a)

The same procedure is applied to the third symbol in Eq. (B34),
i.e., (

1 1 Q
−q2 −q1 q2 + q1

)
=

(
1 1 Q
q1 q2 −q1 − q2

)
. (B35b)

Next, odd permutation of the first and second columns in the
fifth Wigner 3j symbol gives,(

Q′ Q K
−q4 − q3 q2 + q1 s

)
=

(
Q Q′ K

q1 + q2 −q4 − q3 s

)
× (−1)Q+Q′+K . (B35c)

Application of Eq. (26), followed by permutation of the first
two rows leaves the sign of the second Wigner 3j symbol

unchanged for all Q′, namely(
1 1 Q′

−%1 −%1 −2%1

)
=

(
1 1 Q′

+%1 +%1 +2%1

)
(B35d)

and analogously for the fourth Wigner symbol involving Q.
It is to be noted that the left side of Eq. (B35d) is related to
gK (−%1) while the right side is related to gK (+%1). Permuting
the first two rows of the fifth Wigner symbol in Eq. (B34) gives(

Q′ Q K
−2%1 +2%1 0

)
= (−1)Q+Q′+K

(
Q Q′ K

2%1 −2%1 0

)
. (B35e)

Inserting the symmetry transformations (B35) into Eq. (B34),
leads to a compensation of the terms (−1)Q+Q′+K in Eqs. (B35c)
and (B35e). Finally, comparing Eqs. (B34) and (19b) gives the
following property:∑

K

∑
q1,q2
q3,q4

gK
q1,q2,q3,q4

(−%1) =
∑

K

∑
q1,q2
q3,q4

gK
q1,q2,q3,q4

(+%1) (B36)

which implies cL(−%1, %2) = cL(%1, %2) according to Eq.
(22b), cf. Eq. (37).

TABLE XX. Left (Tαβgo ) and right (Tαβog ) two-photon absorption tensors in units of a4
0 E−2

h for fenchone as obtained with the CCSD method.

States T xx
go T xx

og T xy
go T xy

og T xz
go T xz

og T yy
go T yy

og T yz
go T yz

og T zz
go T zz

og

A �0.15 �0.09 �0.05 �0.02 0.130 0.05 �0.37 �0.20 0.27 0.14 �0.36 �0.19
B 2.21 1.14 23.70 12.34 10.39 5.40 �2.31 �1.20 �0.34 �0.17 �3.39 �1.80
C1 �0.30 �0.15 �10.60 �5.40 �5.74 �2.93 1.57 0.82 1.43 0.73 1.35 0.69
C2 �29.42 �15.34 7.58 3.90 �1.87 �0.93 �8.39 �4.29 �2.62 �1.33 �2.77 �1.47
C3 �39.74 �20.68 �2.18 �1.10 5.69 2.95 �11.02 �5.63 0.03 0.08 �9.28 �4.82

TABLE XXI. Left (Tαβgo ) and right (Tαβog ) two-photon absorption tensors in units of a4
0 E−2

h for camphor as obtained with the CCSD method.

States T xx
go T xx

og T xy
go T xy

og T xz
go T xz

og T yy
go T yy

og T yz
go T yz

og T zz
go T zz

og

A �0.46 �0.27 �0.35 �0.20 �0.67 �0.34 0.58 0.29 �0.04 �0.02 �1.62 �0.86
B 1.66 1.00 12.91 6.80 17.38 9.18 9.15 4.73 6.50 3.36 10.43 5.46
C1 10.42 5.37 0.61 0.27 1.22 0.55 �4.83 �2.48 �4.90 �2.54 �7.06 �3.70
C2 4.39 2.14 0.35 0.22 �5.72 �2.94 5.76 2.92 2.65 1.39 �8.13 �4.26
C3 �29.68 �15.55 1.46 0.65 4.10 1.96 �2.69 �1.41 �1.59 �0.82 �1.03 �0.63
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APPENDIX C: EVALUATIONS OF THE TWO-PHOTON
TRANSITION MOMENTS IN THE FRAMEWORK
OF COUPLED CLUSTER THEORY

The rotationally averaged two-photon transition strength
strength δ̃TP (in a.u.) and the two-photon transition prob-
ability rate constant Kgo are defined in units of cm4 s as
follows:11,67–69

δ̃TP = a4
0E−2

h (FδF + GδG + HδH ), (C1a)

