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Full quantum control of enantiomer-selective state
transfer in chiral molecules despite degeneracy
Monika Leibscher1,2,7, Eugenio Pozzoli3,6,7, Cristobal Pérez 4, Melanie Schnell 4,5, Mario Sigalotti3,

Ugo Boscain3 & Christiane P. Koch 1,2✉

The driven quantum asymmetric top is an important paradigm in molecular physics with

applications ranging from quantum information to chiral-sensitive spectroscopy. A key pre-

requisite for these applications is the ability to completely control the rotational dynamics.

The inherent degeneracy of quantum rotors poses a challenge for quantum control since

selecting a particular rotational state cannot be achieved by spectral selection alone. Here, we

prove complete controllability for rotational states of an asymmetric top belonging to

degenerate values of the orientational quantum number M. Based on this insight, we con-

struct a pulse sequence that energetically separates population in degenerate M-states.

Introducing the concept of enantio-selective controllability, we determine the conditions for

complete enantiomer-specific population transfer in chiral molecules and construct pulse

sequences for the example of propanediol and carvone molecules for population initially

distributed over degenerate M-states. Our work shows how to leverage controllability ana-

lysis for the solution of practical quantum control problems.
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Molecular chirality—the fact that a chiral molecule can-
not be superimposed with its mirror image by rotations
and translations—is as ubiquitous as it is intriguing.

The left-handed and right-handed versions of a chiral molecule
share almost all of their physical properties. Yet, the chemical and
biological behavior of the two enantiomers typically differs dra-
matically. Detection of chirality and the ability to separate
enantiomers, therefore, play a central role across the natural
sciences. To this end, chiroptical spectroscopy, the interrogation
of chiral molecules with electromagnetic radiation1, has been a
method of choice since the very discovery of molecular chirality.
For the detection of enantiomeric excess, for example, several new
techniques have recently been brought forward, including reso-
nant phase-sensitive microwave three-wave mixing2–5 and
ultrafast spectroscopies based on photoelectron circular
dichroism6–8 or high-harmonic generation9,10. They share, as a
common feature, a sufficiently high sensitivity allowing for
application in gas phase samples of randomly oriented molecules.

Among these techniques, resonant phase-sensitive microwave
three-wave mixing2–5 holds the promise of separating enantiomers
in a racemic mixture with electromagnetic fields alone. A precursor
—enantiomer-selective population excitation transfering right-
handed molecules to a different energy level than left-handed
ones—has already been demonstrated experimentally11–13, albeit
with efficiencies of at most a few percent. If the efficiency of the
population transfer can be brought close to 100%, an enantiopure
sample can be distilled out of the racemate by e.g., ionizing all
molecules in one of the two levels. Such an ability to completely
separate enantiomers in energy would benefit e.g., high-resolution
searches of parity violation11,14,15. In experiments to date11–13, the
efficiency of the enantiomer-selective population transfer has been
limited by two factors. One is the temperature of the sample or,
more precisely, thermal population in the excited states targeted by
the three-wave mixing. A solution to this problem consists in
addressing levels which are sufficiently highly excited such that
their thermal population vanishes16,17. The second limitation is due
to degeneracies within the rotational spectrum. Chiral molecules
are typically asymmetric top rotors. Denoting the rotational
quantum number by J, every energy level of a rigid asymmetric top
consists of 2J+ 1 states with a different orientational quantum
numberM. Theoretical descriptions of resonant three-wave mixing
have most often ignored the presence of degenerate energy
levels2,17–23. However, transfer efficiencies are then predicted cor-
rectly only for cycles which start from the non-degenerate rota-
tional ground state (J= 0)16,24,25. Otherwise, cyclic excitation
involves a number of coupled, partially incomplete three-level
systems, limiting the efficiency of enantiomer-selective population
transfer24, even in the absence of thermal population in the excited
states.

The orientational degeneracy of rotational states in asymmetric
top molecules is an obstacle also in applications beyond resonant
microwave three-wave mixing, for example, in laser cooling26,27

and quantum computing28. More generally, driven or “kicked”
top rotors are an important paradigm of quantum control with a
long-standing history in quantum chaos29 and molecular
alignment30. The ability to control a quantum system such as a
driven rotor can be tackled by controllability analysis. It refers to
the question of whether a control target can be reached, given the
interaction of the system with external fields31. Degeneracies may
pose a problem because state-selectivity cannot simply be reached
by spectral selection32. For molecular rotations, the simplest
example of degeneracy is that of a linear rotor. The degeneracy is
due to isotropy of space which can be broken by using controls
with more than one polarization direction. This was first proven
for finite-dimensional subspaces of the linear rotor spectrum33,34.
Development of a rigorous theory to decouple a finite-

dimensional subspace from the rest of an infinite-dimensional
spectrum two decades later35–37 has allowed to extend the con-
trollability proof for the linear rotor to unitary evolutions38, a
prerequisite for e.g., using molecular rotations in quantum
computing28,39. In contrast to linear rotors, symmetric top
molecules are not controllable40,41 since no mechanism exists to
break the additional symmetry with respect to the molecule-fixed
axis. In asymmetric top molecules, this symmetry is absent, as in
the case of a linear rotor. However, the asymmetric top energy
level structure is much more complex than that of the linear
rotor, involving additional transitions between states with ΔJ= 0,
depending on the orientational quantum number M. Controll-
ability of the asymmetric top is thus a nontrivial problem. It has
recently been proven for the complete infinite-dimensional
spectrum42. This does not, however, imply that a particular
subsystem addressed in an experiment is controllable as well. For
example, it does not guarantee the three rotational levels involved
in microwave three-wave mixing are controllable. For practical
purposes, it is, therefore, necessary to prove controllability of
rotational subsystems. Addressing rotational subsystems instead
of the complete spectrum also allows for identifying the number
of different control fields that is required to control the
subsystem.

Here, we show how to completely control the rotational
dynamics in asymmetric top molecules, with electric fields chosen
such as to break the orientational degeneracy, which we will refer
to as orientation-selective control. To this end, we first prove
controllability for asymmetric tops in finite-dimensional sub-
spaces for arbitrary initial states (within these subspaces), build-
ing on recent advances in the controllability of quantum
rotors38,40,41,43,44. We then consider the simultaneous controll-
ability of left-handed and right-handed asymmetric top molecules
interacting with the same electric fields and prove enantiomer-
sensitive controllability within any rotational subspace corre-
sponding to three rotational energies with quantum numbers J
and J+ 1. Based on this mathematical insight, we solve two
control problems. As a first example, we consider population that
initially is incoherently distributed over degenerate rotational
states and derive pulse sequences that energetically separate them.
This can be used as a precursor for distilling a specific orientation.
We then combine control over degenerate rotational states with
cyclic population transfer to achieve complete control over
enantiomer-selective excitation in degenerate rotational levels.
The solution consists in amending the three-wave mixing pulse
sequence to consist of at least five different combinations of the
three polarization directions and three frequencies. The corre-
sponding modified cycles are closed for all levels in the degenerate
manifold, avoiding population loss; and they can be synchronized
for complete population transfer, accounting for the M-depen-
dent Rabi frequencies. By identifying the required light-matter
couplings and deriving practical pulse sequences, we solve the
problem of orientational degeneracy in resonant microwave
three-wave mixing.

Model
Chiral molecules as asymmetric top rotors. We consider the
interaction of chiral molecules with electromagnetic radiation,
described by the Hamiltonian

Ĥ
ð± ÞðtÞ ¼ Ĥ0 þ Ĥ

ð± Þ
int ðtÞ ; ð1Þ

where the subscript (±) denotes the two enantiomers. The
molecular Hamiltonian Ĥ0 is the same for both enantiomers,
except for a very small, parity-violating energy shift which we
neglect here. In contrast, the interaction of the molecule with

external electric fields, Ĥ
ð± Þ
int differs since at least one of the
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Cartesian projections of the molecule’s electric dipole moment
onto the molecular frame changes sign when changing
enantiomers3,22,45. It is this sign change that is at the core of
phase-sensitive resonant microwave mixing2,22. Exploiting the
sign change in cyclic population transfer, enantiomer-selective
excitation is achieved by creating destructive interference for
molecules of one handedness and constructive interference for
the other handedness19.

The dynamics of each enantiomer, induced by the electro-
magnetic field, are obtained by solving the time-dependent
Schrödinger equation,

i_
d
dt

ψð± ÞðtÞ
�� � ¼ Ĥ0 þ Ĥ

ð ± Þ
int ðtÞ

h i
ψð ± ÞðtÞ
�� �

: ð2Þ

Since we consider rotational dynamics of molecules in the
electronic and vibrational ground state, there are no dissipative
mechanisms relevant to the timescale of the dynamics. Expecta-
tion values for a racemic mixture are obtained via the density
operator ^ρðtÞ ¼ 1

2∑± jψð ± ÞðtÞihψð± ÞðtÞj.
We assume the molecules to be sufficiently rigid to model them

as asymmetric tops. The molecular Hamiltonian Ĥ0 then
becomes46

Ĥ0 ¼ Ĥrot ¼ AĴa
2 þ BĴb

2 þ CĴc
2
; ð3Þ

where Ĵa, Ĵb, and Ĵ c are the angular momentum operators with
respect to the principal molecular axes, and A > B > C are the
rotational constants. We adopt the standard approach46 of
expressing the asymmetric top eigenstates as superpositions of
symmetric top eigenstates J;K;Mj i,

J; τ;Mj i ¼ ∑
K
cJKðτÞ J;K;Mj i ; ð4Þ

with prolate symmetric top eigenenergies

Esym
J;K ¼ BJðJ þ 1Þ þ ðA� BÞK2 ; ð5Þ

where J denotes the rotational quantum number, J= 0, 1, 2,…, and
M and K are the projection quantum numbers, M=− J,− J+ 1,
…, J and K=− J,− J+ 1,…, J, which describe the orientation with
respect to a space-fixed and a molecule-fixed axis. Note that in
Eq. (4), states with different K but the same J and M are mixed. For
each J, the coefficients cJK and the asymmetric top eigenenergies EJ,τ
are obtained by diagonalizing the corresponding (2J+ 1)-dimen-
sional matrix. The index τ=− J,− J+ 1,…, J counts the asym-
metric top states corresponding to a given J, starting with the one
with lowest energy. Note that in rotational spectroscopy, the
asymmetric top states are often denoted by J; jKaj; jKcj;M

�� �
, where

Ka and Kc are the projection quantum numbers of the corresponding
prolate and oblate symmetric top, respectively. For our purpose, it is
more convenient to use the notation J; τ;Mj i. For a given J, the
asymmetric top states with the lowest energy can thus be denoted
either by J; 0; J;Mj i or, in our notation, by J;�J;Mj i, the ones with
the largest energy by J; J; 0;Mj i or J; J;Mj i, and the states in
between can be matched accordingly. The spectrum of a near-
prolate asymmetric top is sketched in Fig. 1a.

