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Lifetime of virus-containing droplets diffusing and evaporating in air
Droplet radii produced by humans sneezing, coughing and speaking are between 1 and 500 um . In fact, 95% of
all droplets have radii below 50 um, and most radii are around 5 um.

A droplet with a radius of 5 um released at an initial height of 2 meters stays suspended in air for 11 minutes
before it falls to the ground, which is relevant for viral infection by aerosols.

Evaporation effects can be treated on the level of the diffusion equation in the stagnant approximation, i.e.
neglecting the flow field around the droplet, and in the diffusion-limited evaporation regime. This approximation is

accurate for droplet radii in the range 100 nm < R < 60 pum. '

The time-dependent shrinking of the radius is given by
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Here R, is the initial droplet radius and the numerical prefactor is given by
0=2Dycyvy, = 1.1 x 1077m? /s ,

where @ has units of a diffusion constant and the the water diffusion

constant in airis D,,, the liquid water molecular volume is v, and the

saturated water vapor concentration is ¢,

As a simple analysis shows, droplets smaller than R*= 67 um will dry out before they hit the ground and
shrink down to a radius that is predominantly determined by the solute content. Depending on the final

size, they will be floating in air for an extended time. (R.R. Netz, preprint)



Non-Ergodicity in 2D Diffusion Processes

1. Ergodicity is an essential pillar in the application of Statistical Mechanics
2. Local diffusivity of proteins in bacterial cells shows non-ergodicity

3. In the article, the authors model viral transport via 2D model
mB(t) = D)W (b), 3 W € R?

4. And they measure the EB (Ergodicity Breaking) parameter

Andrey G. Cherstvy, Aleksei V. Chechkin and Ralf Metzler, Soft Matter, 2014



The Statistical Mechanics of Gelation

1. A gelis a material composed of subunits that are able to bond with
each other
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2. The statistical description of gel formation from a polymer system
3. Flory Stockmayer theory to estimate the gel point

Walter H Stockmayer, J. Chem. Phys., 1943



Percolation Theory in Epidemics

1. Model the percolation of a fluid through a random material
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2. Estimate statistical quantities of the percolation process
3. Apply your result to the ,, percolation” of a disease infecting a
community

S. R. Broadbent and J. M. Hammersley, Mathematical Proceedings of the Cambridge Philosophical Society, 1957
S. Davis, P. Trapman, H. Leirs, M. Begon and J. A. P. Heesterbeek, Nature, 2008



The Statistical Mechnics of Self-Assemply

1. Self-assembly describes the dynamical processes in which components
of a system organize themselves, without external direction, into
ordered patterns or structures.
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2. Estimate statistical properties of a toy model analytically.
3. Compare results to a simple simulation of a 2D lattice gas.

James Grant, Robert L. Jack, and Stephen Whitelam, J. Chem. Phys., 2011



Nonlinear Dynamics

Usci“aﬁnns.in Chemi¢31 Systems. 1L Thﬂll‘Dl.lgh Received 2 Aug 2013 | Accepted 25 Apr 2014 | Published 9 Jun 2014
Analysis of Temporal Oscillation in the How dead ends undermine power grid stability
Bromate—Cerium—Mainnic Aﬂld S}rstem Peter J. Menck'?, Jobst Heitzig1, Jirgen Kurths"23 & Hans Joachim Schellnhuber"#

Richard J. Field, Endre Koris, and Richard M. Noyes®

Contribution from the Depariment of Chemisiry, University of Oregon,
Eugene, Oregon 97403, the Institure of Inorganic and Analytical Chemistry,
L. Eiteds University, Budapest, Hungary, and the Physical Chemistry Laboran o tf ; A

Oxford University, Oxford, England. Received April 3, 1972 o ]
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Poisson-Boltzmann Modelling

Theory

Electrostatics: Thermodynamics:
Poisson’s Equation Boltzmann Distribution
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Applications

Cellular Membranes
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Evolutionary Game Theory

Game theory: models consist of agents interacting with different
strategies. Gives insight into e.g.

P economies consisting of people and corporations
P ecosystems consisting of animals
» interactions among nations/governments

Classic example: Prisoner’'s dilemna

Evolutionary game theory: looks at adapting/learning of agents
in repeated games. Keyword: evolutionarily stable strategy
(ESS)

1 G. Szabo, C. Toke, "Evolutionary prisoner's dilemma game on a square lattice”
Physical Review E 58 1 (1998) 69

2 G. Szabo, G. Fath, “Evolutionary games on Graphs” Physics Reports 446 4-6
(2007) 97

3 C.P. Roca, J. A. Cuest, A. Sanchez, “Evolutionary game theory: Temporal and
spatial effects beyond replicator dynamics” Physics of Life Reviews 6 (2009) 208 Figure: Snapshots
of two different

“In its evolutionary form and especially when the interacting lattice simulations

agents are linked in a specific social network the underlying of a six-species
solution concepts and methods [of game theory] are very similar predator-prey
to those applied in non-equilibrium statistical physics. [2]" model defined by

the food web
above. [2]



Rigidity of Random Networks

« Structure consisting of / /
nodes randomly : 2

connected by edges

« When is such a
structure rigid? * RIigid and floppy modes

D _%‘U Floppy « Applications:

« Structural engineering

& Rigid, not overconstrained . GlaSSSS

« Soft matter

E B | (biomembranes,
Rigid, overconstrained ]
proteins, ...)




Modelling of rare events /
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barrier-crossing rates

A fundamental question in biophysical applications (reactions, protein folding,

diffusion processes):

o

o
o @ © O
© © o0 ¢

¢ o o=
.. ® o am»©
o) o Oo
o 0‘0

® o>
® e ® a®
® ® oam ©

0o © ©

-1 0
x/L

What is the mean barrier-crossing time?

Widely used model: Kramers’ rate [1,2]

_ 21y eUo/(kBT)

Tic, =
Kr \/ 77 77
max =~ min

19.0 19.5 20.0 20.5 21.0

1] Kramers, H. A. (1940). Physica, 7(4), 284-304.
2] Zambelli, S. (2010). Archive for History of Exact Sciences, 64(4), 395-428.
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Thermodynamics of small systems:
Molecular Dynamics simulations of many-particle models
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Critical phenomena, scale invariance, scaling relations

scale-invariant scale-invariant scale-invariant
structures interaction networks dynamics

Scale invariance in natural and artificial collective systems:

Laura Lavacchi, selected topics seminar 20.04.2020 Yara Khaluf, Eliseo Ferrante, Pieter Simoens and Cristian Huepe
Published:01 November 2017



Stat. Mech. Of Cell Migration

Schreiber et. al, Sci. Rep., 6, 26858 (2016) ] ] ] ]
* Equation of Motion for migrating cells?

z(t) = rop(t) * Difference between Brownian motion of
“passive” particles vs. “active” motion
500 | of living cells
* Inferring theories from experimental
. 200}
= data
=0
= . 1. 2B
200, - B(t) = —=&(t) + Fr(t), (Fr(t)Fr(0)) = =0(t)
------------------------- Tp Tp
-500 + - Die Brownsche Bewegung bei Beriicksichtigung einer
- - : : Persistenz der Bewegungsrichtung, Mit Anwendungen
0 °00 1000 . 1500 2000 auf die Bewegung lebender Infusorien.
t [min] Von Reinhold Fiirth.

Mit zwei Abbildungen.

Aus dem physikalischen Institut der deutschen Universitdt in Prag.

(Eingegangen am 26. Juni 1920.)




