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Preface
These lecture notes accompany the course Statistical Physics and Thermodynamics taught
by Prof. Dr. Roland Netz at the Department of Physics, Freie Universität Berlin.

The document is based on a continuously developed collection of material from previous
editions of the lecture. Lennart Schmidt and Till Sehmer wrote up notes in German
language when Professor Netz held the lecture at Technische Universität München in 2009.
At FU, Martin Borchert turned his own notes from the 2016 lecture into a document that
was revised by Professor Netz, Philip Loche, Jan Daldrop, and Douwe Bonthuis in the
following years. The present fully revised edition builds on this work and combines it with
Professor Netz’s more recent hand-written notes as well as personal notes from the 2017
and 2018 lectures.

Although these lecture notes (+ problem sets) cover the content of the course, they are
not meant to substitute a monograph. Recommended literature for the lecture includes:

• R.K. Pathria, Statistical Mechanics (Butterworth Heinemann 1996)

• F. Schwabl, Statistical Mechanics (2nd ed., Springer 2006)

• F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill 1965)

• W. Nolting, Grundkurs theoretische Physik 6: Statistische Physik (Springer 2005)

If you find any errors, please help improving these notes and send an email to
rnetz@physik.fu-berlin.de.

Please contact Professor Netz about questions regarding distribution rights of this document
to people outside of the Physics Department and/or any use beyond the course.

We very much hope these lecture notes will prove helpful for your studies, your under-
standing of and curiosity for Stat Mech. Enjoy the course!

rnetz@physik.fu-berlin.de
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1 Introduction

One mole of a substance contains NA ≈ 6.022 · 1023 particles1. This corresponds to 12
grams of carbon 12C or about 2 to 100 grams of a gas, depending on its type. At room
temperature and atmospheric pressure, 1 mol of a gas takes up a volume of approximately
24.6 liters. Knowing that even the three-body problem does not possess a general closed-
form solution, it seems hopelessly complicated to calculate properties of a system of this
size. However, we will see in the course of this lecture that large systems are particularly
amenable to statistical treatment. In the regime of the thermodynamic limit, where
the particle number N → ∞, things can in fact become easier – as long as we are only
interested in statistical properties of the system as a whole. This is the central motivation
behind Statistical Physics and Thermodynamics.

1.1 Objective of Statistical Physics and Thermodynamics
The fields of Statistical Physics and Thermodynamics are concerned with physical systems
containing a large number of particles. Examples include gases, liquids, solids, and photon
gases. In fact, most systems are large; isolated particles rarely occur.

The key objective of Statistical Physics (or Statistical Mechanics, SM) is to predict the
behavior of a large system based on known properties of the individual particles and their
interactions. In principle, we can write down the equations of motion of an N -particle
system. Solving this problem, however, is difficult or impossible. Furthermore, the solution
would not be very interesting because we could not test its details experimentally. From an
experimental perspective, we are interested in macroscopic parameters like temperature,
pressure, heat capacity, etc. Statistical Mechanics aims at deriving these macroscopic
parameters from microscopic properties of the system.

Conversely, Thermodynamics (ThD) states relations between macroscopic quantities
without considering microscopic details. These relations result from the laws of Thermody-
namics, a set of heuristic rules that have been deduced and generalized from experimental
findings. While these laws are very general, allowing various predictions of a system’s
behavior regardless of its particular composition, they fail to yield substance-specific
properties like heat capacity, compressibility or the expansion coefficient.

1.2 A brief history
Historically, Thermodynamics was developed earlier than Statistical Mechanics and even
before scientists understood the atomic structure of matter. The idea of the equivalence

11 mol is defined as the amount of substance containing exactly NA elementary entities (atoms, molecules,
. . . ), where NA is the Avogadro constant.
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of heat and energy (Mayer 1842, Joule 1849) marked an important milestone. The laws of
Thermodynamics were formulated by Clausius and Kelvin around 1850; Gibbs completed
their work in 1878. The theory of Statistical Mechanics was developed mainly by Boltzmann
and Gibbs between 1860 and 1900. With the emergence of Quantum Mechanics, many
results of Statistical Mechanics were modified; yet the original framework remains valid
today.

In this lecture, we will not follow the historical path but instead focus on deriving
thermodynamic results from the theory of Statistical Mechanics.

1.3 Systems and equilibrium
We distinguish between three types of idealized systems.

• Isolated system. A system that is completely isolated from the surrounding environ-
ment, i.e. it exchanges neither energy nor particles with the environment. (Example:
hot coffee in a closed thermos bottle.)

• Closed system. A system that may exchange energy but not particles with its
environment. (Example: hot coffee in a closed glass jar.)

• Open system. A system that may exchange both energy and particles with the
surrounding environment. (Example: hot coffee in an open cup.)

In reality, even the best thermos bottle exchanges some energy and some particles with
the outside world. The isolated system and the closed system are idealizations that serve
merely as approximations of real-world systems.

Equilibrium. A system is said to be in equilibrium when none of the macroscopic parameters
of the system change in time. Systems that are not in equilibrium will change their
macroscopic properties until eventually reaching an equilibrium state.

Example 1.1. Tea with sugar

Imagine you add a cube of sugar to your hot tea. When the cube dissolves, it initially forms
a layer at the bottom of the tea cup, leading to an inhomogeneous sugar concentration.
After a while, the sugar is completely dissolved and homogeneously distributed in the tea.

Equilibrium states are significantly easier to describe than non-equilibrium states. This
lecture will mainly restrict itself to the former case. Transitions between two equilibrium
states may be interpreted as a quasi-continuous concatenation of equilibrium states, as
long as the transition process is sufficiently slow.

Example 1.2. Quasi-static compression

Consider the compression of a gas in a cylinder with a moveable piston. As long as the
piston motion is slow enough, the density distribution of the gas inside the cylinder is
homogeneous and the gas pressure corresponds to the equilibrium pressure at all times.
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Figure 1.1: Gas in a container with moveable lid. Left: N particles of an ideal gas are confined in a
container of volume V which is sealed with a moveable lid of mass ml. Right: Illustration of the
scattering process. A particle with mass m and vertical velocity vz collides elastically with the lid
(m� ml). After the collision, the particle has a vertical velocity of vz ′ = −vz; the momentum
transfer to the lid is mlvl

′ = 2mvz.

1.4 Introductory example: The Boyle-Mariotte law
Before diving into the theory, let us look at a simple example that illuminates how
Statistical Mechanics works. To do this we only need Newton’s laws and a bit of statistics.

Consider an ideal gas composed of N non-interacting identical mass points (particles),
confined in a container of volume V . The container is sealed by a lid of surface area A
that may move up and down in the z direction due to an external force (see fig. 1.1). The
lid, with a weight of mass ml, experiences a downwards-oriented gravitational force F . In
equilibrium, this force is compensated by the pressure P = F/A the gas exerts on the
lid from below. The pressure results from the elastic scattering of particles against the
bottom surface of the lid.

During each elastic collision, momentum and energy must be conserved. We assume that
before the collision, the lid is at rest. Let m be the mass of a particle, v its velocity before
the collision, and v′ its velocity after the collision. Furthermore, we denote by vl′ the
velocity (in the z direction) of the lid after the collision. Conservation of momentum and
energy requires

mvz = mvz
′ +mlvl

′

mvz
2

2 = mvz
′2

2 + mlvl
′2

2 , (1.1)

where vz represents the z component of the particle velocity (normal to the lid surface A;
components parallel to the lid surface are not relevant). The first line of eq. (1.1) can be
rewritten as

mvz
′2 = 1

m
(mvz −mlvl

′)2
.

Inserting this into the second line of eq. (1.1) yields

mlvl
′ = 2mvz

1 + m
ml

. (1.2)

If the lid is much heavier than the particle ( m
ml
→ 0), the momentum transfer from the

particle to the lid becomes
mlvl

′ = 2mvz . (1.3)
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According to Newtonian mechanics, the force acting on the lid equals the time derivative
of its momentum. To compute the total force F exerted by the gas, we must find out how
many particles collide with the lid in a certain time interval ∆t. The vertical distance a
particle travels during this time is ∆z = vz∆t. Assuming that half of the particles move
upwards (vz > 0) while the other half moves downwards (vz < 0), the probability that a
particle in the volume Vcoll = Avz∆t collides with the lid is p = 1/2. Particles outside
Vcoll will not reach the lid during the time interval ∆t. Thus, the number Ncoll of particles
colliding with the lid during ∆t is

Ncoll = 1
2ρAvz∆t ,

where ρ := N/V denotes the particle density. The force F , given by the total momentum
transfer per time, reads

F = Ncoll ·mlvl
′

∆t
= ρAmv2

z , (1.4)

where we have used eq. (1.3). This leads to a gas pressure P = F/A of

P = N

V
mv2

z . (1.5)

Actually, particles in a gas follow a continuous velocity distribution and the pressure P
should depend on the average of the squared velocity 〈v2

z〉 (more on statistical distributions
follows in chapter 2). Thermal particle motion in a gas has no preferred direction, i.e.
〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 and the average kinetic energy 〈Ekin〉 is given by

〈Ekin〉 = m

2
〈
v2
x + v2

y + v2
z

〉
= 3m

2
〈
v2
z

〉
. (1.6)

With eq. (1.6), we may write the pressure (eq. (1.5)) as

P = 2
3
N

V
〈Ekin〉 . (1.7)

This agrees with the experimentally known result that the pressure of a gas is inversely
proportional to its volume,

P ∝ 1
V
, (1.8)

which is referred to as the Boyle-Mariotte law.

Experiments have shown that the product PV is constant at constant temperature T (for
sufficiently low pressure, see fig. 1.2). This holds independently of the type of gas and is
thus independent of the particle mass m; we will see later why this is the case. At the
same time, the temperature relates closely to the average kinetic energy 〈Ekin〉. Indeed, as
we will derive in chapter 3, we may define the temperature of a mono-atomic gas as

T := 2
3
〈Ekin〉
kB

. (1.9)



5 Introduction

Figure 1.2: Pressure of ideal and real (air and helium) gases at constant temperature 0◦C. Data in the figure
are for one kmol of gas. The table is for an amount of air that at 0◦C and normal pressure of
1 bar has a volume of 10 cm3. Up to pressures of ca. 10 bar the ideal gas law works well. For
higher pressures interactions between gas molecules give rise to corrections that can be treated by
the virial expansion.

Here, kB denotes the Boltzmann constant. Its value kB ≈ 1.38× 10−23 J K−1 is chosen
such that water freezes at T = 273.15 K (0◦C) and boils at T = 373.15 K (100◦C). The
Boltzmann constant serves the purpose of aligning the thermodynamic temperature scale
(in units of Kelvin) with the Celsius scale; it is not a natural constant.

Now, we may invoke eq. (1.9) to replace the average kinetic energy in eq. (1.7) with the
temperature, leading to the ideal gas law:

PV = NkBT (1.10)

Fig. 1.2 shows that even real gases with particle-particle interaction follow the ideal gas
law for pressures up to 10 bar. We will return to the ideal gas in sec. 3.6.

Velocity of gas particles. In the derivation above, the average squared velocity 〈v2〉 =
〈v2
x + v2

y + v2
z〉 of gas particles appeared. How fast are gas molecules actually, say, of

molecular Hydrogen H2 or Oxygen O2? Equations (1.6) and (1.9) yield an expression for
the average velocity v̄ in terms of temperature as well as the particle mass m:

v̄ :=
√
〈v2〉 =

√
3kBT
m

. (1.11)

At T = 273K, we find
for Hydrogen: mH2 ≈ 2 · 1.661× 10−27 kg ⇒ v̄ ≈ 1800 m s−1

for Oxygen: mO2 ≈ 32 · 1.661× 10−27 kg ⇒ v̄ ≈ 460 m s−1 .
Hence gas molecules move quite fast! Furthermore, the relation between temperature and
average kinetic energy,

〈Ekin〉 = 3
2kBT ,
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implies the existence of absolute zero: a minimum value (T = 0 K) of the thermodynamic
temperature scale where particles do not move (according to the classical description, in
disagreement with quantum mechanics).
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2 Mathematical Statistics

In this chapter, we will establish the mathematical theory necessary to formulate Statistical
Physics and illuminate some central results of mathematical statistics in the limit of a
large number of experiments N . We begin with basic statistics, introducing the mean,
variance, and deviation of a probability distribution. Furthermore, we discuss the binomial
distribution. We show that in the limit of large N and finite probability p, the binomial
distribution simplifies to the normal distribution. On the other hand, if N is very large
but p very small, we will see that the binomial distribution crosses over to the Poisson
distribution. Subsequently, the characteristic function is introduced as a powerful tool to
calculate moments of a probability distribution. The chapter concludes with a derivation
of the important central limit theorem.

2.1 Probability
We demonstrate the key characteristics of a statistical description with the help of an
experiment which we conduct N times. As an outcome, each experiment yields an integer
m. After N repetitions the overall outcome is the set {mi} with i = 1, . . . , N . The absolute
frequency of the event m, denoted my n(m), states how often the event m occurred. We
define the relative frequency h of the event as

h(m) := n(m)
N

,

which is a normalized quantity such that ∑m h(m) = 1.

In the limit of a large number of experiments (N →∞), the relative frequency converges
to the probability p of an event,

p(m) := lim
N→∞

h(m) where
∑
m

p(m) = 1 . (2.1)

Addition theorem. For mutually exclusive events, the probability of observing any of
these events in an experiment is given by the sum of individual probabilities:

p(m1 ∨m2 ∨m3 ∨ · · · ) = p(m1) + p(m2) + p(m3) + · · · . (2.2)

Here, the symbol ∨ means “or.”

Example 2.1. Rolling a one or a two

Imagine we roll a single die. The probability of obtaining either a 1 or a 2 is the sum of
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individual probabilities,

p(1 ∨ 2) = p(1) + p(2) = 1
6 + 1

6 = 1
3 .

Multiplication theorem. The probability of observing two independent events simulta-
neously is given by the product of individual probabilities:

p(m1 ∧m2) = p(m1) · p(m2) , (2.3)
where the symbol ∧ means “and.”

Example 2.2. Rolling two ones

Now we roll two dice at the same time. The probability of obtaining 1 two times is the
square of the probability of observing one 1 alone,

p(1 ∧ 1) = p(1) · p(1) = 1
6 ·

1
6 = 1

36 .

Example 2.3. Rolling a straight

As a slightly more complicated example, consider the chance of rolling a straight (1,2,3,4)
with four dice. If we roll the dice in a specific order, the probability of first rolling 1, then
2, then 3, and then 4 is

p(1 ∧ 2 ∧ 3 ∧ 4) =
(1

6

)4
= 1

1296 ≈ 0.0008 ,

according to the multiplication theorem. However, also (1243) or (3142) qualify as a
straight if the order of the dice does not matter. In total there exist 4! = 4 · 3 · 2 · 1 = 24
possibilities to arrange the numbers 1, 2, 3, and 4. Therefore, according to the addition
theorem, the probability of observing any of the 24 possible arrangements of a straight is

p
(
[1 ∧ 2 ∧ 3 ∧ 4] ∨ [1 ∧ 2 ∧ 4 ∧ 3] ∨ · · ·

)
= 4!

64 ≈ 0.019 .

In the above example, we introduced the factorial of a positive integer n,
n! := n(n− 1)(n− 2) · · · 2 · 1 ,

which states the number of permutations (possible distinct arrangements) of n distinct
items.

2.2 Expectation value, variance, and deviation
Let x be an arbitrary system variable which takes the value x(m) when the system is
in the state m. In terms of the normalized probability distribution p(m), we define the
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expectation value or mean value 〈x〉 as

〈x〉 :=
∑
m

x(m)p(m) . (2.4)

Example 2.4. Fair die

A fair die has a uniform probability distribution p(m) = 1
6 form = 1, 2, . . . , 6. Furthermore,

we assume x(m) = m. The expectation value of x is thus

〈x〉 =
6∑

m=1

m

6 = 1 + 2 + 3 + 4 + 5 + 6
6 = 21

6 = 3.5 .