In the electric dipole approximation, the interaction of an
asymmetric top with f electric fields linearly polarized along one
of the laboratory frame directions can be written as

Ĥ
ð ± Þ
int ¼ ∑

f

i¼1
Ĥ

ð ± Þ
i f iðtÞ ¼ � ∑

f

i¼1
μ̂ð± Þi Eif iðtÞ : ð6Þ

We denote the electric fields by Ei(t)= eiEifi(t) with polarization
vector ei (equal to either ex, ey, or ez) and maximal amplitude Ei. The
time-dependence of the field is denoted by
f iðtÞ ¼ EiðtÞ cosðωit þ φiÞ. Here, EiðtÞ is the dimensionless envelope
and ωi and φi are frequency and phase of the field, and we assume

spatially uniform electric fields. In Eq. (6), the dipole moments,
given in the laboratory-fixed frame with μ̂ð± Þi equal to μ̂ð± Þx , μ̂ð ± Þy , or

μ̂ð± Þz , are connected to the dipole moments μð ± Þσ ¼ ðμð± Þa ; μð ± Þb ; μð± Þc Þ
in the molecule-fixed frame by a rotation16,47,

μ̂ð± Þx ¼ μð± Þa ffiffiffi
2

p D1
�10 � D1

10

� �þ μð± Þb

2
D1
11 � D1

1�1 � D1
�11 þ D1

�1�1

� �
� i

μð± Þc

2
D1
11 þ D1

1�1 � D1
�11 � D1

�1�1

� �
;

μ̂ð± Þy ¼� i
μð± Þa ffiffiffi

2
p D1

�10 þ D1
10

� �þ i
μð± Þb

2
D1
11 � D1

1�1 þ D1
�11 � D1

�1�1

� �
þ μð± Þc

2
D1
11 þ D1

1�1 þ D1
�11 þ D1

�1�1

� �
;

μ̂ð± Þz ¼ μð± Þa D1
00 �

μð± Þb ffiffiffi
2

p D1
01 � D1

0�1

� �þ i
μð± Þc ffiffiffi

2
p D1

01 þ D1
0�1

� �
;

ð7Þ
where DJ

MK denote the elements of the Wigner D-matrix. Note that
each element of the Wigner D-matrix represents an operator due to
its dependence on the Euler angles. For chiral molecules with C1-
symmetry, all three components μð± Þσ are non-zero. Moreover,
jμðþÞ

σ j ¼ jμð�Þ
σ j and

μðþÞ
a μðþÞ

b μðþÞ
c ¼ �μð�Þ

a μð�Þ
b μð�Þ

c ; ð8Þ
i.e., the two enantiomers differ in the sign of one of the Cartesian
components of the dipole moment22. Equation (8) is the basis of
enantiomer-specific three-wave mixing2.

In the asymmetric top eigenbasis (4), the interaction
Hamiltonian contains matrix elements of the form

J 00; τ00;M00� ��D1
MK J 0; τ0;M0�� � ¼ ∑

K 0;K 00
cJ

0
K 0 ðτ0ÞðcJ 00K 00 ðτ00ÞÞ� J 00;K 00;M00� ��D1

MK J 0;K 0;M0�� � ð9Þ
with

J 00;K 00;M00� ��D1
MK J 0;K 0;M0�� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J 00 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J 0 þ 1
p ð�1ÞM00þK 00

´
J 0 1 J 00

M0 M �M00

� 	
J 0 1 J 00

K 0 K �K 00

� 	
:

ð10Þ

The Wigner 3j-symbols in Eq. (10) determine the selection rules,
namely J 00 � J 0 ¼ 0; ± 1 and K 00 ¼ K 0 þ K as well as M00 ¼ M0 þ
M where the value of M is determined by the electric field
polarization in Eq. (6). Since the quantization axis of the rotor is
chosen to be parallel to the space fixed z-axis, M= 0 for z-polarized
fields. The interaction with linearly polarized fields with polarization
axis along the space fixed x- or y-axis allows transitions with both,
M= 1 and M=− 1. The transition matrix elements for x- and y-
polarized fields only differ by their relative phases. Note that the
transition matrix element (10) is equal to zero if J 0 ¼ J 00 and
M ¼ M0 ¼ M00, i.e., transitions with ΔM= 0 are forbidden for
J 0 ¼ J 00.

Control problem. Our goal is to transfer population which is
initially distributed over a degenerate manifold into quantum states
which are energetically separated. Such a transfer can serve as pre-
cursor for distilling population out of an incoherent mixture.

For a racemic mixture of chiral molecules, the two enantiomers
initially occupy the same rotational states since they possess the
same rotational spectrum. The initial state is thus described by
the density matrix

ρðt ¼ 0Þ ¼ 1
2

ρðþÞðt ¼ 0Þ þ ρð�Þðt ¼ 0Þ� �
: ð11Þ

At non-zero temperatures, the state of each enantiomer is given
by a thermal ensemble,

ρð± Þðt ¼ 0Þ ¼ ∑
J0;τ0;M0

pJ0;τ0 J0; τ0;M0

�� �
J0; τ0;M0

� ��; ð12Þ
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where pJ0;τ0 is the Boltzmann weight of the rotational level
denoted by J0 and τ0 and the incoherent sum over the degenerate
M0-states accounts for the isotropic angular distribution of
molecules in the gas phase.

We seek to achieve the population transfer with narrow-
bandwidth pulses such that only resonant transitions (with
EJ 00;τ00 � EJ 0;τ0 ¼ _ωi, where J 00 ¼ J 0 or J 00 ¼ J 0 ± 1) need to be
considered. In broadband microwave three-wave mixing experi-
ments this assumption is justified if the differences between
transition frequencies are larger than ~50−150MHz, depending
on experimental conditions for example the intensity of the
microwave fields. This condition has been met in microwave
three-wave mixing experiments to date2,4,5,11–13 where the triple
of rotational levels was chosen such that non-resonant couplings
are indeed negligible. The assumption of resonant transitions
reduces the number of non-zero matrix elements in the
interaction Hamiltonian to those with the appropriate combina-
tion of frequency ωi and electric field polarization ei. Moreover,
for f combinations of polarization and frequency, we obtain f
linearly independent interaction matrices Hð ± Þ

i , expressing the
interaction Hamiltonian (6) on the basis of the asymmetric top
states. Since a given set of microwave fields addresses only a finite
number of rotational levels, we can describe the dynamics in a
comparatively small rotational subsystem. Figure 1b shows two
examples of such subsystems that are relevant for microwave
three-wave mixing in chiral molecules: Fields with frequencies
ω1= (E2,−1− E1,−1)/ℏ, ω2= (E2,0− E2,−1)/ℏ, and ω3= (E2,0− E1,−1)/
ℏ couple the states with rotational energies E1,−1, E2,−1, and E2,0,
cf. Fig. 1b (i), while in Fig. 1b (ii) the states with E0,0, E1,0, and E1,1 are
addressed.

At zero temperature, when ρð ± Þ ¼ 0; 0; 0j i 0; 0; 0h j, excitation
with three microwave pulses with x-, y-, and z-polarization and
frequencies ω1, ω2, and ω3, as shown in Fig. 1b (ii), is predicted to
lead to 100% enantiomer-selective excitation16,24. However, in the
microwave three-wave experiments performed so far, rotational
states with J= 1 and J= 2 were addressed, as shown in Fig. 1b(i),
or with J= 2 and J= 34,11,12 where all levels with given J0, τ0 are
(2J0+ 1)-fold degenerate. This degeneracy results in incomplete

enantio-selective population transfer in state-of-the-art three-
wave mixing2,4,5,11,12, even if temperature effects are not
considered. Below we will show that complete enantiomer-
selective excitation into energetically separated quantum states
can be achieved in a racemic mixture, cf. Eq. (11), despite the M-
degeneracy of the rotational states when using the rotational
levels EJ,τ, EJþ1;τ0 , and EJþ1;τ00 . In passing, we furthermore show
that population distributed over degenerate levels in Eq. (12) can
also be energetically separated.

Theoretical framework for controllability analysis
Given the model of a quantum system and its interaction with
external fields, controllability analysis consists in addressing the
question of whether a control target can or cannot be reached.
This is in contrast to control synthesis which devises the shapes of
external fields that drive the system to the target in the best
possible way48. Controllability is thus a prerequisite for control
synthesis.

Controllability may refer to a single quantum system or an
ensemble of quantum systems that shall be controlled simulta-
neously with only a few control fields48. Here, we adapt the
notion of simultaneous controllability to the specific task of
enantiomer-selective population transfer. We first recall the basic
mathematical concepts for controllability analysis before defining
enantio-selective controllability.

Lie rank condition and spectral gap excitation. A quantum
system is said to be controllable if we can steer it, in a finite time
that may depend on the target, from any initial state to any final
state by suitably choosing possibly time-dependent external fields.
Here, state refers to either a wave function, a density matrix, or a
set of orthogonal Hilbert space vectors. In the latter case, con-
trollability implies that arbitrary unitary evolution operators can
be realized. If one is able to prove evolution operator-
controllability (also called controllability on the group), this
entails density matrix-controllability, i.e., an arbitrary initial
density matrix can be transformed into any unitarily equivalent
density matrix. That is, any incoherent initial state can be steered

Fig. 1 Spectrum of a near-prolate asymmetric top. a Energies eigenvalues are sketched up to E2,2 and labeled by the quantum numbers J, τ. The
degenerate eigenstates in each level are labeled by the orientational quantum number M. By choosing a set of microwave fields resonant to particular
transitions, only selected rotational levels are addressed. This is highlighted for the frequencies ω1= (E2,−1− E1,−1)/ℏ, ω2= (E2,0− E2,−1)/ℏ, and
ω3= (E2,0− E1,−1)/ℏ in example (i), and ω1= (E1,0− E0,0)/ℏ, ω2= (E1,1− E1,0)/ℏ, and ω3 ¼ ðE1;1 � E0;0ÞÞ=_ in example (ii). b (i) and (ii) The subsystems of
the asymmetric top resulting from resonant microwave driving with set of frequencies depicted in a (i) and a (ii), respectively, with the colored lines
indicating transitions induced by x−, y−, and z− polarized fields with frequencies ω1 (orange), ω2 (pink), and ω3 (turquoise). Here, μa, μb, and μc are the
Cartesian components of the dipole moment responsible for the transition indicated by the vertical bars. The small numbers indicate the states of the
subsystems.
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to any final state with the same purity31. Note that, if a system is
density matrix-controllable, it is also wavefunction-controllable31.
However, wavefunction-controllability does not imply density
matrix-controllability. In the subsection “Controllability of
asymmetric quantum rotors" below, we will prove evolution
operator-controllability, i.e., the strongest of the three properties.