Kgo = ~
2t0(2π)2α2ω ph,1ωph,2 δ̃

TP, (C1b)

where a0 is the Bohr radius, t0 = ~/Eh is the atomic unit of
time, α the fine structure constant andωph,1 andωph,2 the pho-
ton energies. F, G and H are parameters depending on the
arrangement and polarization of the laser used in the exper-
iment.11,67–69 In Eq. (C1a), the parameters δF , δH and δG

read67,68

δF =
1

30

∑
αβ

Sgo
αα,ββ ,

δG =
1

30

∑
αβ

Sgo
αβ,αβ , (C2)

δH =
1

30

∑
αβ

Sgo
αβ,βα,

where α, β = x, y and z. Here g and o refer to the ground and
excited states. In the above relations, Sgo

αβ,γδ , the so-called

transition strength is defined as follows:67,68

Sgo
αβ,γδ(ωph) =

1
2

[Tαβgo (−ωph)Tγδog (ωph)

+Tγδgo (−ωph)∗Tαβog (ωph)∗]

= Tαβgo (−ωph)Tγδog (ωph), (C3)

where the Tαβog (ωph) and Tαβgo (ωph) are called the two-photon
transition matrix elements. These tensors read67,68

Tαβog (ωph,2) =
∑

n

[ 〈ψo | β |n〉〈n|α |ψg〉

Eg − En + ~ωph,1
+
〈ψo |α |n〉〈n| β |ψg〉

Eg − En + ~ωph,2

]

= Tαβgo (−ωph,2)∗, (C4)

where α and β are the Cartesian components of the posi-
tion operator (α, β = x, y and z). ~ωph,1 and ~ωph,2 are
the photon energies which satisfy the matching condition

TABLE XXII. δ̃TP and Kgo referring to the rotationally averaged two-photon
transition strength and the two-photon-transition probability rate constant,
respectively, for fenchone. δF , δG, δH are calculated by using Eq. (C2). δ̃TP

is given in units of a4
0 E−2

h and Kgo in units of cm4 s.

States δF δG δH δ̃TPa Kgo
b

A 0.01 0.00 0.00 0.02 3.61 × 10−56

B 0.22 23.62 23.62 141.31 4.59 × 10−52

C1 0.12 5.08 5.08 30.27 1.09 × 10−52

C2 28.54 18.70 18.70 55.12 2.03 × 10−52

C3 62.31 32.24 32.24 68.81 2.55 × 10−52

aBoth photon circularly polarized i.e., F = �

1
4 , G = 7

2 and H = �

1
4 .

bBoth photon circularly polarized i.e., F = �

1
4 ,G = 7

2 and H = �

1
4 .

TABLE XXIII. δ̃TP and Kgo referring to the rotationally averaged two-
photon transition strength and the two-photon-transition probability rate con-
stant, respectively, for fenchone. δ̃TP is given in units of a4

0 E−2
h and Kgo in

units of cm4 s.

States δ̃TPa Kgo
b δ̃TPc Kgo

d

A 0.06 1.04 × 10−55 0.02 4.62 × 10−55

B 94.92 3.80 × 10−52 117.90 3.82 × 10−52

C1 20.57 7.43 × 10−53 25.30 9.14 × 10−53

C2 131.87 4.86 × 10−52 64.96 2.39 × 10−52

C3 253.58 9.39 × 10−52 98.88 3.66 × 10−52

aBoth photons polarized linearly with parallel polarization i.e., F = G = H = 2.
bBoth photons polarized linearly with parallel polarization i.e., F = G = H = 2.
cBoth photons polarized linearly with perpendicular polarization i.e., F = �1, G = 4, and
H = �1.
dBoth photons polarized linearly with perpendicular polarization i.e., F = �1,G = 4, and
H = �1.