To quantify deviations from the expectation value, we define the variance ∆x2,

∆x2 :=
〈(
x− 〈x〉

)2〉
, (2.5)

which states the mean squared deviation of x from the expectation value 〈x〉. Expanding
the square, we can rewrite the variance as

∆x2 =
〈
x2 − 2x 〈x〉+ 〈x〉2

〉
= 〈x2〉 − 2 〈x〉 〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2 . (2.6)

Thus, the variance is given in terms of the expectation values of x and x2. The deviation
∆x is defined as the square root of the variance,

∆x :=
√
〈x2〉 − 〈x〉2 . (2.7)

Example 2.5. Deviation of dice roll results

What is the deviation of the number of pips when rolling a die? In example 2.4, we
calculated the expectation value of the number of pips, 〈x〉 = 7/2. Moreover, we have

〈x2〉 =
6∑

m=1

m2

6 = 1 + 4 + 9 + 16 + 25 + 36
6 = 91

6 .

Thus, the deviation is

∆x =
√

91
6 −

(7
2

)2
≈ 1.7 .

2.3 Binomial distribution
Imagine a random walker in one dimension who, per unit time, takes a step upwards with
probability p or a step downwards with probability q = 1− p. Random walks are used to
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model the food search of animals, fluctuations in protein configuration, diffusion processes,
and many other applications in science. What is the probability that the walker, after
taking N = 5 steps, will end up one step higher than its original starting point? The
binomial distribution provides the answer.

To arrive one step higher after five steps, three of the walker’s steps must go up, while
two must go down. According to the multiplication theorem (eq. (2.3)), the probability of
such a path is p3q2. However, since we disregard the order in which the walker goes up or
down, there exist ten distinct paths to reach the desired final position. The number of
possible paths can be found by calculating

10 = 5!
3! · 2! ,

where n! again denotes the factorial of n, stating the number of possible ways to arrange
n distinguishable objects in a line. The denominator accounts for the fact that not all
five steps are distinct: the three steps upwards (as well as the two steps downwards)
are indistinguishable among each other, and exchanging them will not change the path.
Consequently, the probability of taking three steps up and two steps down in an arbitrary
order is P5(3) = 10p3(1− p)2.

Example 2.6. Five unbiased random steps

If p = 1/2, i.e. a step up is as probable as a step down, the probability of a net upwards
movement of one step after N = 5 steps is

P5(3) = 10 ·
(1

2

)5
≈ 0.3 .

Generally, if a random walker takes N steps of whichm go upwards (and N−m downwards),
the total number of distinct paths is given by the binomial coefficient,(

N
m

)
:= N !

m!(N −m)! . (2.8)

We may think of the binomial coefficient as the number of possibilities to allocate m
objects to N places, or to choose m objects from among N objects. The probability of
taking m steps upwards among N steps in total is thus given by the binomial distribution

PN(m) =
(
N
m

)
pm(1− p)N−m . (2.9)

Ultimately, the binomial distribution states the probability of observing precisely m single
events of probability p in a total of N experiments. It is suitable for repeated experiments
with “digital” outcome (e.g. yes/no, up/down, success/failure, one/zero).

Example 2.7. Boys and girls

The probability of a newborn child being a girl is approximately p ≈ 1/2. Therefore, the
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probability that a family with three children has two girls is P3(2) ≈ 0.375.

Example 2.8. Birthdays

The probability of being born on New Year’s Eve is p = 1/365 (except in leap years). This
implies that the probability of having precisely one student with birth date December 31
in a Stat Mech lecture of 50 students is P50(1) ≈ 0.12.

Expectation value. First, let us prove that the binomial distribution is a normalized
probability distribution. This is not simple when applying brute force, but invoking the
N -th order binomial formula,

(p+ q)N =
N∑
m=0

(
N
m

)
pmqN−m ,

brings us directly to the result. With q = 1− p, the proof reads
N∑
m=0

PN(m) =
N∑
m=0

(
N
m

)
pm(1− p)N−m

= (p+ (1− p))N

= 1 q.e.d. (2.10)

Since the binomial distribution PN(m) is a normalized probability distribution, its expec-
tation value (or mean) is, according to the definition in eq. (2.4),

〈m〉 =
N∑
m=0

mPN(m) . (2.11)

Now, we use the binomial formula again to obtain a simple expression for 〈m〉 in terms of
N and p:

〈m〉 =
∑
m

mPN(m)

=
∑
m

m
N !

m!(N −m)!p
mqN−m

∗= p
∂

∂p

∑
m

N !
m!(N −m)!p

mqN−m

∗∗= p
∂

∂p
(p+ q)N

= pN(p+ q)N−1

= pN ,

where we have used p+ q = 1 in the final step. Note that at ∗ we rewrote the expression
in terms of a partial derivative, 〈m〉 = p ∂

∂p

∑
m PN(m), to get rid of the factor m in the

sum. This is a trick worthy to remember, as we will use it more often in the course of this
lecture. At ∗∗, we inserted the binomial formula. In summary, the expectation value of
the binomial distribution is given by

〈m〉 = Np . (2.12)

This result agrees with the addition theorem for independent events (sec. 2.1).
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Variance. To find the variance, we must additionally calculate the expectation value of
m2. The procedure is similar to the calculation above, though with two partial derivatives
this time: 〈

m2
〉

=
∑
m

m2PN(m)

=
∑
m

m2 N !
m!(N −m)!p

mqN−m

= p
∂

∂p
p
∂

∂p

∑
m

N !
m!(N −m)!p

mqN−m

= p
∂

∂p
p
∂

∂p
(p+ q)N

= p
∂

∂p

(
pN(p+ q)N−1

)
= pN(p+ q)N−1 + p2N(N − 1)(p+ q)N−2

= pN + p2N(N − 1) ,

where we used p+ q = 1 in the last step. Together with eq. (2.12), we have

∆m2 = 〈m2〉 − 〈m〉2

= pN + p2N(N − 1)− p2N2

= pN − p2N .

Thus the variance of the binomial distribution is given by

∆m2 = pN(1− p) . (2.13)

Relative Deviation. By taking the square root of the variance (eq. (2.13)), we obtain
the deviation ∆m from the mean for the binomial distribution:

∆m =
√
pN(1− p) . (2.14)

When comparing probability distributions characterized by different expectation values,
the comparison of deviations is not very meaningful unless they are put in relation to their
respective mean. A standardized measure which takes this into account is the relative
deviation σrel defined by

σrel := ∆m
〈m〉

. (2.15)

The relative deviation quantifies the dispersion of a probability distribution relative to its
mean value 〈m〉. For the binomial distribution, the relative deviation is given by

∆m
〈m〉

=
√

1− p
pN

∼ 1√
N

. (2.16)

Since the relative deviation is proportional to the reciprocal of the square root of N , it
approaches zero as N gets very large:

lim
N→∞

∆m
〈m〉

= 0 , (2.17)
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unless p is very small. This important result is known as the law of large numbers. It
justifies describing the properties of statistical systems in terms of mean values, as long as
the number of experiments N is sufficiently large.

Example 2.9. Particle number fluctuations in a large system

Consider N = 1024 molecules of a gas (roughly 1 mol) in a box of volume V . We divide
the box into two equally large sub-volumes. Then, the probability of finding m out of N
molecules in one of the sub-volumes is given by the binomial distribution. Let us assume
that a molecule is equally likely to be in either of the sub-volumes, such that p = q = 1/2.
On average, there are 〈m〉 = Np = 0.5 · 1024 molecules in a sub-volume. The deviation
of this mean occupation number is ∆m =

√
Npq =

√
N/4 = 0.5 · 1012 (half a trillion

molecules!). However, in relation to the expectation value 〈m〉, we obtain a negligible
relative deviation of ∆m

〈m〉 = 10−12. This illustrates why Thermodynamics works: since
most physical systems are very large, the probability distributions of statistical system
properties have very sharp peaks (relative to the mean value).

Rare events. There exist situations where N � 1 is very large but the probability p� 1
is very small, such that the product 〈m〉 = Np is finite1. This characterizes rare events for
which the relative deviation may in fact be large. To demonstrate this, let us consider the
following example.

Example 2.10. Car accidents

The number of car trips N a driver undertakes in a lifetime can arguably be very large,
whereas the probability p of having an accident per car ride is pretty small. For p� 1,
the deviation ∆m is approximately

∆m =
√
Np(1− p) ≈

√
Np =

√
〈m〉 ,

where 〈m〉 gives the average number of accidents in a lifetime. Then, the relative deviation,

∆m
〈m〉

≈ 1√
〈m〉

,

does not become negligible for large N since 〈m〉 remains finite. For example, if the mean
of a rare event is 〈m〉 = 0.1, the relative deviation is approximately ∆m

〈m〉 ≈ 3. Thus, we
may expect significant deviations from the mean, which is why it is wise to insure yourself
against rare events with large relative deviations!

A comparison of the binomial distribution with random walk simulations and two other
important distributions is shown in figs. 2.1 and 2.2. These two distributions are the
normal distribution and the Poisson distribution, which we introduce in the following
sections.

1Here we mean finite in the sense that Np is not a very large number like N .
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2.4 Normal distribution
We can simplify the binomial distribution (eq. (2.9)) in the limit of large N � 1, when
p is a finite number, such that Np → ∞. Let us take the logarithm of the binomial
distribution,

lnPN(m) = ln
(

N !
m!(N −m)!p

m(1− p)N−m
)

= m ln p+ (N −m) ln(1− p) + ln(N !)− ln(m!)− ln((N −m)!) . (2.18)

This expression may be simplified using the Stirling formula,

ln(N !) = N lnN −N +O(lnN) . (2.19)

To derive the formula (2.19) in a simple fashion, we first rewrite

ln(N !) = ln
 N∏
j=1

j

 =
N∑
j=1

ln j . (2.20)

Since N � 1, we may approximate the sum by an integral:

N∑
j=1

ln j ≈
∫ N

1
dx ln x

= x ln x− x
∣∣∣∣N
1

= N lnN −N + 1
⇒ ln(N !) = N lnN −N +O(lnN) . (2.21)

Choosing N as the upper boundary of the integral is merely an approximation, such
that the formula contains an error in the order of lnN . Inserting the Stirling formula
(eq. (2.19)) into eq. (2.18), we obtain

lnPN(m) = m ln p+ (N −m) ln(1− p) +N lnN −m lnm− (N −m) ln(N −m) .
(2.22)

PN(m) has a sharp peak at 〈m〉 for large N , as we know from the law of large numbers.
This also holds for the logarithm, lnPN(m). We perform a Taylor expansion around the
maximum m∗:

lnPN(m) = lnPN(m∗) + 1
2(m−m∗)2 d2

dm2 lnPN(m)
∣∣∣∣∣
m=m∗

+ . . . , (2.23)

where m∗ is defined by

0 = d
dm lnPN(m)

∣∣∣∣∣
m=m∗

,
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such that the linear term vanishes in the expansion. At the maximum, we have

0 = d
dm lnPN(m) = ln p

1− p + ln N −m
m

⇒ ln 1− p
p

= ln N −m
m

1− p
p

= N −m
m

1
p

= N

m
⇒ m∗ = Np . (2.24)

Thus, the maximum m∗ of our approximation for lnPN(m) coincides with the exact
mean 〈m〉 = Np calculated earlier (eq. (2.12)). As we might have expected, the mean
is equivalent to the most probable value in the limit of N → ∞. Using this result, the
second derivative reads

d2

dm2 lnPN(m)
∣∣∣∣∣
m=m∗

=
(
− 1
m
− 1
N −m

) ∣∣∣∣
m=m∗

= − 1
Np
− 1
N −Np

= − 1
Np
− 1
Nq

= −q + p

Npq

= − 1
Npq

= − 1
∆m2 , (2.25)

where q = 1 − p and the last line follows from the result for the variance ∆m2 of the
binomial distribution (eq. (2.13)). Finally, it is easily verified by inserting m∗ = Np into
eq. (2.22) that the constant term of the Taylor expansion vanishes, lnPN(m∗) = 0. The
expansion up to second order therefore reads

lnPN(m) = −(m−m∗)2

2∆m2 +O
(
m3
)
. (2.26)

Exponentiating both sides yields an approximation W (m) of the binomial distribution,

W (m) ∝ exp
(
−(m− 〈m〉)2

2∆m2

)
, (2.27)

where we replaced m∗ by 〈m〉. Note that by Taylor expanding the logarithm of the
binomial distribution instead of PN(m) itself, we obtained an exponential solution for
W (m) that is normalizable (such that

∫∞
−∞ dmW (m) = 1), as required for a probability

distribution. The normalized normal distribution W (m) is given by

W (m) = 1√
2π∆m2

exp
(
−(m− 〈m〉)2

2∆m2

)
. (2.28)

As a simplification of the binomial distribution, the normal distribution is valid in the
limit of N →∞ while p remains finite. It is fully determined by the mean 〈m〉 and the
variance ∆m2.
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2.5 Poisson distribution
For very large N � 1 but simultaneously p� 1, such that the product Np is finite, we
can simplify the binomial distribution in a different way. This case leads us to the Poisson
distribution. Let us break down the binomial distribution (eq. (2.9)) into parts,

PN(m) = N !
(N −m)!

1
m!

(
p

1− p

)m
(1− p)N . (2.29)

First, we approximate the factor (1− p)N by writing

(1− p)N = exp
[
N ln(1− p)

]
≈ e−Np , (2.30)

where we have Taylor expanded the logarithm up to first order, ln(1 + x) = x +O(x2).
Secondly, we use p� 1 to approximate(

p

1− p

)m
≈ pm . (2.31)

Lastly, we tackle the binomial coefficient:

N !
(N −m)! = exp

[
ln(N !)− ln((N −m)!)

]
∗≈ exp

[
N ln(N)−N − (N −m) ln(N −m) +N −m

]
= exp

[
N ln

(
N

N −m

)
+m ln (N −m)−m

]
= exp

[
−N ln

(
N −m
N

)
+m ln

(
N −m
N

)
+m lnN −m

]
= exp

[
−N ln

(
1− m

N

)
+m ln

(
1− m

N

)
+m lnN −m

]
†
≈ exp

[
m+O

(
m2

N

)
+O

(
m2

N

)
+m lnN −m

]
≈ exp [m lnN ] = Nm . (2.32)

Here we applied the Stirling formula at ∗ and used the Taylor series up to first order,
ln(1 + x) = x+O(x2), in the step marked by †. Putting things together, we arrive at an
approximation of the binomial distribution for finite Np,

PN(m) ≈ Nm 1
m!p

me−Np . (2.33)

For simplicity we define λ := Np. Then, the Poisson distribution is given by

W (m) = λm

m! e
−λ . (2.34)

This result turns out to be normalized: using N →∞ we show

N∑
m=0

W (m) ≈
∞∑
m=0

W (m) =
∞∑
m=0

λm

m! e
−λ = eλe−λ = 1 . (2.35)
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Expectation value. Let us calculate the expectation value of the Poisson distribution:

〈m〉 =
∞∑
m=0

mW (m)

= e−λ
∞∑
m=0

mλm

m!

= e−λ λ
∂

∂λ

∞∑
m=0

λm

m!

= e−λ λ
∂

∂λ
eλ

= e−λλeλ

= λ . (2.36)

As expected, the expectation value of the Poisson distribution, 〈m〉 = λ = Np, is identical
to the expectation value of the binomial distribution.