We consider a finite dimensional system, described by the
Hamiltonian

H ¼ H0 þ ∑
f

i¼0
Hif iðtÞ;

where H0 is the Hamiltonian of the system and Hi are the
interaction Hamiltonians connected with the control fields fi(t). A
necessary and sufficient condition for the system to be evolution
operator-controllable is requiring the Lie algebra of its Hamilto-
nian to be of full rank31,

dimðLiefiH0; ¼ ; iHf gÞ ¼ N2 � 1 ð13Þ
where N denotes the Hilbert space dimension and Lie {iH0,…, iHf}
the maximal real vector space of matrices consisting of the matrices
iH0,…, iHf and all of their nested commutators (Lie brackets). We
consider here, without loss of generality, traceless Hamiltonians.
Otherwise, the dimension in Eq. (13) should be N2 for a system to be
controllable. A quantum system is not completely controllable if the
field-free system possesses a symmetry which is not broken by the
control fields. The existence of a symmetry operator, i.e., an operator
that commutes with the total Hamiltonian, is equivalent to the
existence of a conserved quantity. As a result, the Hamiltonian can
be written in block-diagonal form, without transition matrix
elements connecting the blocks such that the system can be
controlled only within the symmetry-enforced subsystems.

When accounting only for resonant transitions, the Lie rank
condition (13) can be checked efficiently on the reduced
Hamiltonians38. More precisely, one considers only frequencies
ω∈ Σ, where Σ= {∣λi− λj∣, i, j= 1,…,N} denotes the set of
energy level spacings, and matrices Hω,a defined by

ψh

� ��Ĥω;a ψk

�� � ¼ ψh

� ��Ĥa ψk

�� �
if jλh � λkj ¼ ω

0 otherwise ;

(
ð14Þ

where jψ1i; ¼ ; jψNi and λ1,…, λN are the eigenstates and
eigenvalues of Ĥ0. Then, if one can find frequencies
{ω1,…, ωk}⊂ Σ such that

dimðLiefiH0; iHωi;a
ja 2 f1; ¼ ; f g; i 2 f1; ¼ ; kggÞ ¼ N2 � 1 ;

ð15Þ
the system is evolution operator-controllable38. Equations (13)
and (15) are equivalent necessary and sufficient conditions for
evolution operator controllability35,38. Equation (15) implies that
the Lie algebra generated by H0 and the various Hωi;a

is all of
suðNÞ, i.e., the Lie algebra of traceless N ×N skew-Hermitian
matrices.

The conditions for controllability, Eqs. (13) and (15), hold for a
finite-dimensional system whereas the spectrum of a quantum
rotor is, in principle, infinite-dimensional. The remedy consists in
introducing the notion of approximate controllability. Two steps
are required to extend a proof of controllability from a finite-
dimensional system to one of approximate controllability of an
infinite-dimensional system. First, for a finite-dimensional
subsystem of a system with an infinite number of energy levels,
Eq. (15) can be used to check approximate controllability. As an
additional condition, all frequencies ω∈ Σ connecting states
within the subsystem that are required for controllability should
be off-resonant with all frequencies connecting states inside the
subsystem with states outside of it. (The presence of the same

transition frequency for two states that are both outside the
subspace does not pose any problem to the approximation.) If
such a condition fails to hold, the finite-dimensional subsystems
may all be controllable, even if the infinite-dimensional system is
not approximately controllable49. Approximate controllability
then means that each target of the subsystem can be reached by
the infinite-dimensional system with arbitrary precision. This is
based on the fact that, if a frequency ω∈ Σ is resonant with a
finite number of energy level spacings only, the operators Hω,a do
not address transitions in the total rotational state space, but only
within a finite-dimensional part of it. Second, treating the
truncation of an infinite-dimensional Hilbert space by a finite-
dimensional subspace as a Galerkin approximation allows for
quantifying the error due to the truncation, making the proof
rigorous36. To this end, one introduces the set of energy level
spacings Σn= {∣λi− λj∣, i, j= 1,…, n}, and defines the n-th
approximation of H0 as the truncation of (the infinite-dimen-
sional) H0 such that all Σn with n= 1, 2,… are contained in the
truncated Hamiltonian. The set of energy level spacings that
connect the finite-dimensional subspace with its (infinite-dimen-
sional) complement are Σ̂n ¼ fjλi � λjj; i ¼ 1; ¼ ; n; j ¼ nþ 1;

nþ 2; ¼ g. Moreover, one defines Ξn ¼ fω 2 Σnjω≠ 0; ω =2 Σ̂ng
as the set which contains those frequencies in Σn that do not
connect the finite-dimensional and infinite-dimensional sub-
spaces. Then if, for any n0, one can find an n > n0 such that

dimðLiefiH0; iHω;aja 2 f1; ¼ ; f g;ω 2 ΞngÞ ¼ n2 � 1 ; ð16Þ

the system is approximately controllable, i.e., it is possible to steer
any initial state arbitrarily close to any desired final state38.
Equation (16), called Lie–Galerkin condition, is a sufficient
condition for approximate controllability of infinite-dimensional
systems. Moreover, if the Lie–Galerkin condition holds, the finite-
dimensional projections are exactly controllable, that is, one can
find a time T such that the finite-dimensional projections of the
infinite-dimensional propagator are exactly the finite-dimensional
projections of the target propagator44.

Enantio-selective controllability. For a rigid asymmetric top, we
can apply the controllability analysis according to Eq. (15) by
identifying the matrices Hωi;a

with the f linearly independent

interaction matrices Hð ± Þ
i . If such a molecule, evolving according

to Eq. (2), is controllable, one can—at least in principle—find
electric fields which steer a given initial state, jψðþÞðt ¼ 0Þi or ρ(+)

(0), to a desired target state, jψðþÞ
targeti or ρðþÞ

target (with same purity).
However, controllability of Eq. (2) does not imply that one can,
with the same set of control fields, steer jψðþÞð0Þi to jψðþÞ

finali and
jψð�Þð0Þi to jψð�Þ

finali simultaneously. To capture such a control
target, we introduce the concept of enantio-selective controll-
ability. It corresponds to the problem of simultaneously con-
trolling two evolutions, i.e., the evolution of the two enantiomers,
governed by the same molecular Hamiltonian Ĥ0 and controlled
with the same fields Ei(t).

We call an asymmetric top enantio-selective controllable if
both enantiomers are simultaneously controllable with the same
set of external fields. To analyze enantio-selective controllability,
we construct a composite system, defined on a Hilbert space
which is the tensor sum H�H of the (identical) rotational state
spaces of the two enantiomers. The corresponding Hamiltonian is
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block-diagonal,

HchiralðtÞ ¼Hchiral
0 þHchiral

int ðtÞ

¼ H0 0

0 H0

� 	
þ HðþÞ

int ðtÞ 0

0 Hð�Þ
int ðtÞ

 !

¼H0 � H0 þHðþÞ
int ðtÞ � Hð�Þ

int ðtÞ

ð17Þ

with H0 and Hð± Þ
int ðtÞ being the matrix representations of Ĥ0 and

Ĥ
ð± Þ
int in the asymmetric top eigenbasis, Eq. (4). The block-

diagonal structure of the Hamiltonian in Eq. (17) is a result of
parity conservation in a rigid rotor, i.e. within the rigid rotor
approximation enantiomers cannot be converted into each other.
A system described by a block-diagonal matrix with two blocks of
the size N ×N is controllable if its Lie algebra has the dimension
2(N2− 1). In other words, due to the block structure of Eq. (17),
the system is enantio-selective controllable if its Lie algebra is
suðNÞ � suðNÞ. This corresponds to the sufficient condition for
simultaneous controllability50,51. The Lie rank condition for
enantio-selective controllability is equivalent to generating (by
taking enough commutators) any operator of the form A⊕ 0 and
0⊕ B for all A;B 2 suðNÞ. This provides a physical intuition for
the enantio-selective controllability condition since A⊕ 0
changes the state of the first enantiomer while leaving the state
of the second enantiomer unchanged (and vice versa for 0⊕ B),
and having any operator of this form implies the ability to carry
out any evolution for the single enantiomers.

Controllability of asymmetric quantum rotors
In this section, we use the concepts for controllability analysis to
analyze controllability and enantio-selective controllability of rigid
asymmetric top rotors. Generally, controllability of quantum
rotors is difficult to prove due to the presence of the M- (and for
symmetric tops K-) degeneracies. Controllability of molecular
rotation has first been investigated for the linear rotor, and the
combination of three orthogonal polarization directions was
identified to yield controllability33. A complete rigorous proof has
been made possible by the Lie-Galerkin approximation38. The
extension from a linear to a symmetric top is non-trivial due to the
additional presence of two-fold K-degeneracies, and controllability
can only be shown for accidentally symmetric top molecules
whereas generic symmetric tops are uncontrollable40,41. While the
K-degeneracies of the symmetric top are lifted for the asymmetric
top, suggesting better prospects for controllability, the presence of
transitions with ΔJ= 0 is an important difference compared to the
linear rotor. It is thus not possible to simply transfer the intuition
of three orthogonal polarization directions from the linear to the
asymmetric top.

In addition to controllability of a single asymmetric top, we are
interested here in the enantio-selective controllability. The fact
that enantio-selective excitation can be obtained by three control
fields with orthogonal polarization directions11,12,22 is a good
starting point but does not automatically imply enantio-selective
controllability. This is most easily seen by an example: Consider a
three-wave mixing process that starts in the manifold of states
with J0= 1, τ0=−1. Applying the control scheme used in
experiment12, the cycles with M0= ±1 are not closed, leading to
population loss. Enantio-selective controllability, on the other
hand, would guarantee complete enantiomer-selective population
transfer.

Below we will prove controllability and enantio-selective con-
trollability for asymmetric top rotors in finite-dimensional sub-
spaces, as encountered in resonant microwave three-wave mixing,
cf. Fig. 1b (i) and (ii). For the complete infinite-dimensional
spectrum of an asymmetric top, only approximate controllability

can be proven42, whereas accidentally symmetric tops are pro-
vably not enantio-selective controllable since their K-degeneracy
prevents the simultaneous controllability of the two enantiomers.
Our analysis goes beyond a purely mathematical exercise by
providing practical information on (enantio-selective) controll-
ability, in terms of the number and properties of the fields
required for controllability. We proceed by first introducing
generalized Pauli matrices as a useful tool to carry out the cal-
culations. We then apply them to the enantio-selective controll-
ability of specific rotational subsystems.

