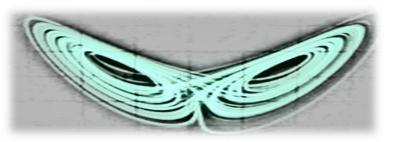
Course 20105401 - Winterterm 2015 - FU Berlin

Nonlinear Dynamics- Introduction to an analytic treatment of nonlinear systems


Prof. Dr. Kathy Lüdge

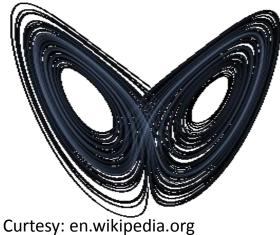
Location: 0.1.01 Hörsaal B (Arnimallee 14)

Time: Mi 14:00-16:00

Contents

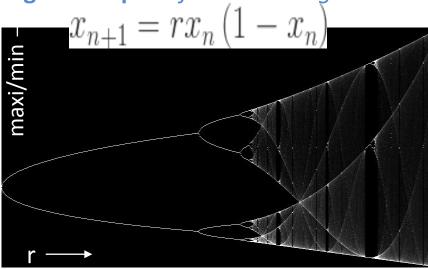
- Dynamical systems and deterministic chaos
- Stability analysis: linear stability of systems with time delay
 - nonlinear stability analysis with asymptotic methods
- Coupled systems and networks
- Nonlinear dynamics in laser systems

delay time


1. Dynamical systems and deterministic chaos

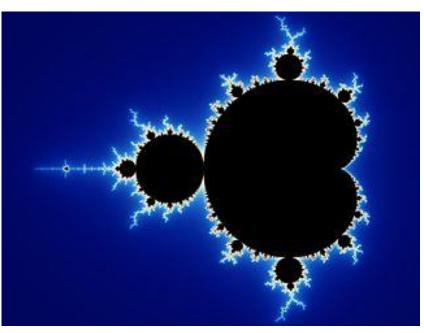
- (1) Vector fields
- (2) **Stability** and long-term behaviour *conservative and dissipative systems*
- (3) Classification of **bifurcations**
- (4) Deterministic chaos

Continous systems (*differential equations*)


Lorenz attractor –

trajectory in phase space

Discrete systems (iterative equations)

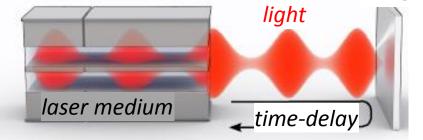

Logistic map – *bifurcation diagram*

1. Dynamical systems and deterministic chaos

- (1) Vector fields
- (2) **Stability** and long-term behaviour *conservative and dissipative systems*
- (3) Classification of **bifurcations**
- (4) Deterministic chaos

Fractals: Mandelbrot set

Curtesy: en.wikipedia.org


- 1. Dynamical systems and deterministic chaos
 - (1) Vector fields
 - (2) **Stability** and long-term behaviour *conservative and dissipative systems*
 - (3) Classification of **bifurcations**
 - (4) Deterministic chaos

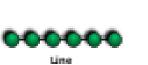
2. Control schemes

- (1) Linear control
- (2) Chaoscontrol OGY, Pyragas, adaptive control
- (3) **Time-delayed feedback** control *stability analysis with delay*

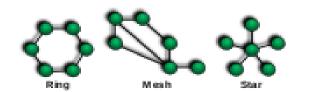
How to analyze the dynamics with delay?

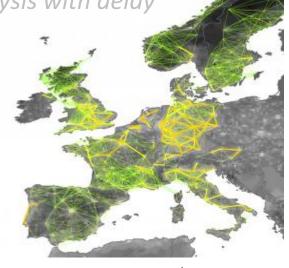
mirror

Are there orbits that can be stabilized?