Example 2.11. Random walks on a computer

As we discussed, the theoretical position distribution of a random walker (after a certain
number of total steps) is given by the binomial distribution. Let us see how computer
simulations of random walks compare to the binomial, normal, and Poisson distributions.
Figure 2.1 illustrates the simulated (dots) and theoretical (red line) probability distribution
of the number of upward steps in an unbiased random walk of 20 steps. Based on a
sample of 100 random walks, the results on the left reveal substantial numerical deviations
from the binomial distribution due to the small sample size. Increasing the sample size to
104 (right side) leads to a clearer agreement between theory and experiment. Note that
for N = 20 steps with probability p = 0.5, the normal distribution (orange) is already very
close to the binomial distribution. The Poisson distribution (blue), on the other hand,
does not describe the data.
In fig. 2.2, we vary the number of steps N and probability p to demonstrate how this
changes the distributions. As we move from N = 20 (left) to N = 100 steps (center)
at fixed probability p = 0.5, the distribution becomes more sharply peaked. This agrees
with our finding that the mean deviation scales as N1/2, while the relative mean deviation
scales as N−1/2. If we keep N fixed at 100 steps and reduce the probability of an upward
step from p = 0.5 (center) to p = 0.03 (right), the simulation data shift from normally
distributed to Poisson-distributed. In other words, the binomial distribution now resembles
the Poisson distribution, whereas the normal distribution is inadequate for describing the
data.
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Figure 2.1: Random walk computer simulations vs. theoretical distributions for N = 20 steps and
probability p = 0.5. The black dots in the left panels show the simulated distribution based on a
sample of 100 random walks; on the right panels the sample size is 104. The red, orange, and
blue lines depict the binomial, normal, and Poisson distribution, respectively. Top panels: Linear
probability scale. Bottom: Same information as in the top panels but on a logarithmic probability
scale.
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Figure 2.2: Binomial, normal, and Poisson distributions vs. simulations for varying number of total steps
N and probability p. Top panels: Linear probability scale. Bottom: Same information but on a
logarithmic scale.
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2.6 Continuous density distributions
Previously, we have seen two different ways of normalizing a probability distribution. The
normalization of the normal distribution was carried out via integration from −∞ to
∞, whereas we demonstrated the normalization of the Poisson distribution by means of
a discrete sum over all m. In other words, we interpreted the normal distribution as a
continuous distribution but the Poisson distribution as a discrete distribution. In this
section, let us briefly address how discrete and continuous probability distributions relate.

In the continuous case, we have a continuous random variable x controlled by a density
distribution p(x) (e.g. the normal distribution). The normalization requirement reads∫ ∞

−∞
dx p(x) = 1 .

The moments2 of this density distribution are then calculated via

〈xn〉 :=
∫ ∞
−∞

dx xnp(x) .

More generally, the expectation value of any function f(x) is given by

〈f〉 :=
∫ ∞
−∞

dx f(x)p(x) . (2.37)

A discrete probability distribution pm may be written as a continuous density distribution
p(x) by summing over δ-distributions representing the outcomes xm, such that

p(x) =
∑
m

pmδ(x− xm) . (2.38)

The δ-distribution, as a reminder, is defined by its projection property,∫ ∞
−∞

dx f(x)δ(x− y) = f(y) .

We may switch between the continuous and the discrete description of the expectation
value 〈f〉 by inserting eq. (2.38) into eq. (2.37), which yields

〈f〉 =
∫ ∞
−∞

dx f(x)p(x)

=
∫ ∞
−∞

dx f(x)
∑
m

pmδ(x− xm)

=
∑
m

pm

∫ ∞
−∞

dx f(x)δ(x− xm)

=
∑
m

pmf(xm) . (2.39)

2.7 Characteristic function
Let us introduce the characteristic function G,

G(k) :=
〈
e−ikx

〉
=
∫

dx p(x) e−ikx . (2.40)

2The n-th moment of the distribution p(x) is defined as the expectation value 〈xn〉. For more about
moments, see section 2.7.



R. Netz: Statistical Physics and Thermodynamics 20

This is nothing but the Fourier transform of p(x). As we will see, the characteristic
function serves as a tool to quickly calculate moments and cumulants of a distribution.
Moments. The n-th derivative of G(k) is

dnG(k)
dkn =

∫
dx p(x) (−ix)n e−ikx .

Note that n-fold differentiation leads to a factor (−ix)n within the integral. Evaluating
the derivative at k = 0, we find

dnG(k)
dkn

∣∣∣∣∣
k=0

= 〈(−ix)n〉 = −in 〈xn〉 .

Thus, the n-th derivative of G(k) is directly linked to the n-th moment of the distribution
p(x). The characteristic function allows us to easily calculate all moments:

〈xn〉 = in
dnG(k)

dkn

∣∣∣∣∣
k=0

. (2.41)

In turn, moments of p(x) correspond to coefficients of the Taylor series of G(k),

G(k) =
∞∑
n=0

kn

n!
dnG(k)

dkn

∣∣∣∣∣
k=0

=
∞∑
n=0

(−ik)n
n! 〈xn〉 . (2.42)

In fact, it turns out that the logarithm of the characteristic function is much better for
characterizing probability distributions. Taking the logarithm has already proven to be
useful when we derived the normal distribution (see section 2.4). In many cases, the
logarithm is easier to work with. For example, the normal distribution is exponential,
p(x) ∝ exp[−(x− x∗)2]. Its logarithm, however, is simply a second-order polynomial:
ln p(x) ∝ (x− x∗)2.
Cumulants. In analogy to eq. (2.41), we define the n-th cumulant 〈xn〉c as

〈xn〉c := in
dn lnG(k)

dkn

∣∣∣∣∣
k=0

, (2.43)

which implies that

lnG(k) =
∞∑
n=1

(−ik)n
n! 〈xn〉c . (2.44)

How do moments and cumulants relate? We show this with the following derivation sketch.
First, we explicitly write the Taylor series in eq. (2.42),

G(k) = 1− ik 〈x〉 − k2

2
〈
x2
〉

+ ik3

6
〈
x3
〉

+ . . .︸ ︷︷ ︸
=:z

, (2.45)

where we label the underbraced term z and use the Taylor expansion of ln(1 + z) =
z − 1

2z
2 + 1

3z
3 − 1

4z
4 + . . . to find

lnG(k) = −ik 〈x〉 − k2

2
〈
x2
〉

+ k2

2 〈x〉
2 + . . . . (2.46)
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If we compare this with eq. (2.44), that is, we look at lnG(k) = −ik 〈x〉c− k2

2 〈x
2〉c+. . . and

compare coefficients of equal powers of k, we obtain the cumulants in terms of moments:

〈x〉c = 〈x〉
〈x2〉c = 〈x2〉 − 〈x〉2

〈x3〉c = 〈x3〉 − 3〈x2〉〈x〉+ 2 〈x〉3

. . . (2.47)

Note that the first cumulant corresponds to the mean, while the second cumulant cor-
responds to the variance ∆x2. Generally, cumulants are very useful for characterizing
probability distributions!

Example 2.12. Cumulants of the normal distribution

The normal distribution is given by eq. (2.28). According to eq. (2.40), the associated
characteristic function is

G(k) =
∫ ∞
−∞

dxW (x)e−ikx =
∫ ∞
−∞

dx√
2π∆2

exp
[
−ikx− (x− x∗)2

2∆2

]
,

where x∗ denotes the mean and ∆2 represents the variance. We solve the integral by
applying the technique called completing the square. In the first step, we shift the
integration variable by the mean, x = x̃ + x∗. (The infinite integration limits remain
unchanged; x∗ is finite.) This yields

G(k) =
∫ ∞
−∞

dx̃√
2π∆2

exp
[
−ikx∗ − ikx̃− x̃2

2∆2

]
.

Now we complete the square in the square brackets by rewriting

−ikx̃− x̃2

2∆2 = − 1
2∆2

(
x̃+ ik∆2

)2
− k2∆2

2 .

We transform variables again, such that x̂ = x̃+ ik∆2. This results in

G(k) =
∫ ∞
−∞

dx̂√
2π∆2

exp
[
−ikx∗ − 1

2∆2 x̂
2 − k2∆2

2

]

= e−ikx
∗− k

2∆2
2

∫ ∞
−∞

dx̂√
2π∆2

e−
x̂2

2∆2

= exp
[
−ikx∗ − k2∆2

2

]
. (2.48)

Based on eq. (2.43), the cumulants of the normal distribution are found by calculating
derivatives of lnG(k) = −ikx∗ − k2∆2

2 , evaluated at k = 0. Specifically, the first and
second cumulants are

d lnG(k)
dk = −ix∗ − k∆2 ⇒ 〈x〉c = 〈x〉 = i · (−ix∗) = x∗

d2 lnG(k)
dk2 = −∆2 ⇒ 〈x2〉c = 〈x2〉 − 〈x〉2 = −1 · (−∆2) = ∆2 , (2.49)
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as expected. Since lnG(k) is a quadratic function for the normal distribution (note that
the logarithm is easy to work with), we immediately know that all higher derivatives vanish.
Thus, all higher-order cumulants (n > 2) are zero; the normal distribution is characterized
entirely by the first two cumulants. This implies that non-zero higher-order cumulants
indicate deviations from the normal distribution.

2.8 Multi-dimensional probability distributions
A joint distribution of several random variables x1, x2, . . . , xn is determined by the multi-
dimensional probability density p(x1, x2, . . . , xn). Normalization requires that∫

dx1

∫
dx2 · · ·

∫
dxn p(x1, x2, . . . , xn) = 1 . (2.50)

To obtain the probability density for one of the variables, we must integrate over all other
random variables:

p(x1) =
∫

dx2 · · ·
∫

dxn p(x1, x2, . . . , xn) . (2.51)

Some refer to this projection process as the marginalization of the variables x2, . . . , xn:
we are interested in the probability of x1 regardless of the values of the other variables.
Furthermore, moments are generally of the form 〈xm1

1 . . . xmnn 〉. In this context, the
covariance,

cov(xj, xk) := 〈xjxk〉 − 〈xj〉 〈xk〉 (2.52)

plays an important role as a measure of the correlation of the two random variables xj
and xk. In the case that their joint distribution factorizes, i.e. p(xj, xk) = p(xj)p(xk), the
variables are independent of one another and the covariance vanishes:

〈xjxk〉 =
∫

dxjdxk xjxkp(xj)p(xk)

=
∫

dxj xjp(xj)
∫

dxk xkp(xk)

= 〈xj〉 〈xk〉 ⇒ cov(xj, xk) = 0 .

2.9 Central limit theorem
Consider a sum of random variables x1, x2, . . . , xm,

y =
m∑
i=1

xi
m

, (2.53)

where each random number xi follows the same probability distribution p(xi). What is
the distribution of y? The central limit theorem provides the answer. To gain an intuition
of what we are talking about, envision the following practical example. We will not make
any additional assumptions, so our results will be transferrable to other situations where
we ask about the sum of random variables.
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Example 2.13. Flight passenger weights

Let p(x) be the weight distribution of a single person. Then, what is the weight distribution
of 100 people? This question is important, for instance, when estimating before a flight
how much fuel the airplane must carry.

The average weight y of 100 individuals obeys the distribution W (y), given by

W (y) =
∫

dx1 . . . dxm p(x1) · · · p(xm) δ
(
y −

m∑
i=1

xi
m

)
. (2.54)

Here δ denotes the delta distribution. Note that we assume individual weights to be
uncorrelated, such that the multiplication theorem (eq. (2.3)) holds. For the n-th moment
we find

〈yn〉 =
∫

dy ynW (y)

=
∫

dy yn
∫

dx1 . . . dxm p(x1) · · · p(xm) δ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
∫

dy ynδ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
(

m∑
i=1

xi
m

)n

=
〈(

m∑
i=1

xi
m

)n〉
. (2.55)

The characteristic function of W (y) reads

G(k) =
∫

dy e−ikyW (y)

=
∫

dx1 . . . dxm p(x1) . . . p(xm)
∫

dy e−ikyδ
(
y −

m∑
i=1

xi
m

)

=
∫

dx1 . . . dxm p(x1) . . . p(xm) exp
[
−ik

∑
i

xi
m

]

=
∫

dx1 p(x1)e−ikx1/m ·
∫

dx2 p(x2)e−ikx2/m · · ·
∫

dxm p(xm)e−ikxm/m

=
[
g

(
k

m

)]m
, (2.56)

where g(k) =
∫

dx p(x)e−ikx represents the characteristic function of p(x). This implies
that

lnG(k) = m ln
[
g

(
k

m

)]
. (2.57)
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Consequently, the cumulants are given by

〈yn〉c = in
dn lnG(k)

dkn

∣∣∣∣∣
k=0

= inm
dn ln g(k/m)

dkn

∣∣∣∣∣
k=0

= inm1−n dn ln g(q)
dqn

∣∣∣∣∣
q=0

(2.58)

where we have substituted q = k
m

in the final step. Now, since

〈xn〉c = in
dn ln g(q)

dqn

∣∣∣∣∣
q=0

by definition, we obtain

〈yn〉c = m1−n 〈xn〉c . (2.59)

This is the central limit theorem. The only assumption made here is that the n-th moments
must exist. Importantly, the central limit theorem has the following implications.

• n = 1 ⇒ 〈yn〉c = 〈xn〉c ,
In terms of our example, the mean of the average weight of 100 people equals the
mean of the weight of an individual.

• n = 2 ⇒ 〈yn〉c = 1
m
〈xn〉c .

This underpins the law of large numbers: for the distribution W (y) of the sum, the
mean deviation becomes much smaller than for the individual distribution p(x), if
m is large. Regarding fuel planning on airplanes (example 2.13), this presents a
relieving result. While individual body weights might vary quite significantly among
airplane passengers, the total weight of all m = 100 passengers will not deviate much
from its mean, making safe estimates of needed fuel possible.

• n = 3 ⇒ 〈yn〉c = 1
m2 〈xn〉c ,

Since deviations from the normal distribution are characterized by cumulants of
order n ≥ 3 (as shown in example 2.12), this yields the key result of the central limit
theorem:

For large m, the distribution of y deviates very little from the normal distribution.

Regardless of the distribution p(xi) of the individual random variables xi, the sum of
a large number of these random variables will be approximately normally distributed.
Example 2.14 illustrates this result.

The central limit theorem offers an explanation why uncertainties may often be assumed
to be normally distributed, or Gaussian. Since uncertainties in real life often arise from a
combination of factors, their summed effect is often approximately Gaussian even if the
individual distributions of the contributing errors are not.
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Example 2.14. Central limit theorem in simulation

To see the central limit theorem in action, let us explore what happens when we sum
randomly generated numbers on a computer.
Consider a random variable x with a uniform probability distribution in the interval [0, 1),
that is,

p(x) =

1 for 0 ≤ x < 1
0 else.

This distribution has a mean 〈x〉 =
∫ 1

0 dx x = x2

2

∣∣∣1
0

= 1
2 and a second moment 〈x2〉 =∫ 1

0 dx x2 = x3

3

∣∣∣1
0

= 1
3 , leading to the variance ∆x2 = 〈x2〉 − 〈x〉2 = 1

12 .

First, we numerically draw N random numbers from the uniform distribution p(x). Fig. 2.3
shows the experimental distributions for 100 draws, 104 draws, and 106 draws, respectively.
The data is binned in 100 equidistant bins. At N = 100 draws, we see substantial
fluctuations due to the small sample size. As we increase the number of draws, the
experimental distribution becomes more uniform. The normal distribution (orange line),
which we include for reference, clearly does not describe the distribution of x.
What does the distribution of a sum y = 1

2(x1 + x2) of two random numbers x1 and
x2, each drawn from the uniform distribution p(x), look like? This case (m = 2) is
demonstrated in the center panel of fig. 2.4 based on 104 realizations. We see that the
distribution takes a triangular shape (why?). The right panel of fig. 2.4 shows the case
m = 3 (i.e. y = 1

3(x1 + x2 + x3)). Here, the distribution already looks remarkably like a
normal distribution with mean 〈y〉 = 1

2 and variance 〈y2〉c = 1
m
· 1

12 = 1
36 , as predicted by

the central limit theorem.
Finally, fig. 2.5 displays simulation results for sums of m = 100, 1000, and 104 random
variables. The simulation data are well approximated by a normal distribution. In
accordance with the central limit theorem, the distribution becomes more sharply peaked
around the mean 〈y〉 = 1

2 as m increases, reflecting that the variance of y is proportional
to 1

m
.
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Figure 2.3: Drawing random numbers from a uniform distribution on a computer. The plots show the
probability distribution of the random variable x based on N = 100 (left), 104 (center), and 106

(right) draws, where the blue dots represent simulation data binned in 100 equidistant bins. The
orange line represents the normal distribution for reference.
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Figure 2.4: Probability distributions of sums of m random numbers. Left: Same as center panel of fig.
2.3 (m = 1). Center: Sum of m = 2 random numbers xi, y = 1

2 (x1 + x2). Right: Sum of m = 3
random numbers xi. Blue dots represent numerical simulation data (based on 104 realizations
and binned into 100 bins), while the orange curve shows the analytical normal distribution. The
bottom panels display the same information as the respective top panels but on a logarithmic
probability scale.
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Figure 2.5: Probability distributions for m = 100, 103, 104. Similar to fig. 2.4, but this time summing
m = 100 (left), 103 (center), and 104 (right) uniformly distributed random numbers.
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3 Statistical Mechanics

Having established the necessary mathematical basics, this chapter brings us to the
core of the lecture. Starting with a summary of classical mechanics, we introduce a
statistical description of physical systems with a large number of components. This
leads from microscopic properties to a macroscopic formulation where the Boltzmann
distribution determines the probability of energy states. As fundamental concepts of
Statistical Mechanics, we derive three statistical ensembles – the microcanonical ensemble,
the canonical ensemble, and the grand canonical ensemble. Throughout the chapter, the
ideal gas serves as a paradigmatic model to calculate and illustrate the relations we obtain.