Generalized Pauli matrices. To analyze controllability of an
asymmetric top molecule, described by the truncated H0 and
interacting with a set of f electromagnetic fields via the interaction
Hamiltonians iHωi;a

, we need to construct the corresponding Lie
algebra and verify Eq. (15). To this end, it is useful to express
iHωi;a

as linear combinations of the generalized Paul matrices40,

Gj;k ¼ ej;k � ek;j ;

Fj;k ¼ iej;k þ iek;j ;

Dj;k ¼ iej;j � iek;k ;

ð18Þ

where ej,k is the matrix whose entries are all zero except for the
entry in row j and column k which is equal to one. Since the
operators (18) (with j, k= 1,…, n) span the Lie algebra suðnÞ, we
need to show that repeatedly taking commutators between iHωi;a

and iH0 yields elements of the Lie algebra which are proportional
to each of the operators Gj,k, Fj,k, and Dj,k alone. For these
computations, we will exploit the following properties of the
generalized Paul matrices: Their commutator relations read

Gj;k;Gk;n

h i
¼ Gj;n ;

Fj;k; Fk;n
h i

¼ �Gj;n ;

Gj;k; Fk;n
h i

¼ Fj;n ;

ð19aÞ

and

Gj;k; Fj;k
h i

¼ 2Dj;k ;

Fj;k;Dj;k

h i
¼ 2Gj;k :

ð19bÞ

Operators which couple disjunct pairs of states commute,

½Tj;k;Uj0;k0 � ¼ 0 iff j; kg \ f j0; k0g ¼ ;; ð19cÞ
with T,U∈ {G, F,D}. Finally, the commutators with the rota-
tional Hamiltonian are given by

iH0;Gj;k

h i
¼ �ΔEk;jFj;k ;

iH0; Fj;k
h i

¼ ΔEk;jGj;k :
ð19dÞ

where ΔEk,j is the energy level spacing between states j and k.

Complete controllability and enantio-selective controllability
of rotational subsystems of the type EJ;τ=EJþ1;τ0=EJþ1;τ00 . We
consider the rotational subsystem made up of all states with
energies EJ,τ, EJþ1;τ0 , and EJ+1,τ″, cf. Fig. 1b (i) and (ii) for two
examples with J= 0, respectively J= 1. In order to determine
controllability and enantio-selective controllability, we diag-
onalize Ĥ0 for this subsystem and compute the Lie algebra gen-
erated by a set of control fields. The proof involves two steps.
First, we prove evolution-operator controllability for the rota-
tional subsystem with EJ,τ, EJþ1;τ0 , and EJ+1,τ″ of a single enan-
tiomer. This result by itself is already quite significant. It implies
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that each level, including the degenerate ones, can be addressed
separately with electric fields alone, and it is not necessary to lift
the degeneracy, for example with a magnetic field. To carry out
this part of the proof, we need to consider at least four control
fields with linear polarization directions pi and frequencies ω1 ¼
ðEJþ1;τ0 � EJ;τÞ=_ and ω2 ¼ ðEJþ1;τ00 � EJþ1;τ0 Þ=_, cf. Fig. 1b (i)
and (ii) for examples with J= 0 and J= 1, chosen such as to
induce transitions via the dipole moments μb and μa, respectively.
The corresponding interaction Hamiltonians Hω1;p1

, Hω1;p2
,

Hω2;p3
, and Hω2;p4

are expressed in terms of the generalized Pauli
matrices (18). We analyze the resulting Lie algebra by repeatedly
taking commutators. Since the dimension of the subsystems is
lJ= (2J+ 1)+ 2(2J+ 3), the Lie algebra has to contain suðlJÞ for
the subsystem to be controllable. In a second step, we prove
enantio-selective controllability by adding a control field with
frequency ω3 ¼ ω1 þ ω2 ¼ ðEJþ1;τ00 � EJ;τÞ=_ and interaction
Hamiltonian Hω3;p5

. As indicated in Fig. 1b (i) and (ii) for
examples with J= 0 and J= 1, such a field couples rotational
states via the dipole moment μc. The corresponding Lie algebra
has to contain suðlJ Þ � suðlJÞ for the subsystem to be enantio-
selective controllable. In the following, we work out the proof for
the simplest example, with J= 0, cf. Fig. 1b (ii), which illustrates
the relevant steps. Representing the asymmetric top Hamiltonian
on a graph and constructing the Lie algebra inductively52 allows
us to generalize the proof to arbitrary J. We find that independent
of the choice of J, four (five) different fields are necessary
and sufficient to prove evolution-operator (enantio-selective)
controllability.

We start by writing the rotational Hamiltonian in the
asymmetric top eigenbasis,

H0 ¼ diagðE0;0; E1;0; E1;0; E1;0; E1;1; E1;1; E1;1Þ

and consider a set of four interaction operators,

X 1 ¼ fiHω1;x
; iHω1;z

; iHω2;y
; iHω2;z

g ð20Þ

with polarization directions p1= x, p2= z, p3= y, and p4= z
which is one specific choice but not necessarily the only one
possible. We have to show that

Lie fiH0g∪X 1


 �g � su 7ð Þ; ð21Þ

since the Hilbert space Hð± Þ coincides with C7. Using Eqs. (6),
(7), and (9), we can write the interaction operators as linear
combinations of the generalized Pauli matrices,

iHω1;x
¼ μbEω1;x

ðG1;4 � G1;2Þ ;
iHω1;z

¼ μbEω1;z
G1;3 ;

iHω2;y
¼ μaEω2;y

ðG3;5 þ G4;6 � G2;6 � G3;7Þ ;
iHω2;z

¼ μaEω2;z
ð�F2;5 þ F4;7Þ :

ð22Þ

Since the coefficients cJK ðτÞ in Eq. (9) do not depend on M, the
summation over these coefficients only results in a common
prefactor, which is not relevant for the proof of controllability.
For simplicity of notation, we denote the interaction Hamilto-
nians without these prefactors (see also ref. 52). The matrix
elements are labeled according to Fig. 1b (ii). For example,
iHω1;x

¼ μbEω1;x
ðG1;4 � G1;2Þ means that the field with x-

polarization and frequency ω1 couples the state 0; 0; 0j i (labeled
1) to the states 1; 0; 1j i and 1; 0;�1j i (labeled 4 and 2). With the
commutator relations (19), we find

½iH0; iHω2;z
� / �G2;5 þ G4;7 ¼: JðiHω2;z

Þ

and

iHω1;x
; JðiHω2;z

Þ
h i

/ G1;5 þ G1;7;

iHω1;z
; iHω2;y

h i
/ G1;5 � G1;7:

ð23Þ

Taking the sum and the difference, we obtain

iHω1;x
; JðiHω2;z

Þ
h i

þ iHω1;z
; iHω2;y

h i
/ G1;5

iHω1;x
; JðiHω2;z

Þ
h i

� iHω1;z
; iHω2;y

h i
/ G1;7:

ð24Þ

In this way, we generate operators that separately address the
transitions 1↔ 5 and 1↔ 7, i.e., that act separately on two
degenerate M-states. Moreover, we find

G1;7; JðiHω2;z
Þ

h i
/ G1;4

G1;5; JðiHω2;z
Þ

h i
/ G1;2

G1;2; iHω2;y

h i
/ G1;6:

ð25Þ

So far, we have obtained all elements Gj,k with j= 1. Applying
Eq. (19a) to these elements, we get all remaining elements Gj,k,
j, k∈ {1,…, 7}, and using Eqs. (19d) and (19b), we obtain all
elements Fj,k and Dj,k, j, k∈ {1,…, 7}. Since the elements
Gj,k, Fj,k,Dj,k span suð7Þ, we have proven that the Lie
algebra contains suð7Þ. The subsystem is thus controllable with
the set of control fields X 1. In the same way, it can also be shown
that the system is not controllable if any of the four fields
contained in X 1 is left out. When generalizing this proof to a
system consisting of three rotational levels EJ,τ, EJþ1;τ0 , EJ+1,τ″ with
arbitrary J, the Hilbert space dimension becomes 6J+ 7. Thus, we
need to show that

Lie fiH0g∪X 1


 �g � suð6J þ 7Þ ð26Þ
with the set of interaction operators defined in Eq. (20) but
replacing ω2 by ω3, in order to address all degenerate rotational
states. Making use of an inductive argument, we construct the
operator basis of the Lie algebra52, analogously to the argument
provided above for J= 0. This allows us to conclude that any
rotational subsystem EJ;τ=EJþ1;τ0=EJþ1;τ00 is controllable with four
control fields.

In the second step, we extend the proof to the composite system
of both enantiomers, showing enantio-selective controllability.
Without loss of generality, we assume that the dipole moments of
the two enantiomers are ðμðþÞ

a ; μðþÞ
b ; μðþÞ

c Þ ¼ ðμa; μb; μcÞ and

ðμð�Þ
a ; μð�Þ

b ; μð�Þ
c Þ ¼ ðμa; μb;�μcÞ. For the interaction Hamiltonians,

it follows that HðþÞ
ω1;pi ¼ Hð�Þ

ω1;pi and HðþÞ
ω2;pi ¼ Hð�Þ

ω2;pi since, according
to Eq. (22), these matrices are proportional to μa and μb. Thus the
four fields contained in X 1 applied to the composite system result in

Lie iHchiral
0


 �

∪X 1

�
� A 0

0 A

� 	
jA 2 suð7Þ

� 
 ð27Þ

as matrices acting on the vector space HðþÞ �Hð�Þ ¼ C7 �C7.
For the Lie algebra to contain suð7Þ � suð7Þ, an additional control
field with frequency ω3 is required which leads to the interaction
operator

iHchiral
ω3;x

¼
iHω3;x

0

0 �iHω3;x

 !
ð28Þ

with iHω3;x
¼ μcEω3;x

ðF1;5 � F1;7Þ and the minus sign in the lower

block occuring because of μðþÞ
c ¼ �μð�Þ

c . To prove that the system is
enantio-selective controllable with the set of five control fields
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generating the interaction operators

X ¼ iHchiral
ω1;x

; iHchiral
ω1;z

; iHchiral
ω2;y

; iHchiral
ω2;z

; iHchiral
ω3;x

n o
;

we need to show that

Lie iHchiral
0


 �
∪X
 � � span

A 0

0 0

� 	
;

0 0

0 A

� 	
jA 2 suð7Þ

� 

;

ð29Þ
since

span
A 0

0 0

� 	
;

0 0

0 A

� 	
jA 2 suð7Þ

� 

ffi suð7Þ � suð7Þ :