~ωph,1 + ~ωph,2 = ~ωog = Eo − Eg. For variational ab initio
methods, the two-photon absorption tensor is symmetric with
respect not only to the permutation of the operators α and β
(assuming thatωph,2 is replaced byωog−ωph,2) but also to com-
plex conjugation combined with a simultaneous inversion of
the frequencies and exchange of the initial and final states.67,68

In coupled cluster response theory, the two-photon absorption
tensors Tαβog (ωph,2) and Tαβgo (−ωph,2) are in general not each

other complex conjugate, i.e., Tαβog (ωph,2),Tαβgo (−ωph,2)∗,
whereas for the transition strengths, which are calculated as
a symmetrized product of right Tαβog (ωph) and left Tαβgo (ωph)
two-photon absorption tensors as shown in Eq. (C3), we
have67,68

Sgo
αβ,γδ(ωph) = Sgo

αβ,γδ(−ωph)∗

= Sgo
γδ,αβ(ωph)∗ = Sgo

βα,δγ(ωog − ωph)∗. (C5)

These two-photon absorption tensors, Tαβog (ωph) and Tαβgo (ωph),
are called right and left two-photon absorption tensor from
the ground state g to the excited state o, respectively.67,68 As
a side remark, the imaginary part of two-photon absorption
tensors calculated using the CC method vanishes in the limit
of complete cluster expansion and thus it does not influence
the results of the two-photon absorption tensor.70

We should mention that Eq. (C4) is presented in a general
form and in the Cartesian basis. However, we are interested
in the special case of two photons with same polarization and
energy values (i.e.,ωph,1 =ωph,2 =ωph). If one uses the inverse
relations of Eq. (A8) and inserts them into Eq. (C4), it will
give Eq. (15b), which is two-absorption tensor in the spherical
basis.

TABLE XXIV. Same as Table XXII but for camphor.

States δF δG δH δ̃TPa Kgo
b

A 0.04 0.08 0.08 0.37 6.02 × 10−55

B 7.92 21.34 21.34 112.22 3.80 × 10−52

C1 0.04 4.02 4.02 24.05 9.21 × 10−53

C2 0.05 3.40 3.40 20.31 7.84 × 10−53

C3 19.58 16.21 16.21 58.13 2.26 × 10−52

aBoth photon circularly polarized i.e., F = �

1
4 , G = 7

2 , and H = �

1
4 .

bBoth photon circularly polarized i.e., F = �

1
4 , G = 7

2 , and H = �

1
4 .
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The left and right two-photon absorption tensors change
under a rotation R, whereas the transition strength Sgo

αβ,γδ(ωph)

remains unchanged (Sgo
αβ,γδ(ωph) = RSgo

αβ,γδ(ωph)R†). The left
and right two-photon absorption tensors for fenchone and
camphor (calculated at the rotated arrangement (see Fig. 1)
such that the origin is at the center of mass and princi-
pal axes of inertia are along coordinate axes) are shown in
Tables XX and XXI. In Fig. 1, the eigenvectors of the left (red
vectors) and right (blue vectors) two-photon absorption ten-
sor corresponding to the third electronically excited states of
fenchone and camphor are shown. The corresponding eigen-
values of the left and right two-photon absorption tensor are
(�10.96, 0.20, 13.38) and (�5.58, 0.10, 6.83), respectively,
for fenchone and (�11.06, �0.92, 10.51) and (�5.73, �0.47,
5.40), respectively for camphor. From this information, the
rhombicity (T r), axialty (T a), and the ratio (R = T r/T a) of
these symmetric tensors can be calculated using the following
relations:

Tr = a2
0 E−1

h
2
3

(b − e),

Ta = a2
0 E−1

h (−b − e), (C6)

R =
Tr

Ta
,

where b and e are

b = Th
xx − Th

0 ,

e = Th
yy − Th

0 , (C7)

Th
0 =

1
3

(Th
xx + Th

yy + Th
zz).

Here h refers to the left and right two-photon absorption tensors
and Th

xx and Th
yy refer to the diagonal elements of the left and

right two-photon absorption tensors. Based on Eq. (C6), the
corresponding numerical values for the rhombicity (T r), axial-
ity (T a), and their ratio (R) are shown in Table XIX. As inferred
from Table XIX, these values for fenchone and camphor are
close to each other. Furthermore, we report the parameters δF ,
δG, δH , δ̃TP, and Kgo for different types of polarizations in
Tables XXII–XXV.

As indicated, there are two two-photon transition matri-
ces obtained when we employ the coupled cluster method.
This is problematic in the calculation of photoelectron angu-
lar distributions of the molecules under investigation, because
the model constructed for this purpose (see Sec. II) depends

TABLE XXV. The same as Table XXIII but for camphor.