3.1 Recap: Classical mechanics
Before introducing key concepts of Statistical Mechanics, let us recapitulate some funda-
mentals of classical mechanics. Newton’s equation of motion in one dimension is

mẍ(t) = F (x, t) , (3.1)

where the conservative force F can be extracted from a – generally time-dependent –
potential V according to

F (x, t) = −∂V (x, t)
∂x

. (3.2)

In terms of the momentum p = mẋ, eqs. (3.1) and (3.2) yield ṗ+ ∂V
∂x

= 0 as well as

ṗ = d
dt
(
mẋ(t)

)
= d

dt
∂

∂ẋ

(
mẋ2

2

)

= d
dt
∂T

∂ẋ
,

where T = mẋ2/2 represents the kinetic energy. Thus, we may rewrite the equation of
motion (3.1) as

d
dt
∂T

∂ẋ
+ ∂V

∂x
= 0 . (3.3)

We define the Lagrange function L,

L(x, ẋ, t) := T (ẋ)− V (x, t) , (3.4)
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and rewrite the equation of motion in terms of L to obtain the Euler-Lagrange equation,

d
dt
∂L(x, ẋ, t)

∂ẋ
− ∂L(x, ẋ, t)

∂x
= 0 . (3.5)

Moreover, let us define the action S,

S :=
∫ t1

t0
dt L(x(t), ẋ(t)) , (3.6)

where, for the moment, we have skipped the explicit time dependence of L. The action is a
functional, i.e. a function of a function. For a functional F [x(t)], its functional derivative
is defined as

δF [x(·)]
δx(t̃) := F [x(·) + εδ(· − t̃)]− F [x(·)]

ε

∣∣∣∣∣
ε→0

. (3.7)

Thus the functional derivative of the action reads
δS[x(·), ẋ(·)]

δx(t̃) =
∫ t1

t0
dt
[
∂L

∂x
δ(t− t̃) + ∂L

∂ẋ

d
dtδ(t− t̃)

]
∗=
∫ t1

t0
dt
[
∂L

∂x
− d

dt
∂L

∂ẋ

]
δ(t− t̃)

= ∂L

∂x(t̃) −
d
dt̃

∂L

∂ẋ(t̃)
!= 0 . (3.8)

Here the step marked by ∗ results from partial integration, where we used that t0 < t̃ < t;
hence the boundary terms disappear. In the last line, we inserted the Euler-Lagrange
equation. The result is Hamilton’s principle which states that a solution of the Euler-
Lagrange equation extremizes the action.

The Lagrangian formalism has proven to be very useful for problems with constraints. In
Statistical Mechanics, however, the Hamiltonian formalism turns out more suitable. To
switch from Lagrange to Hamilton, we perform a Legendre transform which replaces ẋ in
L by the momentum p,

p(t) = mẋ(t) = ∂T (ẋ)
∂ẋ

= ∂L(x, ẋ, t)
∂ẋ

. (3.9)

The Legendre transform yields the Hamilton function H,

H(x, p, t) = ẋp− L(x, ẋ, t) . (3.10)

Note that H does not depend on ẋ. To see this explicitly, let us write down the total
differential1 of the Hamilton function,

dH(x, ẋ, p, t) = ∂H
∂x

∣∣∣∣∣
ẋ,p,t

dx+ ∂H
∂ẋ

∣∣∣∣∣
x,p,t

dẋ+ ∂H
∂p

∣∣∣∣∣
x,ẋ,t

dp+ ∂H
∂t

∣∣∣∣∣
x,ẋ,p

dt

= − ∂L

∂x

∣∣∣∣∣
ẋ,p,t

dx+ p dẋ− ∂L

∂ẋ

∣∣∣∣∣
x,p,t

dẋ
︸ ︷︷ ︸

=0

+ẋ dp− ∂L

∂t

∣∣∣∣∣
x,ẋ,p

dt

= dH(x, p, t) . (3.11)

1The total differential of a function f(x, y) is defined as df(x, y) = ∂f
∂x

∣∣∣
y

dx+ ∂f
∂y

∣∣∣
x

dy.
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Due to the Legendre transform, the ẋ-dependence cancels2 (the underbraced term vanishes
according to eq. (3.9)) and the three remaining variables are (x, p, t). In general, Legendre
transforms can be used to change independent variables of functions. Eq. (3.11) now leads
to

dH(x, p, t) = −ṗ dx+ ẋ dp− ∂L

∂t
dt , (3.12)

where ṗ = ∂L/∂x follows from the Euler-Lagrange equation (3.5). A comparison with the
general form for the total differential,

dH(x, p, t) = ∂H

∂x

∣∣∣∣∣
p,t

dx+ ∂H

∂p

∣∣∣∣∣
x,t

dp+ ∂H

∂t

∣∣∣∣∣
x,p

dt , (3.13)

yields the Hamilton equations,

∂H
∂p

= ẋ ,
∂H
∂x

= −ṗ , ∂H
∂t

= −∂L
∂t

. (3.14)

These equations completely specify the dynamics of a system. By calculating the total
time derivative of the Hamilton function using the chain rule,

dH(x(t), p(t), t)
dt = ∂H

∂x

dx
dt + ∂H

∂p

dp
dt + ∂H

∂t

= −ṗẋ+ ẋṗ+ ∂H
∂t

⇒ dH
dt = ∂H

∂t
, (3.15)

we see that if the potential is constant in time such that the Hamiltonian H is not explicitly
time-dependent, i.e. ∂H

∂t
= 0, then H is a conserved quantity. But what is H physically?

Returning to the Legendre transform, we find

H = pẋ− L
= mẋ2 − (T − V )
= 2T − T + V

= T + V . (3.16)

Thus, the Hamiltonian represents the total energy! In a time-independent potential, i.e.
for ∂H

∂t
= 0, the total energy is conserved.

After this brief summary, let us get started with Statistical Mechanics.

3.2 Liouville’s theorem
A gas of N atoms is completely specified by 3N position coordinates q1, . . . , q3N and
3N momentum coordinates p1, . . . , p3N . These variables constitute a 6N -dimensional

2Even though ẋ still appears in the total differential (3.11) in the term ẋdp, it is not an independent
variable of H anymore.
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coordinate space termed phase space, or Γ-space. A point in phase space defines a
microstate. It moves according to the canonical Hamilton equations,

q̇i(t) = ∂H(q3N , p3N)
∂pi

(3.17)

ṗi(t) = −∂H(q3N , p3N)
∂qi

, (3.18)

where i = 1, . . . , 3N (giving rise to 6N equations) and q3N abbreviates q1, q2, . . . , q3N .
Typically, we assume that H depends only on q3N and p3N , not on time t, ṗ, etc. Then,

dH
dt = ∂H

∂t
= 0 .

As shown in the previous section, this implies conservation of total energy H. Therefore,
with given initial conditions, eqs. (3.17) and (3.18) uniquely determine q3N(t) and p3N(t)
for all times t. This also means that q̇3N (t) and ṗ3N (t) are unique functions, which brings
about the consequence that trajectories in phase space never cross. Indeed, if a trajectory
would cross itself in a certain point, there would exist two different ways to move on from
that point – in contradiction with the uniqueness of solutions. Closed curves, however, are
possible and describe periodic motion.

In Statistical Mechanics, where we deal with large systems, following 6N coordinates
around is neither feasible nor worthwhile; it is simply too much information. But we do not
need all details because not all microstates have distinct physical characteristics. Imagine,
for example, a gas composed of N identical particles. Then all N ! possible permutations
describe identical systems but represent different points in phase space! Many microstates
are equivalent and lead to the same macroscopic properties such as temperature, pressure,
total energy, etc. In other words, one macrostate characterized by these “coarse-grained”
quantities can be realized by a vast number of microstates. This motivates a probabilistic
description of the problem. We assign each microstate a probability ρ(q3N , p3N , t). The
probability density can be normalized such that∫

d3Nq d3Np ρ(q3N , p3N , t) = 1 , (3.19)

where, in short notation, d3Nq = dq1 · · · dq3N . Thus, we may calculate the expectation
value of any observable A, e.g. pressure or internal energy, according to

〈A(t)〉 =
∫

d3Nq d3Np A(q3N , p3N) ρ(q3N , p3N , t) . (3.20)

A probability distribution ρ in phase space is also called an ensemble, and the expectation
value in eq. (3.20) is sometimes termed ensemble average. We may think of an ensemble
as a collection of “mental copies” of the given system, each of which represents a possible
microstate the system could be in under the constraints of a given macrostate. This
powerful interpretation, introduced by Gibbs, sets the conceptual foundation for much of
what will follow in this lecture. We will discuss different types of ensembles soon.

What are the properties of the density distribution ρ, and how does it evolve in time? A
microstate (q3N , p3N), with probability ρ(q3N , p3N , t) at time t, moves along a completely
determined trajectory according to the Hamilton equations (3.17), (3.18). Since probability
is conserved over time when integrating over the entire phase space (there are no sources or
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sinks of microstates), ρ must obey a so-called conservation or balance equation. Consider
a fixed volume Ω in phase space: the change in probability ρ integrated over Ω must be
balanced by a probability flux through the surface S(Ω) of the volume Ω. In mathematical
terms, we write this as

− d
dt

∫
Ω

d3Nq d3Np ρ(q3N , p3N , t) =
∫
S(Ω)

ds ~n(s) · ~v(s)ρ(s, t) , (3.21)

where ~v(s) = (q̇1, . . . , q̇3N , ṗ1, . . . , ṗ3N ) denotes the 6N -dimensional velocity in phase space,
s is the surface element, and ~n(s) denotes the surface normal on S (pointing outwards).
Using Gauss’s theorem, sometimes referred to as the divergence theorem, we rewrite eq.
(3.21) as

−
∫

Ω
d3Nq d3Np

∂

∂t
ρ(q3N , p3N , t) =

∫
Ω

d3Nq d3Np ~∇ ·
(
~v(q3N , p3N) ρ(q3N , p3N , t)

)
. (3.22)

Here ~∇ represents the 6N -dimensional gradient operator,

~∇ =
(
∂

∂q1
, . . . ,

∂

∂q3N
,
∂

∂p1
, . . . ,

∂

∂p3N

)
.

Note that we could pull the time derivative inside the volume integral since we assume
that Ω remains fixed in time. Rearranging eq. (3.22), we get

∫
Ω

d3Nq d3Np

(
∂

∂t
ρ(q3N , p3N , t) + ~∇ ·

(
~v(q3N , p3N) ρ(q3N , p3N , t)

))
= 0 . (3.23)

We may choose the time-independent volume Ω arbitrarily, which implies that eq. (3.23)
can only hold true for any test volume Ω if the integrand vanishes. This requirement
results in an equation of continuity for ρ,

−∂ρ
∂t

= ~∇ · (~vρ)

=
3N∑
i=1

[
∂

∂qi
(q̇iρ) + ∂

∂pi
(ṗiρ)

]

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi
+ ρ

(
∂q̇i
∂qi

+ ∂ṗi
∂pi

)
︸ ︷︷ ︸

=0

]
, (3.24)

where we know from the Hamilton equations (3.17), (3.18) that the underbraced term
must vanish:

∂q̇i
∂qi

+ ∂ṗi
∂pi

= ∂

∂qi

∂H
∂pi
− ∂

∂pi

∂H
∂qi

= 0 ,

according to Schwarz’s theorem about the symmetry of partial derivatives. This leads to
the Liouville equation,

−∂ρ(q3N , p3N , t)
∂t

=
3N∑
i=1

[
q̇i
∂

∂qi
+ ṗi

∂

∂pi

]
ρ(q3N , p3N , t) . (3.25)
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Defining the Liouville operator L̂ := ∑3N
i=1

[
q̇i

∂
∂qi

+ ṗi
∂
∂pi

]
, we may write this compactly as3

−∂ρ
∂t

= L̂ρ . (3.26)

The Liouville equation describes how ρ changes in time at a fixed position in phase space
(q1, . . . , q3N , p1, . . . , p3N ) (Eulerian description). We might ask ourselves: how does ρ evolve
in time when we “go with the flow” by moving along with the trajectory as it moves
through phase space (Lagrangian description)? Using the chain rule, we find that

dρ(q3N(t), p3N(t), t)
dt = ∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi

dqi
dt + ∂ρ

∂pi

dpi
dt

)

= ∂ρ

∂t
+ L̂ρ

⇒ dρ
dt = 0 . (3.27)

This is Liouville’s theorem. It states that the density ρ is (locally) constant when moving
along with a trajectory through phase space. Essentially, ρ propagates through phase
space like an incompressible fluid.

3.3 Postulate of equal a priori probability
If we imagine that a trajectory visits every point in phase space compatible with energy
conservation (H = const.), then the simplest distribution compatible with Liouville’s
theorem (eq. (3.27)) is

ρ(~q, ~p, t) =

const. U ≤ H(~q, ~p) ≤ U + ∆
0 otherwise.

(3.28)

Here we allow the total energy H to lie in a small interval [U,U + ∆]. According to this
argument – which only assumes that a trajectory may, in principle, visit every point in
phase space without crossing itself –, every possible microstate which results in total
energy U would be equally probable. This motivates the postulate of equal a priori
probability, which states that a system with total energy U is equally likely to be in any
of the compatible microstates. The distribution in eq. (3.28) defines the microcanonical
ensemble, which we will discuss in further detail soon. Since the total energy is fixed, the
microcanonical ensemble describes an isolated system.
Remark. If we more generally consider an ensemble where different energies are populated
with different probabilities, that is,

ρ(~q, ~p, t) = ρ(H(~q, ~p), t) , (3.29)

3As a side remark, we mention that the Liouville operator may be used to formally solve the Liouville
equation (3.25). Given an initial distribution ρ(~q, ~p, 0), the solution is ρ(~q, ~p, t) = exp

[
−L̂t

]
ρ(~q, ~p, 0).

This is an extremely powerful method, since it provides an exact solution of the many-body problem!
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then the Liouville equation tells us that

−∂ρ(~q, ~p, t)
∂t

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]

=
3N∑
i=1

[
∂H
∂pi

∂ρ

∂H
∂H
∂qi
− ∂H
∂qi

∂ρ

∂H
∂H
∂pi

]
= 0 , (3.30)

where we have used the Hamilton equations and the chain rule. This implies that ρ cannot
be explicitly time-dependent:

ρ(H(~q, ~p), t) = ρ(H(~q, ~p)) . (3.31)

Consequently, a distribution that depends on the Hamiltonian only and not on phase
space variables directly is stationary. The statement is true for arbitrary systems and for
a general Hamiltonians H(~q, ~p). This general result holds also for the special case of the
microcanonical ensemble (eq. (3.28)), for which ρ(H(~q, ~p)) is a δ function: ρ(H(~q, ~p)) ≈
δ(H(~q, ~p)− U).