To do so, we consider the matrix

V :¼ G1;5 � G1;7 0

0 G1;5 � G1;7

 !

which is an element of the Lie algebra generated from the four
fields contained in X 1, see Eq. (23). Moreover,

iHchiral
0 ; iHchiral

ω3;x

h i
/ J iHchiral

ω3;x

� �
with

J iHchiral
ω3;x

� �
:¼ G1;5 � G1;7 0

0 �G1;5 þ G1;7

 !
:

We see that V and JðiHchiral
ω3;x

Þ differ by the sign of the matrix
elements belonging to the second enantiomer. Taking the sum
and difference of the two matrices, we obtain

1
2

J iHchiral
ω3;x

� �
þ V

� �
¼ G1;5 � G1;7 0

0 0

� 	

and

1
2

J iHchiral
ω3;x

� �
� V

� �
¼ 0 0

0 �G1;5 þ G1;7

 !
;

which are two operators belonging to the Lie algebras acting only
on the first and the second enantiomer, respectively. Further-
more,

1
2

J iHchiral
ω3;x

� �
þ V

� �
;

G5;7 0

0 G5;7

 !" #
¼ G1;5 � G1;7 0

0 0

� 	
;

G5;7 0

0 G5;7

 !" #

¼ G1;7 þ G1;5 0

0 0

� 	

ð30Þ
and finally the sum

1
2

J iHchiral
ω3;x

� �
þ V

� �
; G 5;700G5;7

� �� �
þ 1
2

J iHchiral
ω3;x

� �
þ V

� �
¼ G1;7 þ G1;5 0

0 0

� 	

þ G1;5 � G1;7 0

0 0

� 	
/ G1;5 0

0 0

� 	
;

ð31Þ
which is a basis element for the Lie algebra acting on the first
enantiomer only. Replacing JðiHchiral

ω3;x
Þ þ V with JðiHchiral

ω3;x
Þ � V in

(30) and (31), we obtain a matrix proportional to
0 0
0 G1;5

� 	
;

which is a basis element for the Lie algebra acting on the second
enantiomer only. To complete the proof, it suffices to compute
commutators between these elements and the elements of Eq.
(27), e.g.,

G1;5 0

0 0

� 	
;

G5;k 0

0 G5;k

 !" #
¼ G1;k 0

0 0

� 	
;

and

0 0

0 G1;5

 !
;

G5;k 0

0 G5;k

 !" #
¼ 0 0

0 G1;k

 !

for all k= 1,…, 7. Since from the elements G1,k we obtain all Gj,k,
Fj,k, and Dj,k using the relations (19a), (19c), and (19d), the Lie
algebra generated by the five fields contained in X contains
suð7Þ � suð7Þ which proves enantio-selective controllability. A
generalization to rotational subsystems EJ;τ=EJþ1;τ0=EJþ1;τ00 with
arbitrary J is given in Supplementary Notes I.

Summarizing, we have demonstrated for the subsystem compris-
ing all rotational states with energies EJ,τ, EJþ1;τ0 , EJ+1,τ″ that a single
enantiomer is controllable with four fields with frequencies ω1 ¼
ðEJþ1;τ0 � EJ;τÞ=_ and ω2 ¼ ðEJþ1;τ00 � EJþ1;τ0 Þ=_, while for
enantio-selective control five fields with frequencies ω1, ω2, and
ω3 ¼ ω1 þ ω2 ¼ ðEJþ1;τ00 � EJ;τÞ=_ are necessary and sufficient.
Here, we chose the polarizations to be p1= x, p2= z, p3= y, p4= z,
and p5= x. Other choices of the polarization directions also result in
controllability and enantio-selective controllability as long as the
pairs p1, p2, and p3, p4 are not the same and all three polarization
directions x, y, z are present. In the section “Application: Derivation
of practical pulse sequences for carvone molecules", we show how to
exploit these minimal sets of fields for the example of the
propanediol molecule.

Controllability and enantio-selective excitation. Evolution-
operator enantio-selective controllability as shown in the pre-
vious subsection is a sufficient, but not a necessary condition for
realizing complete separation of two enantiomers in a racemic
mixture. In the following, we construct an example where com-
plete separation of the enantiomers can be achieved within a
subset of states. The idea is sketched in Fig. 2 for an example with
J= 1, cf. Fig. 1b(i), and relies on the assumption that only the
states with the lowest energy are populated initially. For the
example of Fig. 2,

ρð ± Þð0Þ ¼ 1
3

∑
1

M¼�1
1;�1;Mj i 1;�1;Mh j ; ð32Þ

where J ¼ 1; τ ¼ �1;Mj i are asymmetric top eigenstates. Then
enantio-selective excitation of the initial state (32) can be
obtained by considering only the set of reachable states, i.e., the
set of rotational states to which population can be transferred by
the control fields. These are the states labeled by 1–3, 6–8, and
10–12 in Fig. 2. The complete rotational subsystem shown in

Fig. 2 Rotational subsystem for enantiomer selective excitation. The
subsystem consists of the states J ¼ 1; τ ¼ �1;Mj i, J ¼ 2; τ ¼ �1;Mj i and
J ¼ 2; τ ¼ 0;Mj i, where J, τ, and M are the quantum numbers of the
asymmetric top. The orange, (pink, and turquoise) lines indicate the
transitions which are induced by fields with polarization σ+ (σ−, z) and
frequencies ω1 (ω2, ω3), respectively. The transition in transparent magenta
is not part of any of the three-wave mixing cycles. The small numbers
indicate the states of the subsystem.
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Fig. 2 is obviously not controllable by the indicated choice of
fields, since two of the rotational states are not addressed at all.

In order to construct three-wave mixing cycles as those shown
in Fig. 2, we need to employ circular polarization directions,
σ±= x ± iy. Assuming that the polarization directions of the fields
with frequencies ω1 ¼ ðEJþ1;τ0 � EJ;τÞ=_ and ω2 ¼ ðEJþ1;τ00 �
EJþ1;τ0 Þ=_ are σ+ and σ−, the resulting (anti-Hermitian)
interaction Hamiltonians are

iHω1;σþ
¼ iHω1;x

þ JðiHω1;y
Þ

and

iHω2;σ�
¼ iHω2;x

� JðiHω2;y
Þ ;

with

JðiHωi;a
Þ ¼ ½iH0; iHωi;a

�=ωi: ð33Þ
The set of interaction operators then becomes

fiHω1;σþ
; iHω2;σ�

; iHω3;z
g ;

where again ω3= (EJ+1,τ″− EJ,τ)/ℏ. It can be thought of as derived
from the following interaction Hamiltonians with linear polar-
ization directions,

fiHω1;x
; iHω1;y

; iHω2;x
; iHω2;y

; iHω3;z
g ;

which are not sufficient for controllability since (p1= x, p2= y)=
(p3= x, p4= y).

In the example of Fig. 2, the set of reachable states is divided
into three isolated subsystems, each consisting of three states. As
a whole, the subsystem consisting of these nine states is not
controllable either. However, a sufficient condition for complete
enantio-selective excitation of population in the lowest level is
that the three isolated subsystems are simultaneously enantio-
selective controllable. This requires the Lie algebra to contain

suð3Þ � suð3Þ � suð3Þ � suð3Þ � suð3Þ � suð3Þ ð34Þ
since each of the three-level systems is controllable if its Lie
algebra contains suð3Þ and enantio-selective controllable if its Lie
algebra contains suð3Þ � suð3Þ.

In order to determine the Lie algebra for a single enantiomer,
we first consider the interaction Hamiltonians

iHω1;σþ
/ μa G1;6 þ

ffiffiffi
3

p
G2;7 þ

ffiffiffi
6

p
G3;8

� �
; ð35Þ

iHω2;σ�
/ μb G5;9 þ G8;12 þ

ffiffiffi
3
2

r
ðG6;10 þ G7;11Þ

 !
ð36Þ

and show that, together with iH0, they generate
suð3Þ � suð3Þ � suð3Þ. Using Eq. (19d), we find

JðiHω1;σþ
Þ / F1;6 þ

ffiffiffi
3

p
F2;7 þ

ffiffiffi
6

p
F3;8 ;

with JðiHω1;σþ
Þ defined in Eq. (33). Moreover, abbreviating

commutators as adnþ1
A B ¼ ½A; adnAB� with ad0AB ¼ B, we note that

ad2sJðiHω1 ;σþ Þ
iHω1;σþ

/ G1;6 þ
ffiffiffi
3

p 2sþ1
G2;7 þ

ffiffiffi
6

p 2sþ1
G3;8

with s= 0, 1, 2,… Thus,

ad0JðiHω1 ;σþ Þ
iHω1;σþ

ad2JðiHω1 ;σþ Þ
iHω1;σþ

ad4JðiHω1 ;σþ Þ
iHω1;σþ

0
BBB@

1
CCCA ¼ V

G1;6

G2;7

G3;8

0
B@

1
CA

with

V ¼
1

ffiffiffi
3

p ffiffiffi
6

p

1
ffiffiffi
3

p 3 ffiffiffi
6

p 3

1
ffiffiffi
3

p 5 ffiffiffi
6

p 5

0
B@

1
CA: ð37Þ

The matrix V is invertible since the entries 1;
ffiffiffi
3

p
;
ffiffiffi
6

p
are all

different which implies that G1;6;G2;7;G3;8 2 LiefiH0; iHω1;σþ
g:

From the commutation rules of the generalized Pauli matrices
(19), it follows that also

X1;6;X2;7;X3;8 2 LiefiH0; iHω1;σþ
g; X 2 fG; F;Dg:

We then calculate the commutators

½½iHω2;σ�
;G1;6�;G1;6� / G6;10;

½½iHω2;σ�
;G2;7�;G2;7� / G7;11;

½½iHω2;σ�
;G3;8�;G3;8� / G8;12;

and, using again the commutation relations of the generalized
Pauli matrices and the rotational Hamiltonian, we find

X6;10;X7;11;X8;12 2 LiefiH0; iHω1;σþ
; iHω2;σ�

g;
X 2 fG; F;Dg:

Since

LiefX1;6;X2;7;X3;8;X6;10;X7;11;X8;12jX 2 fG; F;Dgg
ffi suð3Þ � suð3Þ � suð3Þ;

we have proven that the three isolated three-level systems are
simultaneously controllable with the interaction operators iHω1;σþ
and iHω2;σ�

.
To obtain enantio-selective control of each of these three

cycles, we consider the interaction with the third field, namely

iHω3;z
/ μc G2;11 þ

ffiffi
3

p
2 ðG3;12 þ G1;10Þ

� �
;

or, for the composite system consisting of the two enantiomers,

iHchiral
ω3;z

¼ ðiHω3;z
Þ � ð�iHω3;z

Þ:
The interaction operators

iHchiral
ωi;a

¼ ðiHωi;a
Þ � ðiHωi;a

Þ
for (ωi, a)= (ω1, σ+) and (ω2, σ−) together with iHchiral

0 create,
among others, the operators G1,6⊕G1,6 and G1,10⊕G1,10. We
compute the double bracket

½½iHchiral
ω3;z

;G1;6 � G1;6�;G1;6 � G1;6� / G1;10 � ð�G1;10Þ;
and taking the sum and difference with G1,10⊕G1,10, the
operators G1,10⊕ 0 and 0⊕G1,10 are generated. In the same
manner, all operators

Xi;j � 0 and 0� Xi;j for X 2 fG; F;Dg ð38Þ
can be generated. Since the operators Xi,j span the Lie algebra
suð3Þ � suð3Þ � suð3Þ, the operators (38) span suð3Þ � suð3Þ �
suð3Þ� suð3Þ � suð3Þ � suð3Þ, and thus the three three-level
systems are simultaneously enantio-selective controllable.