- **1.** Dynamical systems and deterministic chaos
 - (1) Vector fields
 - (2) **Stability** and long-term behaviour *conservative and dissipative systems*
 - (3) Classification of **bifurcations**
 - (4) Deterministic chaos

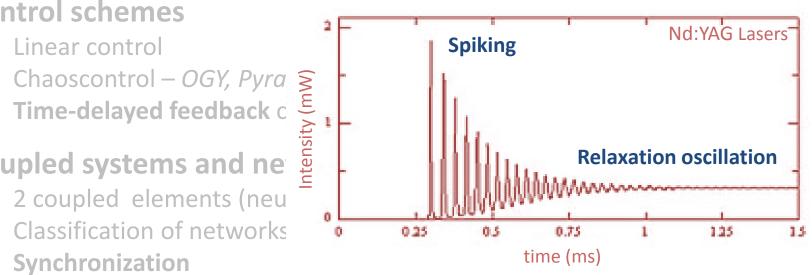
2. Control schemes


- (1) Linear control
- (2) Chaoscontrol OGY, Pyragas, adaptive control
- (3) **Time-delayed feedback** control *stability analysis with delay*


3. Coupled systems and networks

- (1) 2 coupled elements (neurons, lasers)
- (2) Classification of networks
- (3) Synchronization

Curtesy: gleamviz.org


- **Dynamical systems and deterministic chaos** 1.
 - Vector fields (1)
 - **Stability** and long-term behaviour *conservative and dissipative systems* (2)
 - Classification of **bifurcations** (3)
 - **Deterministic chaos** (4)

Control schemes 2.

- Linear control (1)
- (2)
- (3)
- Coupled systems and ne 3.
 - 2 coupled elements (neu (1)
 - **Classification of networks** (2)
 - **Synchronization** (3)

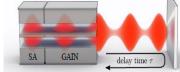
Nonlinear laserdynamics 4.

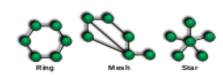
- Turn-on and spiking dynamics *nonlinear stability analysis* (1)
- Laser with optical feedback *chaotic pulsations* (2)

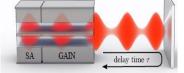
Dynamical systems and deterministic chaos 1.

- Vector fields (1)
- **Stability** and long-term behavior *conservative and dissipative systems* (2)
- Classification of **bifurcations** (3)
- Deterministic chaos (4)

Control schemes 2.


- Linear control (1)
- Chaoscontrol OGY, Pyragas, adaptive control (2)
- **Time-delayed feedback** control *stability analysis with delay* (3)


Coupled systems and networks 3.


- 2 coupled elements (neurons, lasers) (1)
- Classification of networks (2)
- Synchronization (3)

Nonlinear laser dynamics 4.

- Turn-on and spiking dynamics *nonlinear stability analysis* (1)
- Laser with optical feedback *chaotic pulsations* (2)

me (ms

Exercise - Wednesday 16:00-17:30 (room E2)

- Takes place every 2nd week
 - Dates: 21.10. 1st home work (needs to be handed in one week later)
 - 4.11. **2**^{*nd*} **home work**
 - *18.11.* **3**^{*rd*} **home work**
 - *2.12.* **4**th home work
 - *16.12.* **5**th home work
 - *13.1.* **6**th home work
 - 27.1.
- **Requirement for certificate:** 50% of the attainable points
- **Goal:** Learn numerical and analytical tools to analyze nonlinear systems

Information

Course in Modern methods in Theoretical Physics A for master students
5 credit points
Oral exam at the end (last week of semester)

• Webpage

http://www.physik.fu-berlin.de/einrichtungen/ag/ag-luedge/teaching

Literature

Nonlinear dynamics

- Steven Strogatz, Nonlinear dynamics and Chaos, Westview Press 2000
- John Guckenheimer, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer (1986)

Networks

• Marc Newman, *Networks: An introduction*, Oxford University Press (2010)

Asymptotic methods

• T. Erneux, P. Glorieux, *Laser Dynamics*, Cambridge Univ. Press, 2010