3.4 Concepts of entropy and temperature
The “number” of microstates within the energy range U < H(~q, ~p) < U + ∆ is given by
the volume integral

Γ(U, V,N) =
∫
U<H<U+∆

d3Nq d3Np 1 , (3.32)

which quantifies the allowed volume in phase space of a system with that energy. This
relates to the density of states: the total number of states with energy H below U is

Σ(U) =
∫
H<U

d3Nq d3Np 1 . (3.33)

Thus, we may write the number of allowed microstates Γ as

Γ(U) = Σ(U + ∆)− Σ(U)
≈ Σ(U) + ∆Σ′(U)− Σ(U)
= ∆Σ′(U) , (3.34)

where we used the Taylor approximation up to first order, assuming that ∆� U . Based
on this, we define the density of states ω(U) for a certain energy U as

ω(U) := lim
∆→0

Γ(U)
∆ = Σ′(U) , (3.35)

Σ(U) =
∫ U

−∞
dU ′ ω(U ′) . (3.36)

As we will see later, it often does not make a difference whether we use ω(U) or Γ(U)/∆;
the energy uncertainty ∆ is negligible for all practical purposes.
Two Coupled Systems. Consider now an isolated system, characterized by fixed total
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1 2

Figure 3.1: Two coupled subsystems (1 and 2) isolated from the environment. The subsystems may exchange
energy, volume, and particles between each other.

energy U , particle number N , and volume V . Imagine that we insert a dividing plane
which divides the system into two subsystems. The dividing plane lets energy pass from
one side to the other; however, neither particles nor volume may pass through. Thus,
subsystems 1 and 2 have fixed particle numbers N1, N −N1 as well as fixed volumes V1,
V −V1 but fluctuating energies U1, U −U1 under the constraint U1 ≤ U (see fig. 3.1). The
total number of microstates Γ for the compound system at energy U is calculated as

Γ(U, V,N) =
∫ U

0
dU1 Γ1(U1) · Γ2(U − U1) . (3.37)

Note that for a fixed energy U1, the number of microstates Γ of the total system equals
the product Γ1 · Γ2 of the number of microstates of the subsystems. This is founded upon
the multiplication theorem (see eq. (2.3)). Since the subsystems may exchange energy, we
must furthermore integrate over all possible energies U1 (from 0 to U).

Let us now introduce a new function which we denote as S(U). The reason why we do this
will become clear later; it will turn out that S represents the entropy in Thermodynamics.
We define

S(U)
kB

:= ln(Γ(U)) . (3.38)

Let us use this function to explore our example of a compound system further. Inserting
eq. (3.37) for Γ(U), we obtain

S(U)
kB

= ln
(∫ U

0
dU1 e

[S1(U1)+S2(U−U1)]/kB

)
. (3.39)

Assuming that the integrand has a maximum at energy U∗1 , the sum S1 +S2 is also maximal
at U∗1 because the exponential is a monotonic equation. Therefore, we may Taylor expand
the sum around its maximum,

S1(U1) + S2(U − U1) ≈ S1(U∗1 ) + S2(U − U∗1 )
+ (U1 − U∗1 )

[
S ′1(U∗1 )− S ′2(U − U∗1 )

]
︸ ︷︷ ︸

=0

+ (U1 − U∗1 )2

2
[
S ′′1 (U∗1 ) + S ′′2 (U − U∗1 )

]
+ . . . , (3.40)

where the first derivative vanishes at the maximum. Re-inserting the Taylor series up to
second order into eq. (3.39) yields

S(U)
kB

= ln
(
e[(S1(U∗1 )+S2(U−U∗1 )]/kB

∫ ∞
−∞

dU1 e
(U1−U∗1 )2[S′′1 (U−U∗1 )+S′′2 (U−U∗1 )]/(2kB)

)
.
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Here we have pulled the U1-independent part in front of the integral. Note that we have
extended the integration boundaries to range from −∞ to ∞, which is permissible if the
maximum is sharp, as we will show further below. The integral is thus a Gaussian integral
for which the solution is known:

∫∞
−∞ dx e−a(x+b)2 =

√
π/a. Performing the integral, we

find

S(U) = S1(U∗1 ) + S2(U − U∗1 ) + kB ln
√
− 2πkB
S ′′1 (U∗1 ) + S ′′2 (U − U∗1 ) , (3.41)

where we assume that S ′′1 (U1∗) +S ′′2 (U −U∗1 ) < 0 (which will be shown to hold true). From
this result we may draw several fundamental conclusions:

• The function S(U) is extensive. The entropy of the total system equals the sum of
the individual entropies of the two subsystems. In other words, S(U) is proportional
to the system size N . This statement is true because in fact the square root term in
eq. (3.41) becomes negligible for large N . To see this, imagine that each particle in
a system contributes an equal share of entropy to the entropy S of the whole system,
such that S = Ns, where the lower-case s denotes the entropy per particle. We can
similarly define an energy per particle u such that U = Nu (s and u are independent
of N). This implies

d2S(U)
dU2 = d2Ns(u)

d(Nu)2 = 1
N

d2s(u)
du2 ⇒ S ′′(U) ∼ 1

N
.

Thus, the second derivative of S(U) scales like 1/N , and the square root term
consequently scales according to

kB ln
√
− 2πkB
S ′′1 (U∗1 ) + S ′′2 (U − U∗1 ) ∼ ln

√
N .

For large N , we have N � ln
√
N , such that the square root term can be neglected

compared to the leading term and S(U) is an extensive function, i.e.,

S(U) ≈ S1(U∗1 ) + S2(U − U∗1 ) . (3.42)

Eq. (3.42) is exact in the thermodynamic limit (N →∞).

In Thermodynamics, we generally distinguish between extensive quantities which
scale with the system size N and intensive quantities which are independent of N .
Other examples of extensive variables include the total system the volume V , energy
U , and obviously N . Contrarily, the temperature T or pressure P belong to the
intensive variables.

• In equilibrium, S(U) is maximal. As follows from eq. (3.40), the function S(U) ≈
S1(U∗1 )+S2(U−U∗1 ) is maximized with respect to the free variable U1. Since S relates
to the phase space volume via (3.38), maximizing S also maximizes Γ. Therefore,
the composite system automatically goes to the state where U1 = U∗1 because this
is the most probable one in equilibrium. This corresponds to the Second Law of
Thermodynamics: in equilibrium, the entropy S is maximal with respect to all “free”
variables (under all constraints imposed by the macrostate).



37 Statistical Mechanics

• Systems in contact exchange energy until they reach thermal equilibrium. In
equilibrium, where the energy of subsystem 1 has reached U1 = U∗1 , we find based
on eq. (3.40) that S ′(U) is the same for both subsystems:

dS1(U∗1 )
dU∗1

= dS2(U∗2 )
dU∗2

,

where U∗2 = U − U1∗. This suggests that in equilibrium the derivative S ′ takes a
constant value, which we define as

1
T

:= dS(U)
dU . (3.43)

You may have heard of T ; in Thermodynamics it is called temperature. We deduce
that systems in thermal contact must have the same temperature (after sufficient time,
when equilibrium is reached). Otherwise, if two systems in thermal contact do not
have the same temperature, they exchange energy until the two derivatives dS1/dU∗1
and dS2/dU∗2 are the same. This corresponds to the Zeroth Law of Thermodynamics
(see chapter 4).

3.5 Canonical ensemble
As in the previous section, let us consider two systems in thermal contact (fig. (3.1)).
Their combined energy U , particle number N , and volume V are fixed. The particle
number and volume of system 1, N1 and V1, are also fixed. However, the systems may
exchange energy, such that U1 may fluctuate. Once again, the “number” of microstates for
a given energy U1 is given by the multiplication theorem,

Γ(U,U1) = Γ1(U1) · Γ2(U − U1) . (3.44)

We now argue the following. If a microstate of system 1 allows for a relatively high
number of microstates of the composite system, then that microstate of system 1 will
have a relatively high probability. In other words, the number of microstates of the
composite system per microstate of system 1 equals the (non-normalized) probability of
that microstate of system 1:

ρ(U1, N1, V1) = Γ(U1, V1, N1) · Γ(U − U1, V − V1, N −N1)
Γ(U1, V1, N1)

= Γ(U − U1, V − V1, N −N1)

= exp
[ 1
kB
S(U − U1, V − V1, N −N1)

]
= exp

[
1
kB
S(U)− U1

kB
S ′(U) + U2

1
2kB

S ′′(U) + . . .

]
, (3.45)

where ρ is the non-normalized probability of a microstate of system 1. Here we used eq.
(3.38) and expanded S(U − U1, V − V1, N −N1) around U1 = 0. Let us now assume that
system 2 is much larger than system 1, i.e. N2 = N −N1 � N1, V2 = V − V1 � V1, and
U2 = U − U1 � U1. Then, the second-order term of the Taylor expansion is negligible
because

U2
1

2kB
∂2S(U)
∂U2 ∼ N2

1
N
→ 0 (N1 � N) .
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Similar arguments hold for higher-order terms of the expansion. Furthermore, we know
from the previous section that

dS(U)
dU = 1

T
,

where T is the temperature of system 2. Inserting this into eq. (3.45), we obtain the
Boltzmann distribution,

ρ(U1) ∝ exp
(
− U1

kBT

)
. (3.46)

Here we simply discarded the constant factor eS(U)/kB coming from the zeroth order of the
expansion in eq. (3.45), as the distribution is not normalized anyway.

Above we assumed that system 2 is much larger than system 1, such that N −N1 ≈ N .
In that case, we call system 2 a reservoir or heat bath – a system which is so large that
its extensive properties like N, V, U essentially do not change when put in contact with
a small system like system 1. The Boltzmann distribution, sometimes termed canonical
distribution, thus gives the probability distribution for a closed system that may exchange
energy with a reservoir. It defines the so-called canonical ensemble which is characterized
by the macroscopic variables N, V, T . The fixed temperature T of the reservoir controls
the energy of the closed system. All states are possible, even states with extremely high
energy U1, but they will be extremely unlikely unless the heat bath is very, very hot.
Expectation values and variances. We now want to calculate the mean energy and its
variance for a system governed by the canonical distribution ρ(Ui). Let us suppose the
system has discrete states i with energy Ui. Then the expectation value of the energy
reads

〈U〉 =
∑
i Ui ρ(Ui)∑
i ρ(Ui)

=
∑
i Uie

− Ui
kBT∑

i e
− Ui
kBT

. (3.47)

It is convenient to define β := 1
kBT

for increased simplicity. In terms of β, we write

〈U〉 =
∑
i Uie

−βUi∑
i e−βUi

=
− ∂
∂β

∑
i e
−βUi∑

i e−βUi

= − ∂

∂β
ln
(∑

i

e−βUi
)
, (3.48)

where, in the final step, we have used the chain rule “backwards” to arrive at the logarithm.
Thus, the expectation value of the energy in the canonical ensemble is given by

〈U〉 = − ∂

∂β
lnZ , Z =

∑
i

e−βUi . (3.49)

Here we introduced the partition function Z. It corresponds to the sum of Boltzmann
weights e−βUi over all microstates. The partition function is the central object in statistical
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mechanics; it allows to calculate any expectation values, variances, etc. by means of
suitable derivatives. To obtain the variance of the energy, for example, we calculate

∂2

∂β2 ln(Z) = − ∂

∂β
〈U〉

= − ∂

∂β

(∑
i Uie

−βUi∑
i e−βUi

)

=
∑
i U

2
i e
−βUi∑

i e−βUi
+
∑
i Uie

−βUi

(∑i e−βUi)2
∂

∂β

∑
i

e−βUi

=
∑
i U

2
i e
−βUi∑

i e−βUi
− (∑i Uie

−βUi)2

(∑i e−βUi)2

= 〈U2〉 − 〈U〉2 = ∆U2 . (3.50)

Connection to Thermodynamics. The expectation value of the energy 〈U〉, as derived
here from Statistical Mechanics, is a macroscopic observable that we would also deal with
in Thermodynamics. How does the variance, which describes deviations from the mean,
connect to Thermodynamics?

Remembering that β depends on the temperature T , the variance can be written as

〈U2〉 − 〈U〉2 = − ∂

∂β
〈U〉

= −∂T
∂β

∂

∂T
〈U〉

= −
(
∂β

∂T

)−1
∂

∂T
〈U〉

= kBT
2 ∂

∂T
〈U〉 . (3.51)

Moreover, we introduce the heat capacity CV at constant volume as the derivative of energy
by temperature,

CV = ∂ 〈U〉
∂T

∣∣∣∣∣
V,N

. (3.52)

The heat capacity quantifies how the system’s energy increases with increasing temperature
when the system volume is held fixed. More specifically, it states the amount of heat
needed to increase the temperature by one Kelvin. CV is always positive and extensive;
we need to double the heat to warm up double the amount of material!

Example 3.1. Heating water

At 15XC, the specific heat capacity of water is C̃V = 4.2 kJ
kg K . So to heat up 1 kg of

water from T = 0XC (273 K) to T = 100XC (373 K), we need roughly 420 kJ of energy
(neglecting for simplicity that C̃V is temperature-dependent). A 1000 W heater adds 1
kJ per second and would thus take 7 minutes to bring water from 0XC to boiling. In
comparison, the same amount of energy would suffice to lift up a weight of 1 kg by 42
kilometers (1 kg excerts 10 N; 1 J=1 N·m; 420 kJ=10 N · 42 km). This demonstrates
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that heat is costly, requiring solutions to avoid wasting precious energy for heating. In
chapter 4 we will return to this issue in the context of heat pumps.

Coming back to the variance, we now combine eqs. (3.51) and (3.52) to obtain

〈U2〉 − 〈U〉2 = kBT
2CV . (3.53)

Accordingly, energy deviations are given by

∆U =
√
〈U2〉 − 〈U〉2 = T

√
kBCV , (3.54)

and the relative energy deviations become

∆U
U

= T
√
kBCv
U

∼
√
N

N
∼ 1√

N
→ 0 (N →∞) . (3.55)

Once again, this result reflects the law of large numbers: as N →∞, relative deviations
in the energy approach zero. In the thermodynamic limit, the canonical ensemble (where
the energy may fluctuate) and the microcanonical ensemble (where the energy is fixed)
are equivalent because fluctuations around the mean vanish. Thermodynamics does not
know about these fluctuations, but Statistical Mechanics does! Variances are determined
by so-called response functions (see section 4.3 – which is a consequence of the general
fluctuation-dissipation theorem).

Concept of free energy
We have introduced the canonical partition function Z(T, V,N) = ∑

i e
−βHi , where β =

(kBT )−1 and the index i sums over all microstates. Calculating or approximating this
sum is difficult. Therefore, we look for an expression of the partition function which
circumvents the explicit summation over microstates. Let us insert unity, i.e.

1 =
∫ ∞
−∞

dU δ(U −Hi) , (3.56)

into the expression of the partition function:

Z =
∑
i

∫ ∞
−∞

dU δ(U −Hi)e−βHi

=
∫ ∞
−∞

dU
∑
i

δ(U −Hi)e−βU

=
∫ ∞
−∞

dU ω(U)e−βU

=
∫ ∞
−∞

dU elnω(U)−βU . (3.57)

Here ω(U) := ∑
i δ(U −Hi) denotes the density of states, which we may interpret as the

number of states with energy U . To verify this, consider the following “intuitive proof.”
The total number of states with energy Hi < U is given by the function Σ(U, V,N), and
should likewise be found by summing 1 over all possible states. Using eq. (3.36), we show
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that4

Σ(U) =
∫ U

−∞
dU ′ ω(U ′)

=
∫ U

−∞
dU ′

∑
i

δ(U ′ −Hi)

=
∑
i

Hi<U

∫ ∞
−∞

dU ′ δ(U ′ −Hi)

=
∑
i

Hi<U

1 , (3.58)

as required. In section 3.4, we defined the entropy S(U) as

S(U)
kB

:= ln Γ(U) = ln(ω(U)∆)

⇒ S(U)
kB

= lnω(U) +���:const.ln ∆ . (3.59)

Here we simply discard the non-extensive term ln ∆ because it merely adds an irrelevant
constant. Therefore we can define the entropy based on the number of states or on the
density of states. Note that ω(U) has units of inverse energy; as will be demonstrated in
section 3.8 this is of no concern either. Now, inserting lnω(U) = S(U)/kB into eq. (3.57),
the partition function reads

Z =
∫ ∞
−∞

dU e−β[U−TS(U)] . (3.60)

We define F (U) := U − TS(U), yielding

Z =
∫ ∞
−∞

dU e−βF (U) =
∫ ∞
−∞

dU ρ(U) , F = U − TS . (3.61)

This expression does not include a sum over all microstates anymore. The partition
function is now given in terms of the free energy F , which is the relevant potential in the
canonical ensemble.