As a result, for the initial state (32), complete enantio-selective
excitation can be obtained by two circularly polarized and one
linearly polarized fields. This result can be generalized to any
EJ;τ=EJþ1;τ0=EJþ1;τ00 subsystem, where the three fields create 2J+ 1
“parallel” three-level cycles, and the interaction Hamiltonian (35)
is a linear combination of 2J+ 1 generalized Pauli matrices with
different prefactors. The matrix V, generalizing Eq. (37), has
2J+ 1 different entries in the first row and is invertible52.
Simultaneous controllability of 2J+ 1 three-level cycles using two
circularly polarized fields and the corresponding enantio-selective

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00883-6 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:110 | https://doi.org/10.1038/s42005-022-00883-6 |www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


controllability with an additional linearly polarized field can thus
be proven for any J. As we shall see for the example of carvone in
the following section, those isolated three-level systems are
particularly suited for enantio-selective excitation in real
molecules.

Application: derivation of practical pulse sequences for
propanediol and carvone molecules
We now show how to use the controllability results of the pre-
vious section to derive actual pulse sequences in order to control
the rotational dynamics in propanediol and carvone molecules. In
all examples presented below, the control target is to energetically
separate an initially incoherent mixture of degenerate rotational
states, as encountered in gas phase experiments with randomly
oriented molecules. We simulate the rotational dynamics for the
R- and S-enantiomers of propanediol and carvone. Details of the
numerical calculations are provided in Supplementary Notes 2.
The molecular parameters for propanediol and carvone are listed
in Table 1. Table 1 also shows the frequencies of the microwave
fields interacting with the molecules. At these frequencies, spatial
inhomogenities do not noticeably influence the microwave three-
wave mixing experiments (this is expected to become relevant
only at frequencies above ~15 GHz, depending on the experi-
mental conditions), which justifies our assumption of spatially
uniform fields.

Our choice of example is motivated by experiments demon-
strating for carvone an enantiomeric enrichment of 6% with
enantiomer-selective population transfer12. Enantiomeric
enrichment is mainly limited by the thermal population of
rotational levels. This can be overcome by depleting the popu-
lation in the excited rotational levels53 or by addressing excited
rotational levels in a vibrationally excited state with effectively
zero thermal population16,17. The latter requires a combination of
microwave and infrared pulses, and the three-wave mixing can
well be achieved within the coherence time of the excited vibra-
tional state16. A second limiting factor is a degeneracy with
respect to the orientational quantum numberM, which is relevant
whenever the initial state is chosen with J > 0. This is the pro-
blem we address here. The control strategies presented below are
applicable to both purely microwave three-wave mixing11,12 as
well as three-wave mixing combining microwave and infrared
excitation16,17. In other words, our pulse sequences will induce
the maximal degree of orientational, respectively enantiomer-
selectivity, that is compatible with the purity of the initial
ensemble, and temperature can simply be factored in.

We present two different strategies to energetically separate
population initially distributed overM-degenerate states. First, we
exploit evolution operator-controllability of the complete rota-
tional subsystem, in particular the insight into which fields are

required, for orientational, respectively enantiomer-specific, state
transfer. Second, we use the simultaneous controllability of
“parallel” three-level cycles for enantiomer-specific state transfer.
The working principle of both strategies is to combine enantio-
selectivity (due to the sign difference in one of the dipole
moments) with an energetic separation of population residing
initially in degenerate states. We first demonstrate controllability
of a single enantiomer by showing that initially degenerate
rotational states can be separated in energy. Note that in this case,
the rotational dynamics of the two enantiomers is identical. We
then demonstrate enantio-selective controllability, where we show
that we can energetically separate the two enantiomers.

In the subsections “Orientation-selective excitation exploiting
complete controllability” and “Enantiomer-selective control
exploiting complete controllability”, the pulses drive transitions
within the E0,0/E1,0/E1,1 rotational submanifold, cf. Fig. 3. Even in
this comparatively small manifold, the pulse sequence for
enantiomer-selective population transfer consists of 12 pulses
sampled from five different fields, i.e., five different combinations
of polarization directions and frequencies. In order to obtain a
simpler sequence, we forego full evolution operator-
controllability in subsection “Complete enantiomer-selective
population transfer using synchronized three-wave mixing” and
use a sequence of three pulses which partitions the rotational
submanifold into isolated subsystems and drives simultaneously
several three-wave mixing cycles. For this strategy to succeed, the
initial rotational submanifold needs to have the smallest degen-
eracy factor gJ= 2J+ 1. We, therefore, consider transitions within
the E1,−1, E2,−1, E2,0 rotational submanifold.

Orientation-selective excitation exploiting complete controll-
ability. The simplest rotational subsystem that allows for
enantiomer-selective population transfer using three-wave mixing
spectroscopy consists of the rotational states J; τ;Mj i ¼ 0; 0; 0j i,
1; 0;Mj i, and 1; 1;Mj i with M=− 1, 0, 1, and rotational energies
EJ,τ= E00, E10, and E11, cf. Fig. 3. Note that, from here on, all
states we refer to are asymmetric (and not symmetric) top
eigenstates. A single enantiomer is completely controllable with
four (microwave) fields, for example two fields with frequency
ω1= (E10− E00)/ℏ and x-, respectively z-polarization and two
fields with frequency ω2= (E11− E10)/ℏ and y-, respectively z-
polarization. The transitions induced by these fields are indicated
by orange and pink lines in Fig. 3a; they form closed loops
connecting the four states 0; 0; 0j i, 1; 0; ±1j i, 1; 1; ±1j i, and

Table 1 Molecular parameter. Rotational constants A, B, C
and dipole moments μa, μb and μc for propanediol2 and
carvone58, as well as frequencies ω1, ω2, and ω3 of the
microwave fields interacting with the molecules.

propanediol carvone

A/MHz 7644.7 2237.21
B/MHz 3927.3 656.28
C/MHz 2878.0 579.64
μa/D 1.2 2.0
μb/D 1.9 3.0
μc/D 0.36 0.5
ω1/MHz 11363 3976.1
ω2/MHz 849.1 229.9
ω3/MHz 12212 4206.0

Fig. 3 Control fields for complete controllability. Choice of four,
respectively five, microwave fields, which are sufficient to ensure evolution
operator-controllability (a) and enantio-selective evolution operator-
controllability (b) in the rotational subsystem consisting of the asymmetric
top states J ¼ 0; τ ¼ 0;M ¼ 0j i, J ¼ 1; τ ¼ 0;Mj i. and J ¼ 1; τ ¼ 1;Mj i,
with quantum numbers J, τ, and M. The orange and pink lines in a indicate
the four fields which yield complete controllability of this subsystem for a
single enantiomer. The polarization of the fields is denoted by x, y, and z,
and μa, μb, and μc are the Cartesian components of the dipole moment
responsible for the transitions indicated by the vertical bars. The additional
field which is required for enantio-selective control is indicated in b by
turquoise lines. The frequencies ω1, ω2, and ω3 of propanediol are given in
Table 1.
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1; 0; 0j i. Complete controllability implies that population in any
initial state within the rotational manifold can be driven into any
other initial state within that manifold. This means in particular
that population in degenerate states, for example 1; 0; ±1j i, can
be driven into states with different energy. Such an energetic
separation can serve as precursor for complete enantio-selective
excitation, as we show below. It also has further applications and
could, for example, be used towards purifying an incoherent
ensemble with electric fields only or distilling a specific molecular
orientation.

We, therefore, consider the following control problem for a
single enantiomer: Given that the initial state is an incoherent
ensemble of the two degenerate 1; 0;Mj i states,

ρð0Þ ¼ 1
2
1; 0;�1j i 1; 0;�1h j þ 1

2
1; 0; 1j i 1; 0; 1h j ; ð39Þ

find a pulse sequence that drives the population with M=+ 1
into a final state with different rotational energy than the
M=− 1 component. As an example, we have chosen 0; 0; 0j i and
1=

ffiffiffi
2

p ð 1; 1;�1j i þ 1; 1; 1j iÞ as target states. The initial and
desired final states are sketched as gray dots in the bottom
panels of Fig. 4, the upper panel of which shows the pulse
sequence that drives the corresponding rotational dynamics. In
detail, starting from the initial states 1; 0;�1j i (see Fig. 4a and b)
and 1; 0; 1j i (see Fig. 4c and d), the state 1; 0; 0j i (purple line in
the middle panel) can be reached by two different excitation
pathways: via the states 1; 1; ±1j i and via 0; 0; 0j i. The 1st, 2nd,
and 4th pulse transfer 50% of the population to state 1; 0; 0j i via
the first pathway, while pulses 1 and 3 transfer the other half of
the initial population along the second pathway. Interference
between the two pathways in 1; 0; 0j i is constructive for the initial
state 1; 0;�1j i and destructive for the initial state 1; 0; 1j i (see
purple lines in the middle panel of Figs. 4a, c near t= 350 t0).
Therefore, the initial state 1; 0;�1j i is transferred to 1; 0; 0j i

while the initial state 1; 0; 1j i is transferred to 1=
ffiffiffi
2

p ð 1; 1;�1j i þ
1; 1; 1j iÞ at the end of pulse 4. Finally, the 5th pulse transfers the
population from 1; 0; 0j i to the desired final state 0; 0; 0j i in
Fig. 4a while not affecting the population in 1; 1; ±1j i, cf. Fig. 4c.
The two initially degenerate states thus become energetically
separated using four fields, with two different frequencies and two
polarization components.

