Freie Universität Berlin – Fachbereich Physik

28. October 2015

VL: Mi 14-16 Uhr Prof. Dr. Kathy Lüdge UE: Mi 16-18 Uhr (every 2nd week) http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-luedge/teaching/

2. Homework - Nonlinear dynamics

Need to be handed in: Wed 11.11.(before the lecture) You can build groups of up to 3 students.

Task 3 (10 points): Homoclinic orbit in the Lorenz system

A homoclinic orbit is a connection from a fixed point to itself that can usually only be found numerically. In this exercise you are supposed to find such a homoclinic connection for a fixed point of the Lorenz system.

The Lorenz system is given by

$$\begin{aligned} \dot{x} &= -\sigma x + \sigma y \\ \dot{y} &= \rho x - y - xz \\ \dot{z} &= xy - \beta z, \end{aligned}$$

where we chose $\sigma = 10$, $\beta = 8/3$ and $1 < \rho < 24$. In this parameter range there are three fixed points, which we call C_0 , C_+ and C_- . The last two fixed points are stable foxi:

$$C_0 := (0, 0, 0),$$

$$C_{\pm} := (\pm \xi, \pm \xi, \rho - 1) \text{ mit } \xi = \sqrt{\beta(\rho - 1)}.$$

1. Show that C_0 and C_{\pm} are indeed fixed points of the system. Further, please show that for $\rho > 1$ C_0 is a saddle with two stable and one unstable directions. Determine the eigenvector ξ_0 that corresponds to the unstable direction of C_0 (this vector is a vector tangent to the unstable manifold of C_0).

Now you are ready to determine the homoclinic orbit that, however, only exists for one specific value $\rho = \rho_*$.

Start your simulation (for one value of ρ) with initial condition at the fixed point C₀ with a small deviation in the direction of ξ₀. For ρ < ρ_{*} your dynamics will end in one of the fixed points C_± while for ρ > ρ_{*} it will end in the other one.

Implement an iteration procedure that evaluates the phase portraits in the (x,y) plane in order to determine ρ_* with an accuracy of 4 digits. Please note that your simulation should run at least until t = 100 with a small stepsize to yield the desired accuracy.

3. Plot the phase portait of the homoclinic orbit (for that you only need to simulate to t = 5).

2. Homework

Task 4 (10 points): SNIPER or SNIC

A *SNIPER* (saddle-node infinite period) or *SNIC* (saddle node on an infinit cycle) bifurcation can be described by the following set of equations for the radius r and the angle ϕ of a rotating motion.

$$\dot{r} = r(1 - r^2),$$

$$\dot{\phi} = b - r\cos\phi.$$

In the following you can reduce the dynamics to r = 1 (this is possible because the circle is an invariant manifold of the system).

- 1. Characterize the fixed points of the reduced system as a function of b, i.e., determine their existence, their value and their stability.
- 2. Find the analytic solutions $\phi(t)$ of the ODE system by seperating the variables, and distinguish the cases b < 1 and b > 1. You may need to use the following primitiv integrals:

$$\begin{split} \int \frac{d\phi}{b - \cos\phi} &= \frac{2}{\sqrt{b^2 - 1}} \arctan\left[\frac{(b+1)\tan\frac{\phi}{2}}{\sqrt{b^2 - 1}}\right] & \text{for} \quad b > 1, \\ \int \frac{d\phi}{b - \cos\phi} &= \frac{1}{\sqrt{1 - b^2}} \log\left[\frac{(1+b)\tan\frac{\phi}{2} - \sqrt{1 - b^2}}{(1+b)\tan\frac{\phi}{2} + \sqrt{1 - b^2}}\right] & \text{for} \quad b < 1. \end{split}$$

3. Plot the resulting time series $x(t) = \cos \phi(t)$ and the phase portrait for b > 1 and b < 1 for suitable initial conditions.