To learn more about the free energy, let us Taylor expand F around the most probable
energy U∗, as we did earlier with the entropy S. For the first derivate evaluated at U∗, we
find

dF (U)
dU

∣∣∣∣∣
U∗

= d
dU (U − TS(U))

∣∣∣∣∣
U∗

= 1− T dS(U)
dU

∣∣∣∣∣
U∗

= 1− T 1
T

= 0 . (3.62)

4Do not get confused with the function Σ and the sum
∑
i.
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The fact that the first derivative vanishes implies that the most probable energy U∗ also
extremizes the free energy F . Note that we deal with two kinds of temperatures here.
We must distinguish between the temperature of the reservoir, T = T (U∗), which is
independent of U , and the temperature of the canonical system, Tcan = T (U). In thermal
equilibrium (at U∗), both temperatures coincide and we simply denote them by T . Let us
also calculate the second derivative,

d2F (U)
dU2

∣∣∣∣∣
U∗

= −T d2S(U)
dU2

∣∣∣∣∣
U∗

= −T d
dU

1
T (U)

∣∣∣∣∣
U∗

= T

T 2(U)
dT (U)

dU

∣∣∣∣∣
U∗

= T

T 2(U)

(
dU
dT

)−1
∣∣∣∣∣∣
T (U∗)

= 1
T · CV

∼ 1
N
> 0 . (3.63)

The inequality in the last line holds for any substance; energy must be added to raise
the temperature of a substance. We draw the following conclusions from the preceding
investigation.

• The most probable energy U∗ is determined by the extremum of the free energy F
where dF

dU

∣∣∣
U∗

= 0. At this energy, the temperature of the canonical system coincides
with the temperature T of the reservoir: dS

dU

∣∣∣
U∗

= 1
T
.

• We know that the most probable energy U∗ exists because d2F
dU2

∣∣∣
U∗
> 0. This result

also implies, together with dF
dU

∣∣∣
U∗

= 0, that F has a minimum at U∗.

• The variance of the energy, 〈(U − U∗)2〉 ≈ CV ∼ N is extensive.

• The relative variance becomes negligible for large N :〈
(U − U∗)2

〉
U∗2

=
〈(

U

U∗
− 1

)2〉
∼ 1
N
→ 0 (N →∞) .

• We have shown that d2S
dU2 < 0, as used in the derivation of the entropy as an extensive

function (see sec. 3.4). Thus, the curvature of the entropy around its most probable
value is positive. In the canonical ensemble, the most probable state of the system
is characterized by a balance between minimizing the energy and maximizing the
entropy. At this equilibrium point, the free energy is minimal.

Since the relative variance of the energy U approaches zero for very large N , the distribution
of energies is sharply peaked at the dominating energy U∗. In the thermodynamic limit, in
fact, energies other than U∗ become irrelevant; the distribution approaches a δ-distribution.
For the partition function Z this means

Z =
∫

dU e−βF (U) N→∞= e−βF (U∗) . (3.64)
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Corrections to this limit can be calculated with a saddle-point approximation, using a
Taylor expansion and Gaussian integration as we did when deriving eq. (3.41) in section
3.4. Rearranging eq. (3.64) for F yields

F = −kBT lnZ . (3.65)

Though derived in the thermodynamic limit, this result for the free energy F also holds
for finite N . The mean energy 〈U〉 = U∗ can by obtained by the following recipe: We
combine βF = − lnZ (eq. (3.65)) with the previously established result,

〈U〉 = −∂ lnZ
∂β

=
∫

dU Ue−βF (U)∫
dU e−βF (U)

=
∫

dU Ue−βU+S(U)/kB∫
dU e−βU+S(U)/kB

,

and obtain

〈U〉 = ∂(Fβ)
∂β

= F + β
∂F

∂β
= F + 1

kBT

∂T

∂β

∂F

∂T
. (3.66)

The derivative ∂T/∂β is the reciprocal of ∂β/∂T , which becomes
∂β

∂T
= ∂(1/(kBT ))

∂T
= − 1

kBT 2 .

Thus we find that 〈U〉, often simply written as U while tacitly referring to the mean value,
is given by

U = F − T ∂F
∂T

. (3.67)

Together with F = U − TS this implies

∂F

∂T
= −S . (3.68)

The boxed equation states an important thermodynamic relation between free energy and
entropy. Another central relation that we already know is ∂S/∂U = 1/T (eq. (3.43)).

In the canonical ensemble, the equilibrium energy U ≡ 〈U〉 = U∗ is a function of the
temperature of the reservoir, U(T ). Therefore, functions like entropy or the free energy
depend on temperature T , particle number N , and volume V :

S = S(T, V,N) , F = F (T, V,N) , U = U(T, V,N) , Z = Z(T, V,N) , . . .

Shannon entropy. The term entropy also appears in information theory, where it
quantifies the amount of missing information. In this context, the common quantity is
the Shannon entropy defined as

S := −
∑
i

p̃i ln(p̃i) , (3.69)

where p̃i denotes the normalized probability of the event (or state) i and the sum goes
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over all events/states. In this little excursion, we want to find out how the Shannon
entropy relates to the entropy as defined in Thermodynamics in terms of the canonical
partition function.
According to eq. (3.49), the partition function Z of the canonical ensemble is given by
the sum over all Boltzmann weights,

Z =
∑
i

e−βHi =
∑
i

pi ,

where Hi represents the energy of the state i and pi is the non-normalized (!) probability
of this state. From the partition function we obtain the free energy according to

F = −kBT lnZ = −kBT ln
(∑

i

e
− Hi
kBT

)
,

and the entropy follows from differentiating by temperature, eq. (3.68), as

S = −∂F
∂T

= kB ln
(∑

i

pi

)
+ 1
T

∑
iHipi∑
i pi

.

Since pi = exp(−βHi) implies Hi = −kBT ln pi, we may rewrite the entropy as

S

kB
= ln

(∑
i

pi

)
−
∑
i pi ln pi∑
j pj

.

In terms of the normalized probability p̃i := pi∑
j
pj
, this becomes

S

kB
= ln

(∑
i

pi

)
−
∑
i

p̃i ln pi

= ln
(∑

i

pi

)
−
∑
i

p̃i ln
p̃i∑

j

pj


= ln

(∑
i

pi

)
−
∑
i

p̃i ln p̃i −
∑
i

p̃i︸ ︷︷ ︸
=1

ln
∑

j

pj


= −

∑
i

p̃i ln(p̃i) = S .

Thus we have shown that the entropy in the canonical ensemble and the Shannon entropy
from information theory are indeed closely related concepts (S ↔ S/kB). They differ only
by a prefactor corresponding to the Boltzmann constant.

3.6 Examples of canonical distributions
After introducing the canonical ensemble as a fundamental concept in Statistical Mechanics,
we want to discuss what the canonical distribution, or Boltzmann distribution, implies for
the velocity distribution of gas particles and for a gas in a gravitational field. The ideal
gas will serve as the underlying model.
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3.6.1 Velocity distribution of ideal gas atoms
The Hamiltonian Htot of a gas composed of N particles may be written as

Htot =
N∑
i=1

~p2
i

2m︸ ︷︷ ︸
kinetic

+
N∑
i=1

V (~qi)︸ ︷︷ ︸
potential

+
N∑
i=1

N∑
j=i+1

Vpair(~qi, ~qj)︸ ︷︷ ︸
interactions

. (3.70)

The first term is the total kinetic energy; the second term describes the potential energy
due to an external potential. Finally, the third term represents two-body interactions
between gas particles. This could include gravitational interaction, Coulomb interaction,
dipole-dipole, interaction, and more. In principle, even three-body interactions are feasible
but we refrain from including them here.

Ideal gas. The full Hamiltonian (eq. (3.70)) is often very difficult to handle, particularly
due to the complicated nature of pair interactions (not even to speak of three-body
interactions). Therefore it is very common to work with the ideal gas, defined by the
following assumptions:

• No interactions between gas particles;

• The gas consists of point particles which do not take up volume.

Thus any gas atom moves around without being influenced by other gas atoms. Although
this is clearly an idealization, the ideal gas is capable of describing many fundamental
properties of real gases. If we additionally assume the absence of an external potential,
the ideal gas Hamiltonian just contains the kinetic energy terms,

Hideal =
N∑
i=1

(
~p2
i

2m

)
. (3.71)

The canonical partition function of the ideal gas is then given by

Z =
∫ ∞
−∞

d~p1 d~p2 · · · d~pN
∫
V

d~q1 d~q2 · · · d~qN e−βHideal

=
∫ ∞
−∞

d~p1 d~p2 · · · d~pN
∫
V

d~q1 d~q2 · · · d~qN e−β
∑N

i=1
p2
i

2m

=
∫

d~p1 V e
−
βp21
2m

∫
d~p2 V e

−
βp22
2m · · ·

∫
d~pN V e−

βp2
N

2m

= (ZX)N , (3.72)

where ZX represents the single-particle partition function. Note that the partition function
factorizes completely, which should not surprise us since we neglected interactions.

Equipartition theorem. The kinetic energy of a single gas atom in three-dimensional
space is

Ekin = ~p2

2m =
p2
x + p2

y + p2
z

2m .

For an isotropic system, where no direction is preferred, the expectation values of the
momenta must be equal in all directions, i.e.

〈p2
x〉 = 〈p2

y〉 = 〈p2
z〉 .
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Furthermore, the Boltzmann distribution factorizes with respect to the different directions
such that

e−β
~p2
2m = e−β

p2x
2m e−β

p2y
2m e−β

p2z
2m . (3.73)

Since all directions are equivalent, let us now focus on the x direction without loss of
generality. The expectation value of the kinetic energy is

〈
p2
x

2m

〉
=

∫
dpx p2

x

2me
−β p

2
x

2m∫
dpx e−β

px2
2m

= − ∂

∂β
ln
(∫ ∞
−∞

dpx e−β
p2x
2m

)

= − ∂

∂β
ln
√

2πm
β

= ∂

∂β

1
2

(
ln β − ln(2πm)

)
= 1

2β

= kBT

2 . (3.74)

Thus, we have shown that the kinetic energy along one coordinate axis is, on average,
kBT/2. This generalizes into the equipartition theorem.

Equipartition theorem. A degree of freedom x, described by a quadratic energy
Hx = αx2, has an average energy of 〈Hx〉 = kBT/2. For a system with f degrees of
freedom this implies that the total energy is

U = 〈H〉 = f

2kBT . (3.75)

In the monoatomic ideal gas, each atom has three degrees of freedom (px, py, pz).5 Therefore,
each atom contributes a mean kinetic energy of

Ekin = 3
〈
p2
x

2m

〉
= 3

2kBT , (3.76)

and an ideal gas of N particles has the total energy

U = 3
2NkBT . (3.77)

5For an ideal gas in a vanishing external potential, the Hamiltonian does not depend on the position
coordinates of the gas particles, so the position coordinates do not count as degrees of freedom. Thus,
for a monoatomic gas f = 3N . On the other hand, a diatomic gas such as O2 has (6 + 1)N degrees of
freedom (2× 3 momentum coordinates and 1 inter-atomic scalar distance coordinate).
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As a consequence, the heat capacity of an ideal gas does not depend on temperature nor
on the volume:

C = dU
dT = fkB

2 = 3NkB
2 . (3.78)

But what do these results tell us about the velocity distribution in an ideal gas? Using eq.
(3.76), we know that 〈

m~v2

2

〉
=
〈
~p2

2m

〉
= 3

2kBT

⇒ v̄ :=
√
〈~v2〉 =

√
3kBT
m

, (3.79)

where v̄ denotes the average speed of a gas molecule and m is its mass. Thus, the absolute
value of the mean particle velocity is proportional to the square root of the temperature.
Note, however, that the expectation value of the velocity ~v itself must vanish, 〈~v〉 = 0.
Otherwise the gas as a whole would move in a certain direction, which violates our
assumption of isotropy.

Example 3.2. Gas molecules are fast!

At room temperature T = 300 K, the mean kinetic energy of a gas molecule is of the
order kBT ≈ 4× 10−21 J. As already calculated in the introductory example of section
1.4, the resulting speeds for typical gases like O2 or H2 amount to several hundred meters
per second (according to eq. (3.79)). For example, we found

v̄O2 ≈ 460 m s−1 ,

which is comparable to the speed of sound. Thus, the air molecules around you fly about
very fast! This result is exact and is not modified in the presence of interaction.

3.6.2 Maxwell-Boltzmann distribution
We already know the mean squared velocity of ideal gas molecules – but what does the
shape of the speed distribution actually look like? According to the Boltzmann distribution,
the velocity component vx follows the distribution

ρ(vx) ∝ exp
(
−β p

2
x

2m

)
= exp

(
−βmv

2
x

2

)
. (3.80)

We reemphasize that this distribution is not normalized. The components vy and vz follow
analogously. Based on eq. (3.80), we compute the expectation value of the second moment
of ~v,

〈
~v2
〉

=
∫

d~v ~v2ρ(~vx)ρ(~vy)ρ(~vz)∫
d~v ρ(~vx)ρ(~vy)ρ(~vz)

=
∫∞
−∞ dvxdvydvz (v2 + v2

y + v2
z)e−

βm
2 (v2

x+v2
y+v2

z)∫∞
−∞ dvxdvydvz e−

βm
2 (v2

x+v2
y+v2

z)
. (3.81)
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This expression simplifies when we switch to spherical coordinates. Writing v ≡ ||~v|| and
using the relation between volume elements dvxdvydvz = v2dvdΩ, we find

〈
~v2
〉

=
∫

Ω dΩ
∫∞

0 dv v4e−
βmv2

2∫
Ω dΩ

∫∞
0 dv v2e−

βmv2
2

=
∫∞

0 dv v4e−
βmv2

2∫∞
0 dv v2e−

βmv2
2

≡
∫ ∞

0
dv v2ρMB(v) . (3.82)

Here we have introduced the Maxwell-Boltzmann distribution ρMB, defined by

ρMB (v) :=
v2 exp

(
−βmv2

2

)
1

4π

(
2π
βm

)3/2 . (3.83)

The Maxwell-Boltzmann distribution is normalized in the sense that6∫ ∞
0

dv ρMB(v) = 1 . (3.85)

Thus, it expresses the probability that a gas particle with mass m in an ideal gas at
temperature T moves around with the speed v. What is the most probable speed? To
answer this question, we must find the maximum of ρMB. Equating the first derivative
with zero yields

0 = dρMB(v2)
d(v2)

∣∣∣∣∣
v2=v2

max

⇒ 0 = 1− βm

2 v2
max

⇒ vmax =
√

2
βm

=
√

2kBT
m

. (3.86)

Let us compare this result with the mean of the distribution (see eq. (3.79)). Since
〈v2〉 = 3kBT/m, we find

〈v2〉
v2
max

= 3
2 . (3.87)

6Let us prove that ρMB is normalized. Define the normalization constant C := 4π
(

2π
βm

)−3/2
. Then,

substituting a := βm/2, we have∫ ∞
0

dv ρMB = 1
2

∫ ∞
−∞

dv Cv2e−av
2

= −C2
d
da

∫ ∞
−∞

dv e−av
2

= −C2
d
da

√
π

a

= C

2 ·
√
π

2 a−3/2 = C
1

4π

(
2π
βm

)3/2

= C · 1
C

= 1 q.e.d. (3.84)
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0 v∗ v̄
v

0

ρMB

v∗ < v̄

Maxwell-Boltzmann distribution

T1

T2 > T1

T3 > T2

Figure 3.2: Maxwell-Boltzmann distribution as a function of velocity v for three different temperatures.
With increasing temperature, the distribution broadens and shifts towards larger velocities. Note
the asymmetry of the distribution: the mean v̄ exceeds the maximum value v∗ ≡ vmax (shown for
the green line here).

This means that the distribution is asymmetric because its mean differs from its maximum.
In other words, the average speed of a gas particle does not coincide with the most probable
speed. Indeed, the law of large numbers does not apply here since the Maxwell-Boltzmann
distribution merely describes a single-particle property. This is highlighted by the fact that
ρMB does not depend on the particle number N . Figure 3.2 illustrates the distribution for
three different temperatures.