Enantiomer-selective control exploiting complete controll-
ability. For enantiomer-selective control, an additional field with
frequency ω3= ω1+ ω2 is required to allow for three-wave
mixing. In our example, we choose x-polarization for ω3 such that
we have three mutually orthogonal fields with Hω1;z

(central
orange line in Fig. 3b), Hω2;y

(pink lines), and Hω3;x
(turquoise

lines). If the initial state is the ground rotational state, three-wave
mixing results in complete separation of the enantiomers into
energetically separated levels16. This requires, however, prepara-
tion of the molecules close to zero temperature. For typical
experimental conditions, the initial state has to be chosen with
J > 011,12 and thus contains degenerate rotational states. Then,
three fields are not sufficient to obtain complete enantio-
selectivity. Therefore, we consider the initial ensemble (11) with

ρð ± Þð0Þ ¼ 1
2

1; 0;�1j i 1; 0;�1h j þ 1; 0; 1j i 1; 0; 1h jð Þ: ð40Þ

The initial states 1; 0;�1j i and 1; 0; 1j i are depicted in Fig. 5 c and
f with the gray circles indicating that both enantiomers occupy the
same states. The control aim is to drive the two enantiomers into
rotational states with different energies, cf. the red and blue shades
in Fig. 5c, f.

The combination of fields Hω1;z
, Hω2;y

, and Hω3;x
, indicated in

Fig. 3b, which works if the initial state is 0; 0; 0j i, obviously fails
for Eq. (11) since it does not create three-wave mixing cycles for
the 1; 0;Mj i states. This can be remedied by choosing instead a

Fig. 4 Control of rotational dynamics to energetically separate degenerate initial states. a and b These depict the population dynamics for the initial
state J ¼ 1; τ ¼ 0;M ¼ �1j i and c and d display the dynamics for the initial state J ¼ 1; τ ¼ 0;M ¼ 1j i, where J, τ, and M are the quantum numbers of the
asymmetric top. a and c show the population in the rotational levels J, τ= 1, 1, J, τ= 1, 0 and J, τ= 0, 0. The population dynamics of the degenerate states
are depicted by green (M=−1), purple (M= 0), and orange (M= 1) lines. The envelope of the pulses is indicated by the orange (frequency ω=ω1) and
pink (ω=ω2) shapes, and x, y, and z denote the polarization of the corresponding fields. Time is given in units of t0= ℏ/B. The initial (t= 0) and final
(t= T) states are sketched in b and d. The gray dots indicate the initially populated states J ¼ 1; τ ¼ 0;M ¼ �1j i (b) and J ¼ 1; τ ¼ 0;M ¼ 1j i (d), as well
as the states populated at t= T, J ¼ 0; τ ¼ 0;M ¼ 0j i (b) and J ¼ 1; τ ¼ 1;M ¼ ±1j i (d). The vertical bars show the frequencies ω1 and ω2.
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sequence containing the fields Hω1;x
, Hω2;z

, and Hω3;y
. However,

due to insufficient controllability with three fields in the presence
of M-degeneracy, the population transfer is only partially
enantiomer-selective, cf. the corresponding rotational dynamics
in Fig. 5b, e, where the solid blue and dashed red lines present the
two enantiomers. For complete enantio-selective excitation, all five
fields depicted in Fig. 3b are required, as illustrated by Fig. 5a, d.

The pulse sequence, which leads to complete separation of the
enantiomers into energetically separated levels, consists of 12

pulses: The first four pulses are the same as the pulse sequence
shown in Fig. 4. Transferring the initial states 1; 0;�1j i and
1; 0; 1j i into 1; 0; 0j i, respectively 1=

ffiffiffi
2

p ð 1; 1;�1j i þ 1; 1; 1j iÞ,
they lead to an energetic separation of the two initially degenerate
M states, but are not yet enantiomer-selective. Two more pulse
sequences realize enantiomer-selective three-wave mixing cycles
for the two initial states separately. First, enantiomer-selective
transfer for the initial state 1; 0;�1j i is obtained by three-wave
mixing with the fields Hω1;z

, Hω3;x
, and Hω2;y

(pulses 5, 6, and 7).

Fig. 5 Full control of enantiomer-selective state transfer with five different fields. a–c They depict the population dynamics for the initial states
J ¼ 1; τ ¼ 0;M ¼ �1j i and d–f, display the dynamics for the initial state J ¼ 1; τ ¼ 0;M ¼ 1j i, where J, τ, and M are the quantum numbers of the
asymmetric top. a and d These show the population in the rotational levels J, τ= 1, 1, J, τ= 1, 0 and J, τ= 0, 0, averaged over the degenerate M-states for a
pulse sequence with five different fields which ensure complete enantiomer-selective control. For comparison, b and e display the incomplete enantiomer-
selective state transfer in standard three-wave mixing cycles. The two enantiomers are denoted by solid blue and dashed red lines. The pulse envelopes are
indicated by orange (ω=ω1), pink (ω=ω2), and turquoise (ω=ω3) shapes. The height of these shapes indicates the maximal electric field strength (in
arbitrary units) and the polarization is denoted by x, y, and z. Time is given in units of t0= ℏ/B, where B is a rotational constant. The details of the pulse
shapes are given in Supplementary Information 2. c and f illustrate the initial (t= 0) and final (t= T) populations. The gray circles mark the states which
are initially populated by both enantiomers. The blue (red) shapes indicate which states are finally populated by enantiomer 1 (enantiomer 2). The vertical
bars show the frequencies ω1 (orange), ω2 (pink), and ω3 (turquoise).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00883-6

12 COMMUNICATIONS PHYSICS |           (2022) 5:110 | https://doi.org/10.1038/s42005-022-00883-6 | www.nature.com/commsphys

www.nature.com/commsphys


Analogously, pulses 9, 10, and 11 form a three-wave mixing cycle
for the initial state 1; 0; 1j i. After pulse 11 the enantiomers of both
initial states are separated in energy. The two cycles for the
different M-states are synchronized by applying pulse 12 (at the
same time as pulse 11), such that all population of one
enantiomer is collected in the highest rotational state (blue lines)
while all population of the other enantiomer is excited to the
intermediate level (dashed red lines). Figure 5a, d thus confirms
complete enantio-selective state transfer in a racemic mixture of
initially degenerate M-states for a set of microwave fields for
which enantio-selective controllability is predicted.

The analysis of enantio-selective controllability yields the minimal
number of different fields, which are required for enantiomer-
selective population transfer, but does not make any predictions
about the temporal shape of the fields. In particular, it does not
predict the number of individual pulses. The control sequence
shown in Fig. 5a, d contains 12 individual pulses applied either
sequentially or overlapping. Here, complete enantio-selectivity is
obtained by constructing an individual three-wave mixing cycle for
every initial state. This implies that population initially in the
degenerate M-states first has to be separated in energy so that they
can be addressed individually. If the degeneracies become larger (for
higher J), the pulse sequences become more complicated, because
more degenerate states have to be separated in energy and three-
wave mixing cycles for each of these states have to be constructed.
Such pulse sequences may experimentally not be feasible or at least
technically very challenging to implement. This is true in particular
for rotational subsystems with higher rotational quantum numbers
as in earlier microwave three-wave mixing experiments 12, where
cycles with J= 1/2/2 or J= 2/3/3 have been addressed because of
their better frequency match and higher Boltzmann factors. For
these cases, circularly polarized fields resulting in simpler pulse
sequences may be better suited. This will be discussed next.

Complete enantiomer-selective population transfer using syn-
chronized three-wave mixing. Another route to enantiomer-

selective state transfer is provided by partitioning the relevant
rotational manifold into subsystems that form individual three-
wave mixing cycles and uncontrollable “satellites” Provided that
the initial state contains population only within the various three-
level cycles, the lack of complete controllability does not preclude
enantiomer-selective population transfer. In other words, one
needs to consider manifolds J; τ;Mj i, J þ 1; τ0;Mj i, J þ 1; τ00;Mj i
and choose the transitions realizing the three-wave mixing such
that the initial state resides in the manifold with lower J. An
advantage of this approach is that three different fields, if properly
chosen, are sufficient.

As an experimentally relevant example, we consider the
rotational subsystem made up of 1;�1;Mj i, 2;�1;Mj i, and
2; 0;Mj i and construct a pulse sequence that achieves complete
enantiomer-selective population transfer despite M-degeneracy.
We assume that, initially, only the lowest rotational levels, those
with J= 1, are populated. This initial condition can be realized if
all or at least the two excited rotational states are in a higher
vibrational state such that the thermal population of the higher
rotational levels is negligible16. The racemic mixture is then
described by Eq. (11) with

ρð± Þð0Þ ¼ 1
3

1;�1;�1j i 1;�1;�1h jð
þ 1;�1; 0j i 1;�1; 0h j þ 1;�1; 1j i 1;�1; 1h jÞ :

ð41Þ

Applying a standard three-wave mixing pulse sequence with
linearly polarized fields with orthogonal polarization directions
results at most in about 80% enantio-selectivity (data not shown).
In contrast, circularly polarized fields allow for a complete
separation of the enantiomers. This can be seen in Fig. 6.

The three subsystems, which are isolated by applying left- and
right-circularly polarized light are indicated in the bottom panels
of Fig. 6: The field with σ+-polarization (orange line) induces
transitions between 1;�1;Mj i and 2;�1;M þ 1j i, while the σ−-
polarized field (pink line) drives transitions between 2;�1;Mj i
and 2; 0;M � 1j i, and the linearly z-polarized field (turquoise

Fig. 6 Full control of enantiomer-selective state transfer, based on synchronized three-wave mixing. a, b, and c Depict the rotational dynamics for the
initial states J, τ= 1,− 1 with M=− 1, M= 0, and M= 1, respectively, where J, τ, and M are the asymmetric top quantum numbers, showing the population
in the levels J, τ= 2, 0, J, τ= 2,− 1 and J, τ= 1,− 1. The two enantiomers are denoted by solid blue and dashed red lines. The envelope of the pulses is
indicated by the orange (ω=ω1), pink (ω=ω2), and turquoise (ω=ω3) shapes. The height of these shapes indicates the maximal electric field strength (in
arbitrary units) and the polarization is denoted by σ+, σ− and z. Time is given in units of t0= ℏ/B, where B is a rotational constant. The initial (t= 0) and
final (t= T) states are sketched in d, e, and f. The gray circles indicate which states are initially populated by both enantiomers, the blue (red) circles show
which states are finally populated by enantiomer 1 (enantiomer 2). The transitions induced by the three fields are indicated by the orange, pink, and
turquoise lines with the transition affecting the respective initial state highlighted. The frequencies ω1, ω2, and ω3 for carvone are listed in Table 1.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00883-6 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:110 | https://doi.org/10.1038/s42005-022-00883-6 |www.nature.com/commsphys 13

www.nature.com/commsphys
www.nature.com/commsphys


line) closes the cycles. For all the initially populated, degenerate
M-states, the population is thus trapped into a three-level
subsystem and cannot spread over the whole manifold, as it
would happen when using three linearly polarized fields with
orthogonal polarization directions.