States δ̃TPa Kgo
b δ̃TPc Kgo

d

A 0.39 6.29 × 10−55 0.33 5.47 × 10−55

B 10.21 3.42 × 10−52 98.80 3.34 × 10−52

C1 16.16 6.18 × 10−52 20.06 7.68 × 10−53

C2 13.72 5.29 × 10−53 16.96 6.54 × 10−53

C3 104.02 4.04 × 10−52 61.49 2.39 × 10−52

aBoth photons polarized linearly with parallel polarization i.e., F = G = H = 2.
bBoth photons polarized linearly with parallel polarization i.e., F = G = H = 2.
cBoth photons polarized linearly with perpendicular polarization i.e., F = �1, G = 4, and
H = �1.
dBoth photons polarized linearly with perpendicular polarization i.e., F = �1, G = 4, and
H = �1.

on only a single two-photon transition tensor. Thus, the com-
putational procedure based on the CC calculation would not
work for the evaluation of photoelectron angular distributions,
unless the left and right two-photon transition tensors are com-
bined such that the two-photon transition strength and the
total cross section remain unchanged when compared to the
conventionally chosen recipe for coupled cluster calculations.

The effective two-photon transition matrix element can be
written as follows:

T̃αβog (ωph) =
√

2 sign ( j)

√
Tαβgo (−ωph)Tαβog (ωph)

2
(C8)

with the sign( j) of T̃αβog (ωph) being the same as the signs of

the left Tαβgo and right Tαβog two-photon absorption tensors for
each electronic state as shown in Tables XX and XXI.

Employing Eq. (C8) leaves the transition strength of
Sgo
αβ,γδ and the two-photon transition probability rate constant

unchanged. Thus all parameters δF , δG, δH , δ̃TP as well as Kgo

in Eqs. (C1) and (C2) are the same as before combining the
right and left transition moments. Thus, employing Eq. (C8)
provides exactly the same reported values in Tables XX and
XXII–XXIV. The lower part of Tables VIII and IX presents
the (symmetric) effective two-photon transition matrix ele-
ments (transition moments) based on Eq. (C8) for fenchone
and camphor.
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molpro, version 2012.1, a package of ab initio programs, 2012, see
http://www.molpro.net.

47F. Pulm, J. Schramm, J. Hormes, S. Grimme, and S. D. Peyerimhoff, Chem.
Phys. 224, 143 (1997).

48D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994).
49M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys.

108, 4439 (1998).

50H. H. Falden, K. R. Falster-Hansen, K. L. Bak, S. Rettrup, and S. P. A. Sauer,
J. Phys. Chem. A 113, 11995 (2009).

51C. Diedrich and S. Grimme, J. Phys. Chem. A 107, 2524 (2003).
52 MATLAB, version 7.10.0 (R2014a), The MathWorks, Inc., Natick, Mas-

sachusetts, 2014.
53C. J. Harding, E. Mikajlo, I. Powis, S. Barth, S. Joshi, V. Ulrich, and

U. Hergenhahn, J. Chem. Phys. 123, 234310 (2005).
54G. L. Yudin, S. Patchkovskii, and A. D. Bandrauk, J. Phys. B 39, 1537

(2006).
55Z. B. Walters, S. Tonzani, and C. H. Greene, J. Phys. Chem. A 112, 9439

(2008).
56S. Gozem, A. O. Gunina, T. Ichino, D. L. Osborn, J. F. Stanton, and A.

I. Krylov, J. Phys. Chem. Lett. 6, 4532 (2015).
57T. Seideman, Phys. Rev. A 64, 042504 (2001).
58C. M. Oana and A. I. Krylov, J. Chem. Phys. 127, 234106 (2007).
59A. Humeniuk, M. Wohlgemuth, T. Suzuki, and R. Mitri, J. Chem. Phys.

139, 134104 (2013).
60M. Stener, G. Fronzoni, D. D. Tommaso, and P. Decleva, J. Chem. Phys.

120, 3284 (2004).
61U. Boesl von Grafenstein and A. Bornschlegl, ChemPhysChem 7, 2085

(2006).
62R. Li, R. Sullivan, W. Al-Basheer, R. M. Pagni, and R. N. Compton, J.

Chem. Phys. 125, 144304 (2006).
63H. G. Breunig, G. Urbasch, P. Horsch, J. Cordes, U. Koert, and K.-M.

Weitzel, ChemPhysChem 10, 1199 (2009).
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