3.6.3 Barometric height formula
The canonical distribution also allows for a rough estimate of the height of Earth’s
atmosphere. For this purpose, we consider a non-interacting gas in a uniform gravitational
field. Sufficiently close to the Earth’s surface, the Hamiltonian of the system reads

H =
N∑
i=1

(
~p2
i

2m +mgzi

)
. (3.88)

Here zi ≡ qz,i denotes the z position (height above surface of Earth) of the i-th particle
above the surface and g ≈ 9.81 m s−2 is the acceleration due to gravity. In the corresponding
Boltzmann weight e−βH, all positions zi and momenta ~pi factorize into separate exponentials.
Then, the unnormalized height distribution of a single air molecule is

ρ(z) = e−βmgz . (3.89)

This is known as the barometric height formula. It allows a basic estimate of atmospheric
pressure as a function of altitude. From eq. (3.89) we may calculate the mean altitude z
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of an air molecule,

〈z〉 =
∫∞

0 dz ze−βmgz∫∞
0 dz e−βmgz

= − d
d(βmg) ln

(∫ ∞
0

dze−βmgz
)

= − d
d(βmg) ln

(
1

βmg

)

= kBT

mg
. (3.90)

For a nitrogen molecule at around 0XC, this yields an average height of about 15 km above
sea level, which seems reasonable for the Earth’s atmosphere. However, the barometric
height distribution remains a rather crude approximation. Firstly, we fully ignored the fact
that the atmospheric temperature varies significantly as a function of altitude; secondly,
we neglected that g decreases with increasing height. At large altitudes compared to the
radius R of the Earth, we must in fact consider the exact potential,

V (z) = GMm

R + z
,

where G denotes the gravitational constant and M is the Earth’s mass. If z > R, the
exponential e−βV (z) approaches unity, and the integral

∫∞
0 dz e−βGMm/(R+z) diverges. Hence

the atmosphere evaporates to space and has not yet reached equilibrium.

3.7 Ideal gas in the canonical ensemble
In this section we will apply the toolbox of the canonical ensemble (section 3.5) to the
ideal gas, which we introduced in section 3.6.1.

The partition function of an ideal gas composed of N identical mono-atomic particles,
confined in a volume V , is given by

Z(N, V, T ) = 1
N !

N∏
j=1

[ 1
h3

∫
V

d3qj

∫
d3pj

]
e−βH(~q3N ,~p3N ) . (3.91)

To obtain this expression, we “borrowed” some knowledge from quantum mechanics (see
chapter 6):

• Since gas atoms or molecules are indistinguishable particles, we must include the
factor 1

N ! to avoid over-counting of microstates. This is because there are N ! possible
permutations of particle indices which all describe exactly the same state. It does
not matter which particle is at which position because we cannot tell the difference.
If we would not correct for over-counting, this would lead to the Gibbs paradox of
non-extensive entropy, which we will address in a problem set.

• Planck’s constant h = 6.626× 10−34 Js (1 Js = 1 kg m2 s−1) appears in Quantum
Statistics. More specifically, the factor h3 emerges when transforming from a sum
over discrete quantum states to a continuous phase space integral (see section 6.3).
Planck’s constant has units of an action and causes the integral over phase space,
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and thus Z itself, to become unitless. In any case, the value of h is irrelevant for any
physical observable since we only use the logarithm of Z (e.g. F = −kBT ln(Z)).

For a free ideal gas, the Hamiltonian H,

H(q3N , p3N) =
N∑
i=1

~p2
i

2m ,

only contains the kinetic energy term and does not depend on the position coordinates ~qi.
Therefore the three-dimensional position integral simply yields the total volume V ,∫

V
d3qi 1 =

∫∫∫
dqx,idqy,idqz,i 1 = V .

Since the ideal gas partition function factorizes, we may calculate it explicitly:

Z = 1
N !

N∏
j=1

[ 1
h3

∫
V

d3qj

∫
d3pj

]
e−β

∑N

i=1
~p2
i

2m

= 1
N !

[ 1
h3

∫
V

d3q
∫

d3pe−
β~p2
2m

]N
= 1
N !

(
V

h3

)N [∫ ∞
−∞

dp e−
βp2
2m

]3N

= 1
N !

(
V

h3

)N (√2πm
β

)3N

= 1
N !

(
V

λ3
t

)N
. (3.92)

In the final step, we have defined the thermal wavelength λt,

λt := h√
2πmkBT

. (3.93)

We may think of the thermal wavelength as the de Broglie wavelength λ = h/p of a particle
with thermal energy πkBT . Indeed, if Et = πkBT = p2

t/(2m), then λt = h/pt.

From eq. (3.92), we clearly see that the canonical thermodynamic variables of the partition
function are T , V , and N , i.e. Z ≡ Z(T, V,N). The same holds for the free energy
F (T, V,N), which we compute in the following:

F = −kBT ln(Z)

= kBTN ln
(
λ3
t

V

)
+ kBT ln(N !) . (3.94)

Using Stirling’s formula (eq. (2.19)), this approximates to

F (T, V,N) = kBTN
[
ln
(
N

V
λ3
t

)
− 1

]
+O(lnN) . (3.95)

We see that the free energy scales like the system size N ; thus, F is an extensive quantity.
If we had not included the factorial pre-factor to avoid over-counting, F would scale like
N lnN .
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From the free energy, we obtain many thermodynamic quantities by taking partial deriva-
tives. For instance, we have derived (eq. (3.68))

S = −∂F
∂T

.

To calculate the derivative it may help to split the logarithm into several terms:

F = kBTN
[
ln
(
N

V
h3 (2πmkBT )−

3
2

)
− 1

]
= kBTN

[
ln
(
N

V
h3
)
− 3

2 ln (2πmkB)− 3
2 ln (T )− 1

]
.

Now we easily find the entropy of the ideal gas,

S = −F
T

+ 3
2kBN

= −kBN
[
ln
(
N

V
λ3
t

)
− 1

]
+ 3

2kBN

⇒ S(T, V,N) = −kBN
[
ln
(
N

V
λ3
t

)
− 5

2

]
. (3.96)

Knowing F and S, the internal energy U = F + TS (from eq. (3.61)) follows as

U(T,N) = 3
2NkBT . (3.97)

This result perfectly agrees with the equipartition theorem (see eq. (3.75)). Note that the
energy is volume-independent as it only receives contributions from the kinetic energy
(∝ kBT ) of all N particles.

We established that the change of free energy under variation of the temperature defines
the entropy. Apart from T , the free energy also depends on V and N . In the canonical
ensemble, N remains constant. But what is (∂F/∂V )T,N? Differentiating eq. (3.95) by
volume, we get

∂F

∂V
= ∂

∂V
kBTN

[
ln
(
Nλ3

t

)
− ln V − 1

]
= −NkBT

V
. (3.98)

A comparison with the ideal gas law, which we previously derived in section 1.4, shows
that

PV = NkBT ⇔ NkBT

V
= P . (3.99)

Therefore we define the pressure P as7

P := −
(
∂F

∂V

)
T,N

. (3.100)

7You may know the pressure by its mechanical definition P = F/A, where F is the force acting on the
surface area A. To see how this relates to the thermodynamic definition of pressure P = −∂F/∂V , we
refer back to the derivation of the Boyle-Mariotte law in section 1.4.
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Let us now write down the total differential of F :

dF (T, V,N) =
(
∂F

∂T

)
V,N

dT +
(
∂F

∂V

)
T,N

dV +
(
∂F

∂N

)
T,V

dN . (3.101)

As mentioned, N is fixed in the canonical ensemble, so the total differential reduces to

dF (T, V,N) = −S(T, V,N)dT − P (T, V,N)dV (N fixed) . (3.102)

Using U = F + TS, we obtain the total differential of U via a Legendre transform,

dU = dF + TdS + SdT
= −SdT − PdV + TdS + SdT
= TdS − PdV . (3.103)

The result reveals that the canonical variables of the internal energy are entropy and
volume. Given U(S, V ), we have

P = −
(
∂U

∂V

)
S

, T = −
(
∂U

∂S

)
V

. (3.104)

By deriving eq. (3.103), we have obtained the First Law of Thermodynamics in differential
form,

dU = ∆Q−∆W = TdS − PdV . (3.105)

The law states that the internal energy of a gas may change in two ways:

• The gas can perform mechanical work ∆W = PdV on its surroundings.

• There may be a heat transfer ∆Q = TdS from the surroundings to the gas.

Thus dU is given by the balance of absorbed heat minus work done. Note that the
definition of mechanical work ∆W = PdV also indicates that the relation (3.100) makes
sense. We will continue with a systematic discussion of total differentials, derivatives of
thermodynamic potentials, and the laws of Thermodynamics in chapter 4. For now, we
direct our focus back towards the ideal gas. To get the explicit function U(S, V ) for an
ideal gas, we take eq. (3.96) and replace the temperature by

kBT = 2
3
U

N
,

as follows from eq. (3.97). This yields the Sackur-Tetrode equation,

S(U, V,N) = −kBN

ln

 h3N

V
(
2πm 2U

3N

)3/2

− 5
2

 . (3.106)

From this formula, we derive U(S, V,N) by inversion, i.e. by solving for U . In turn,
U(S, V,N) enables us to calculate the temperature T (S, V,N) = (∂U/∂S)V,N , which leads
back to the free energy F = U − TS. This means that the conversion from F (T, V,N)
via S(U, V,N) to U(S, V,N) is reversible. All these so-called thermodynamic potentials
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contain the complete information about the system and we may switch back and forth
between them as we wish.

As a last check, let us see whether
∂S(U, V,N)

∂U
= 1
T

holds as it should. The Sackur-Tetrode equation (3.106) gives

S(U, V,N) = kBN
3
2 lnU + f(V,N)

⇒ ∂S

∂U
= 3

2
kBN

U
∗= 1
T

q.e.d. (3.107)

At the equality marked by ∗ we have inserted the ideal gas result U = 3
2NkBT . Thus

everything is consistent!

3.8 Ideal gas in the microcanonical ensemble
The framework of the canonical ensemble allowed us to determine the thermodynamic
properties of an ideal gas, e.g. entropy, energy, and free energy. Now we want to study
the ideal gas in the microcanonical ensemble. Will we get the same results?

In the microcanonical ensemble, the total energy U is fixed and all microstates with that
energy are equally probable. Recall that the density of states ω(U) is defined as

ω(U, V ) = lim
∆→0

Γ(U, V )
∆ , (3.108)

where Γ denotes the phase space volume (see section 3.4) and ∆ represents a small energy
range around U . If we know the density of states, we can find the entropy using eq. (3.59),

S = kB lnω . (3.109)

Our task is thus to calculate the density of states ω(U, V,N) of the ideal gas,

ω(U, V,N) = 1
N !

N∏
j=1

[ 1
h3

∫
V

d3qj

∫
d3pj

]
δ

(
N∑
i=1

~p2
i

2m − U
)
. (3.110)

Here the factor N ! avoids over-counting and h3 originates from quantum mechanics (see
previous section). The position integral extends over the volume V that confines the gas.
Furthermore, the δ distribution restricts the integral over phase space to a hyper surface
on which the energy of the gas, given by its total kinetic energy, equals U .

First, we perform the integral over all positions and rescale the momenta according to
~xj :=

√
1

2m~pj. This leads to

ω = 1
N !

(
V (2m)3/2

h3

)N ∫
dx1dx2 · · · dx3Nδ

( 3N∑
i=1

x2
i − U

)
, (3.111)

where we used the notation ~x1 = (x1, x2, x3), ~x2 = (x4, x5, x6), ~xN = (x3N−2, x3N−1, x3N).
Notice that the 3N -dimensional integral corresponds to the surface “area” of a 3N -
dimensional hyper-sphere with radius R =

√∑3N
i=1 x

2
i =
√
U .
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Hyper-surface of a D-dimensional sphere. Let SD denote the surface “area” of a
sphere in D dimensions. From basic geometry we know that S2 = 2πR (circumference of
a circle) and S3 = 4πR2. But what is S4, S5, etc.?
If we want to calculate a Gaussian integral in D dimensions, we may do this in two
different ways.

1) We use the fact that the exponentials factorize:

I =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 · · ·
∫ ∞
−∞

dxD e−x
2
1−x

2
2−···−x

2
D =

[∫ ∞
−∞

dx e−x2
]D

= πD/2 .

(A proof of this integral is provided in Appendix A.1.)

2) Alternatively, we switch to spherical coordinates by defining R :=
√
x2

1 + · · ·+ x2
D:

I =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 · · ·
∫ ∞
−∞

dxD e−(x2
1+x2

2+···+x2
D) =

∫ ∞
0

dRSD(R)e−R2
,

where SD(R) generalizes the surface area of a sphere to D dimensions.
In fact, we know that the dimension of the hyper-surface must be D − 1, leading us to
define

SD(R) := RD−1CD . (3.112)

The factor CD is to be determined. Inserting this definition into integration method 2),
we obtain

I = CD

∫ ∞
0

dRRD−1e−R
2
.

Substituting t = R2, dt = 2
√
t dR = 2RdR yields

I = CD
2

∫ ∞
0

dt RD−2 e−t

= CD
2

∫ ∞
0

dt tD/2−1 e−t

= CD
2 Γ(D/2) , (3.113)

where we have introduced the Gamma function Γ(x) := (x − 1)! . If we compare the
result from 1) with eq. (3.113), we find

I = πD/2 = CD
2 Γ(D/2) ⇒ CD = 2πD/2

Γ(D/2) .
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Hence the surface “area” of a D-dimensional hyper-sphere with radius R is given by

SD(R) = RD−1 2πD/2
Γ(D/2) , (3.114)

with Γ(D/2) =
(
D
2 − 1

)
! . This result indeed reproduces S3 = 4πR2. For D = 4, for

example, we find S4 = 2π2R3.

After this little excursion far beyond the limitations of our three-dimensional perception,
we are prepared to tackle the integral in eq. (3.111). Switching to spherical coordinates,
the density of states becomes

ω = 1
N !

(
V (2m)3/2

h3

)N ∫ ∞
0

dRS3N(R)δ(R2 − U) . (3.115)

Now we define the integration variable t := R2, which gives dt
dR = 2R = 2

√
t and thus

ω = 1
N !

(
V (2m)3/2

h3

)N ∫ ∞
0

dt
2
√
t
S3N

(√
t
)
δ(t− U)

= 1
N !

(
V (2m)3/2

h3

)N S3N
(√

U
)

2
√
U

= 1
N !

(
V (2m)3/2

h3

)N
U (3N−1)/2

2
√
U

C3N

= 1
N !

(
V (2m)3/2

h3

)N
U3N/2

2U
2π3N/2

Γ(3N/2)

=
(
V (2πmU)3/2

h3

)N 1
UN !

(
3N
2 − 1

)
!
. (3.116)

In fact, we need the logarithm of the density of states,

lnω = N ln
(
V (2πmU)3/2

h3

)
− lnU − lnN !− ln

(3N
2 − 1

)
! . (3.117)

First of all, we drop the term lnU since it scales as lnN and is thus negligible compared
to the leading term. Secondly, as N → ∞, we may safely approximate 3N

2 − 1 ≈ 3N
2 .

Applying Stirling’s approximation (eq. (2.19)) to the factorial terms, we rewrite

− lnN !− ln
(

3N
2 − 1

)
!

N
≈
− lnN !− ln

(
3N
2

)
!

N

≈
−N lnN +N − 3

2N ln
(

3N
2

)
+ 3

2N

N

= − lnN − ln
[(3N

2

)3/2]
+ 5

2

= − ln
[
N
(3N

2

)3/2]
+ 5

2 . (3.118)
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Reinserting the approximate result of eq. (3.118) into eq. (3.117), we obtain an expression
for the entropy,

S = kB lnω = kBN

[
ln
(
V (2πmU)3/2

h3

)
− ln

(
N
(3N

2

)3/2)
+ 5

2

]

⇒ S(U, V,N) = −kBN

ln

N
V

h3(
2πm 2U

3N

)3/2

− 5
2

 . (3.119)

A comparison with eq. (3.106) shows that this is precisely the Sackur-Tetrode equation
we derived in the canonical ensemble. From here, the ideal gas law and other properties of
the ideal gas follow. The Sackur-Tetrode equation gives the leading part of the entropy
which is extensive and valid for large N . Thus, we draw the important conclusion:

Equivalence of canonical and microcanonical ensembles. In the thermodynamic
limit (N →∞), the canonical ensemble and the microcanonical ensemble are equivalent.