The corresponding rotational dynamics is depicted in
Fig. 6a–c. The pulse sequence that leads to complete enantio-
selective excitation is essentially a three-wave mixing cycle: The
first pulse creates a 50/50 coherence between the ground and first
excited rotational level of each three-level system. The second
pulse transfers the population from the intermediate state to the
highest state and the third, z-polarized pulse induces the
enantiomer-specific interference between the ground state and
highest excited state. There is, however, an important difference
to the standard three-wave mixing cycles used so far—the pulses
are chosen such that they synchronize the three subsystems,
allowing to reach a 50/50 coherence between the ground and first
excited state for each of the subsystems. As can be seen in Fig. 6,
the Rabi frequencies of each subsystem are different, due to the
different Clebsch-Gordon coefficients, respectively the different
elements of the Wigner D-matrix, in Eq. (9). A 50/50 coherence
for all three subsystems occurs after three Rabi oscillations for the
subsystem depicted in a, five oscillations for b, and seven
oscillations forc. The synchronized three-level cycles then lead to
complete separation of the enantiomers into energetically
separated levels, by applying a sequence of only three pulses, cf.
Fig. 6. When choosing the pulse amplitude and duration, it is
important to realize that the subsystems undergo either all an
even or all an odd number of Rabi oscillations, so that they
accumulate the same phase. Otherwise, the interference effects
induced by the third pulse will cancel each other.

In the present example, synchronized three-wave mixing with
circularly polarized pulses improves the enantio-selectivity from
80% for standard three-wave mixing with linearly polarized
pulses to almost 100%, assuming no thermal population in the
two upper levels. Without this assumption, synchronized three-
wave mixing enhances the 6% enrichment to ~8% for conditions
as reported in12. It is a small but clearly measurable enhancement,
which corresponds to the maximal enrichment that any unitary
evolution can achieve for the given thermal occupation.
Independent of temperature, for subsystems with higher J and
thus larger degeneracy, enantiomeric enrichment with the
standard three-wave mixing decreases24 and the improvement
due to our scheme becomes even more significant. Indeed, our
excitation scheme can be easily extended to rotational manifolds
with larger J, since the manifolds can always be broken up into
isolated subsystems where three pulses are sufficient to
energetically separate the enantiomers. The number of pulses is
thus independent of the number of degenerate states in the initial
ensemble. The pulse duration of the first pulse may have to be
longer (or its amplitude larger), since, for larger J, this pulse needs
to synchronize Rabi oscillations of more three-level cycles.
However, this does not pose a fundamental difficulty. In more
detail, the main difference when comparing to existing microwave
three-wave-mixing experiments12 is the use of circular instead of
linearly polarized pulses. Moreover, due to the synchronization of
the Rabi-cycles, the first pulse in our excitation scheme is, for the
same field intensity, about 14 times longer than an average π/2-
pulse in standard microwave three-wave mixing, and the
complete cycle is approximately two times longer than the cycles
applied in previous experiments. Since the pulse durations are
determined by the respective Rabi-frequencies, one can alter-
natively increase the field strength of the pulses by a factor of two
to obtain the same duration as in the previous microwave three-
wave mixing experiments. Synchronized three-wave mixing
cycles driven with two circularly polarized and one linearly

polarized field, when combined with a strategy to eliminate
thermal population in the two excited levels16,17, will thus enable
complete enantiomer-selective population transfer in three-wave
mixing experiments.

General design principles
Figures 4, 5, and 6 show three pulse sequences achieving M-
sensitive, respectively enantiomer-selective, population transfer.
Each of these sequences represents only one among many pos-
sible solutions to the respective control problem. One could, for
example, replace our combination of π- and π/2-pulses by a
sequence inducing adiabatic passage19–21 or by one derived from
shortcuts to adiabaticity23. When adapting a given pulse sequence
designed to start from the non-degenerate J= 0-level to addres-
sing a degenerate one (J > 0), the following design principles will
ensure selectivity despite M-degeneracy.

First, one needs to select the appropriate combination of fre-
quencies and polarizations, i.e., four different fields including all
three linear polarization directions and two resonant frequencies
for evolution operator-controllability in a EJ,τ/EJ+1,τ/EJ+1,τ

manifold; five different fields including all three linear polariza-
tion directions and three resonant frequencies for enantio-
selective evolution operator-controllability in a EJ,τ/EJ+1,τ/EJ+1,τ

manifold; and three different fields with three resonant fre-
quencies, two with opposite circular polarization directions and
one linearly polarized one, for enantio-selective control in “par-
allel” three-level cycles. The specific choice of the fields deter-
mines the states that will be addressed.

The pulse sequence then needs to be chosen such that it creates
closed cycles for population transfer and constructive, respec-
tively destructive, interference. The case most similar to three-
wave mixing starting from J= 0 is enantiomer-selective popula-
tion transfer in “parallel” three-level cycles, where the replace-
ment of linear by circular polarization for two of the fields breaks
the symmetry between transitions with M↔M+ 1 and those
with M↔M− 1. All that is required in addition is synchroni-
zation of the cycles due to the M-dependent transition matrix
elements. The interference for enantio-selectivity is achieved as
before16,19,20,22. In case of rotational state transfer with M-
selectivity, Fig. 4, four states (in three levels) are involved since
four fields are required for evolution-operator controllability. The
sequence is chosen such that it creates constructive and
destructive interference for states with opposite M. In order to
generalize our example in Fig. 4, with initial population in the
states M= ±1, to higher degeneracies, one would need to com-
bine ±M-selectivity with synchronization, to account for the ∣M∣-
dependent transition matrix elements. Finally, pulse sequences,
based on evolution-operator controllability, driving enantiomer-
selective population transfer in a mixture of degenerate rotational
states concatenate M-selective four-state cycles with enantio-
discriminating three-level cycles, as in Fig. 5.

Conclusions
We have used Lie-algebraic techniques of controllability analysis
to determine the number and type (in terms of frequency and
polarization direction) of electric fields that allow to completely
control the rotational dynamics of an asymmetric top molecule,
despite the degeneracy with respect to the orientational quantum
number M. Specifically, four different combinations of frequency
and polarization direction are required for the rotational sub-
system made up of the levels with energy EJ,τ, EJþ1;τ0 , and EJþ1;τ00 .
This result implies that it is not necessary to lift the degeneracy,
e.g., with a magnetic field, in order to selectively address each
rotational level. Rather, selectivity can be achieved by exploiting
differences of the electric dipole transition matrix elements,
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similarly to the case of linear rotors33,38. To the best of our
knowledge, this insight has not yet been appreciated by the wider
atomic and molecular physics community.

To demonstrate how this type of controllability can be utilized,
we have constructed a pulse sequence that energetically separates
population incoherently distributed over degenerate levels, as a
precursor for distilling a specific molecular orientation. The
insight gained from the rather abstract mathematical analysis of
controllability can thus directly be used to extract practical
information for a subset of rotational states that are addressed in
a particular experiment. Exploiting complete controllability of
rotational states despite the M-degeneracy may also be helpful for
laser cooling of asymmetric molecules26,27 or their use in robust
qubit encodings28.

We have then introduced the concept of enantiomer-selective
controllability, in order to analyze simultaneous controllability of
the two enantiomers of a chiral molecule, driven by the same set
of external fields. This analysis was motivated by microwave
three-wave mixing spectroscopy aiming to energetically separate
enantiomers in a racemic mixture, with current protocols suf-
fering from population loss due to partially incomplete three-level
cycles11–13. We have proven that complete enantio-selective
controllability can be achieved with five different, suitably chosen
combinations of frequency and polarization direction. This result
implies the existence of microwave three-wave mixing protocols
that allow for complete enantiomer-selective population transfer
despite the M-degeneracy. It is relevant also for all other
enantiomer-specific processes, which rely on rotational dynamics,
such as the non-resonant excitation of rotational wave packets by
interaction with induced dipole moments54–57.

For the example of microwave three-wave mixing, knowledge
of the necessary light-matter couplings has allowed us to design a
pulse sequence, which drives enantiomer-specific population
transfer. Our numerical simulations of the rotational dynamics
for the examples of propanediol and carvone confirm nearly
100% enantio-selectivity, provided the two upper rotational levels
do not contain any thermal population16,25. The sequence con-
sists of 12 pulses, sampled from five fields driving the same type
of transitions as those used in the earlier microwave
experiments11–13. Admittedly, the pulse sequence is rather com-
plicated, even for the smallest rotational subsystem. Therefore, we
have identified, based on the controllability analysis of subsets of
states, an alternative control strategy that relies on isolating
“parallel” three-level cycles for each degenerate state in a single
manifold. We have shown that simultaneous control of the
“parallel” cycles yields complete enantio-selective excitation with
a much simpler protocol containing only three fields, chosen to
synchronize the population transfer in all of the cycles. The
corresponding pulse sequence requires one left-circularly, one
right-circularly, and one linearly polarized field and is within the
capabilities of current microwave technology. Our proposal
eliminates an important obstacle toward complete enantiomer-
selective state transfer in three-wave mixing experiments11,12. The
control strategies derived here are general, i.e., they can be applied
to all molecules which are amenable to chiral-sensitive techniques
in the gas phase. This implies, in terms of the size of the mole-
cules, an upper limit toward biochemically relevant molecules,
due to difficulties of preparing samples of very large molecules in
the gas phase. Our results are thus most relevant to the wider
atomic and molecular physics community, where the interest in
small polyatomic molecules has seen a recent surge, due to pro-
spective applications in fundamental physics15,26, quantum infor-
mation science28, or optical enantiomer-selective control9,10,54–57,
in addition to microwave three-wave mixing2,4,5,11–13.

More broadly, our work testifies to the value of mathematical
controllability analysis in general and the Lie–Galerkin

approximation in particular for topical problems in quantum
control. The same techniques can in principle also be applied to
many-body dynamics or open quantum systems, where the
spectral gap condition required to invoke the Lie–Galerkin
approximation will translate into a timescale separation argu-
ment. It will be interesting to see in these cases how far con-
trollability despite degeneracy can be pushed. While in our
example of asymmetric quantum rotors, the key to controllability
despite degeneracy is found in the 3D nature of the light-matter
coupling, it is presently an open question which mechanisms
could be leveraged for the control of many-body dynamics or
open quantum systems.
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