As it turned out, the calculation in the microcanonical ensemble, at fixed energy U , is
more complicated than the corresponding derivation in the canonical ensemble where the
energy may fluctuate.

3.9 Grand canonical ensemble
Let us recapitulate how we transitioned from the microcanonical to the canonical ensemble.
The microcanonical ensemble fixes the total energy to a certain value. In most physical
systems, however, the total energy is not precisely constant. Instead it is controlled by
the ambient temperature which ensures that the energy attains a constant average value.
The canonical ensemble conceptualizes this situation and allows the energy to fluctuate.
For large systems, however, energy fluctuations around the mean are in fact so small that
both ensembles yield equivalent results.

In reality, we will also never know the exact number of particles in a thermodynamic
system. Just like the total energy, the particle number will fluctuate when the system
exchanges particles with its surroundings or during chemical reactions. This motivates us
to introduce another statistical ensemble – the grand canonical ensemble.

  

Figure 3.3: A system with volume V1 in contact with a reservoir of volume V2. The total number of particles is
constant, N = N1 +N2, but the system 1 can exchange particles with the reservoir. The reservoir
is much larger than system 1, i.e. V1 � V2 and N1 � N2 (even though the figure cannot show
this). Both system 1 and the reservoir are surrounded by a heat reservoir of temperature T .
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Figure 3.3 provides a schematic drawing of the grand canonical ensemble. The system
connects to a reservoir with which it may exchange energy and particles. Both the
system (1) and the reservoir (2) are surrounded by a large thermal reservoir with constant
temperature T .

Grand canonical partition function. Assume a weak interaction between the system
and the reservoir, such that the total Hamiltonian is approximately given by the sum of
the individual Hamiltonians,

H
(
q3N , p3N

)
≈ H

(
q3N1

1 , p3N1
1

)
+H

(
q3N2

2 , p3N2
2

)
. (3.120)

Here the coordinates (q3Nk
k , p3Nk

k ) refer to the set of particles contained in system k ∈ {1, 2}.
The total (canonical) partition function of systems 1 and 2 combined reads

Z(N, V, T ) = 1
h3NN !

∫
d3Nq d3Np e−βH(q3N ,p3N )

= 1
h3NN !

N∑
N1=0

N !
N1!N2!

∫
d~q1 d~q2 d~p1 d~p2 e

−βH(~p1,~q1,N1) e−βH(~p2,~q2,N2)

=
N∑

N1=0
ZN1(V1, T )ZN2(V2, T ) = ZN(V, T ) . (3.121)

Here we have used the notation ~qk ≡ q3Nk
k , k ∈ {1, 2}, for brevity. The sum ∑N

N1=0 runs
through all possible particle numbers in system 1. Moreover, the factorial term counts all
possibilities for selecting N1 particles from N particles. Due to the factorization of the
Boltzmann distributions, the total partition function equals the product of the individual
partition functions. We now define the probability distribution ρ,

ρ(~q1, ~p1, N1) := ZN2(V2, T )
ZN(V, T )

e−βH(~q1,~p1,N1)

h3N1N1! . (3.122)

This distribution is normalized, i.e.
N∑

N1=0

∫
d3N1~q1 d3N1~p1 ρ(p1, q1, N1) = 1 , (3.123)

which we confirm using eq. (3.121). With the result from section 3.5,

F (N, V, T ) = −kBT lnZN(V, T ) ⇔ ZN(V, T ) = e−βF (N,V,T ) ,

we write the ratio of the partition functions ZN2/ZN as

ZN2(V2, T )
ZN(V, T ) = exp

[
−β

(
F (N −N1, V − V1, T )− F (N, V, T )

)]
, (3.124)

where we inserted N2 = N −N1. At this point we invoke our assumption N1 � N , which
means that the particle reservoir is very large compared to system 1. In this case it is
sufficient, to a good approximation, to consider the Taylor expansion of F (N−N1, V −V1, T )
up to first order. The first derivatives define the quantities

P := −∂F (N, V, T )
∂V

, µ := ∂F (N, V, T )
∂N

. (3.125)
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Here P is the pressure, as previously defined in eq. (3.100). The thermodynamic quantity
µ is termed chemical potential. It describes the change in free energy when adding one
particle to the system. In these terms, the Taylor expansion gives

F (N −N1, V − V1, T ) = F (N, V, T )−N1µ+ V1P +O
(
N1

N

)
. (3.126)

Using eqs. (3.124) and (3.126), the probability distribution ρ becomes

ρ(~q1, ~p1, N1) = 1
h3N1N1!e

−β
(
PV1−µN1+H(~q1,~p1,N1)

)
. (3.127)

In the following, we drop the subscript 1, since the expression exclusively contains variables
referring to system 1 now. After all, system 2 only serves as a reservoir for particle
exchange. It enters indirectly via the temperature T of the heat reservoir, the pressure P ,
as well as the chemical potential µ. In fact, we make the particle reservoir infinitely large
such that the thermodynamic limit (N →∞) applies.

Let us now define the grand canonical partition function Z,

Z(µ, V, T ) :=
∞∑
N=0

eβNµZN(V, T ) , (3.128)

where Z represents the canonical partition function of the system. Using the first line of
eq. (3.121) and the distribution ρ in eq. (3.127), the grand canonical partition function
equates to

Z =
∞∑
N=0

eβNµ
∫ dq3N dp3N

h3NN ! e−βH(q3N ,p3N )

(3.127)= eβPV
∞∑
N=0

∫
dq3N dp3N ρ

(
q3N , p3N , N

)
(3.123)= eβPV . (3.129)

This result leads to the grand canonical equation of state,

lnZ(µ, V, T ) = βPV = PV

kBT
. (3.130)

Furthermore, we define the grand canonical potential, or grand potential, Ω,

Ω(µ, V, T ) := −kBT lnZ(µ, V, T ) = −V P (µ, V, T ) . (3.131)

Note the structural similarity to the definition of the free energy as the thermodynamic
potential of the canonical ensemble, F = −kBT lnZ. While the natural variables of
the canonical ensemble are (N, V, T ), the variables of the grand canonical ensembles are
(µ, V, T ).
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Mean particle number and fluctuations. From the definition of Z (eq. (3.128)) we
derive the mean particle number 〈N〉 in the grand canonical ensemble,8

〈N〉 = 1
β

∂ lnZ(µ, V, T )
∂µ

. (3.132)

Next, we want to calculate the particle number fluctuations around the mean, quantified
by the variance σ2

N = 〈N2〉 − 〈N〉2. That works by taking two derivatives with respect to
the chemical potential:

∂

β∂µ

∂

β∂µ
lnZ(µ, V, T ) = ∂

β∂µ

∂

β∂µ
ln
( ∞∑
N=0

eβNµZN(V, T )
)

= ∂

β∂µ

∑
N Ne

βNµZN∑
N eβNµZN

=
∑
N N

2eβNµZN∑
N eβNµZN

−
(∑

N Ne
βNµZN∑

N eβNµZN

)2

= 〈N2〉 − 〈N〉2 . (3.133)

Based on the grand canonical equation of state (eq. (3.130)), the variance is given by

〈N2〉 − 〈N〉2 = ∂

β∂µ

∣∣∣∣∣
V,T

∂

β∂µ

∣∣∣∣∣
V,T

PV

kBT
= kBTV

∂2P

∂µ2

∣∣∣∣∣ . (3.134)

We will explicitly calculate the derivative (∂2P/∂µ2)V,T at the end of this section. For
now, we make the following argument. From the grand canonical equation of state, we see
that the variance scales extensively because βPV ∼ O(N) (P and µ are intensive; V is
extensive). This implies that the relative deviation around the mean scales as√

〈N2〉 − 〈N〉2

〈N〉
∼
√
N

N
= 1√

N

N→∞−−−→ 0 . (3.135)

We conclude that particle number fluctuations become negligible in the thermodynamic
limit, confirming the law of large numbers (see eq. (2.17) in section 2.3). Most of the
time, the system will have a particle number close to the most probable particle number
N∗, which is much more probable than any other particle number. Therefore we may
approximate

Z(µ, V, T ) =
∑
N

eβNµ Z(N, V, T )︸ ︷︷ ︸
ρ(N)

≈ eβN
∗µZ(N∗, V, T ) . (3.136)

In fact, for large systems there is no need to distinguish between the mean 〈N〉 and the
maximally likely N∗; we simply write N = 〈N〉 = N∗.

Grand potential vs. free energy. Eq. (3.136) implies that in the thermodynamic limit

− lnZ(µ, V, T ) = −βNµ− lnZ(N, V, T ).
8If we would differentiate by β here, we would also get a factor N in front of the exponential. But
β = (kBT )−1 and the canonical partition function Z also depends on temperature! Thus we must
choose the derivative by µ.
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With Ω = −kBT lnZ and F = −kBT lnZ, we find (by multiplying kBT on both sides)

Ω(µ, V, T ) = F (N, V, T )− µN . (3.137)

This equation relates the grand potential Ω to the canonical potential, the free energy F .
Note the analogy to F = U − TS (eq. (3.61)) and the Legendre transform structure. We
can write eq. (3.137) in terms of the independent variables (µ, V, T ), or (N, V, T ), or any
other triplet!

Equating Ω = −PV (eq. (3.131)) with eq. (3.137), we obtain

F = −PV +Nµ ,

and with F = U − TS, this yields the fundamental equation of Thermodynamics,

U = TS − PV +Nµ . (3.138)

The fundamental equation is a bilinear form of intensive state variables (T, P, µ), each
multiplied with an extensive state variable (S, V,N). In fact, all thermodynamic potentials
– such as the internal energy U , the free energy F , the grand potential Ω, the Gibbs free
energy G and the enthalpy H (which we will come across later) – are expressed in a
bilinear form as functions of a combination of state variables. More on this will follow in
chapter 4, where the fundamental equation of Thermodynamics will play a central role.

Gibbs-Duheme equation. What is the total differential of the grand potential? We
already know that

dF (T, V,N) = µdN − PdV − SdT ,

where
µ =

(
∂F

∂N

)
V,T

, P = −
(
∂F

∂V

)
N,T

, and S = −
(
∂F

∂T

)
V,N

.

Combining this with eq. (3.137) yields

dΩ = d(F − µN) = dF − d(µN)
= µdN − PdV − SdT − µdN −Ndµ
= −PdV − SdT −Ndµ
= dΩ(µ, T, V ) . (3.139)

At the same time, eq. (3.131) tells us that

Ω = −PV ⇒ dΩ = −PdV − V dP .

Since both expressions for the total differential dΩ must be true, they must be equal to
each other:

dΩ = −PdV − V dP != −PdV − SdT −Ndµ
⇒ 0 = V dP − SdT −Ndµ . (3.140)

The boxed equation is known as the Gibbs-Duheme equation. By relating all intensive
differentials to each other, it implies that we cannot find a potential Θ(P, T, µ). A
thermodynamic potential must be extensive, and it is impossible to “create” an extensive
potential from intensive variables only.
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Explicit calculation of particle number variance. When discussing the particle number
fluctuations above, we skipped over the explicit calculation of the derivative (∂2P/∂µ2)V,T .
We make good for this now.

We may write the free energy as F (N, V, T ) = Nf(v, T ), where f denotes the free energy
per particle. By construction f is intensive; it can only depend on the volume per particle
v := V

N
. Using the definition in eq. (3.125), the chemical potential becomes

µ =
(
∂F

∂N

)
T,V

=
∂
(
Nf(v, T )

)
∂N

= f(v, T )− v∂f(v, T )
∂v

= µ(v, T ) . (3.141)

Similarly, the pressure P is

P = −
(
∂F

∂V

)
T,N

= −
∂
(
Nf(v, T )

)
∂V

= −∂f(v, T )
∂V

= P (v, T ) = P (v(µ, T ), T ) , (3.142)

where v(µ, T ) is the inverse of µ(v, T ). The first derivative of the pressure with respect to
µ follows with the chain rule,

∂P

∂µ

∣∣∣∣∣
T

= ∂P

∂v

∣∣∣∣∣
T

∂v

∂µ

∣∣∣∣∣
T

. (3.143)

With eq. (3.141), we write the derivative ∂v/∂µ as

∂µ

∂v

∣∣∣∣∣
T

= ∂f

∂v

∣∣∣∣∣
T

− ∂f

∂v

∣∣∣∣∣
T

− v ∂
2f

∂v2

∣∣∣∣∣
T

= −v ∂
2f

∂v2

∣∣∣∣∣
T

, (3.144)

and from eq. (3.142) we get

∂P

∂v

∣∣∣∣∣
T

= − ∂2f

∂v2

∣∣∣∣∣
T

, (3.145)

which implies

∂µ

∂v

∣∣∣∣∣
T

= v
∂P

∂v

∣∣∣∣∣
T

. (3.146)

Based on all this, eq. (3.143) becomes

∂P

∂µ

∣∣∣∣∣
T,V

= 1
v
. (3.147)

The second derivative is then given by

∂2P

∂µ2

∣∣∣∣∣
V,T

= ∂(1/v)
∂µ

∣∣∣∣∣
T

= − 1
v2
∂v

∂µ

∣∣∣∣∣
T

= − 1
v3
∂v

∂P

∣∣∣∣∣
T

. (3.148)
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Switching back to the variables T, V , and N , we write

∂2P

∂µ2

∣∣∣∣∣
T,V

= − N2

V 3
∂V (P, T,N)

∂P

∣∣∣∣∣
T,N

= N2

V 2 κT (P, T ) , (3.149)

where we have defined the isothermal compressibility κT ,

κT := − 1
V

(
∂V

∂P

)
T,N

. (3.150)

The isothermal compressibility measures by how much the relative volume decreases when
increasing the pressure at constant T and N . For physical reasons, κT ≥ 0 and κT is
intensive by construction. Being intensive, it cannot depend on N .

Now that we have calculated the second derivative, the variance of N in the grand canonical
ensemble (see eq. (3.134)) is explicitly given by

〈N2〉 − 〈N〉2 = kBTV
∂2P

∂µ2

∣∣∣∣∣
T,V

= kBT
N2

V
κT (P, T )

= kBTNn(P, T )κT (P, T ) ∼ O(N) . (3.151)

Here n(P, T ) denotes the particle number density, which is an intensive quantity. The only
non-intensive variable on the RHS of eq. (3.151) is N , so the variance scales like N . Thus
we have confirmed our argument above.

3.10 Ideal gas in the grand canonical ensemble
After introducing the grand canonical ensemble, the ideal gas will again serve as our
paradigmatic example to test the theory and compare results with our previous findings
for the canonical and the microcanonical ensemble.

We begin with the grand canonical partition function, defined in eq. (3.128) as

Z(µ, V, T ) =
∞∑
N=0

eβNµZ(N, V, T ) . (3.152)

This expression involves the canonical partition function Z(N, V, T ) of the ideal gas, which
we calculated in eq. (3.92) to be

Z(N, V, T ) = 1
N !

(
V

λ3
t

)N
,

where the thermal wavelength is defined in eq. (3.93). Inserting into the grand canonical
partition function yields

Z =
∞∑
N=0

1
N !

(
V

λ3
t

eβµ
)N

= exp
(
V

λ3
t

eβµ
)
. (3.153)



R. Netz: Statistical Physics and Thermodynamics 64

Knowing Z, we obtain the grand potential Ω by computing

Ω(µ, V, T ) = −kBT ln(Z(µ, V, T ))

= −kBT
V

λ3
t

eβµ

!= −PV , (3.154)

where the last equality follows from eq. (3.131). Furthermore, in section 3.7 we derived
the free energy of the ideal gas,

F (N, V, T ) = kBTN ln
(
Nλ3

t

V

)
− kBTN ,

(and F (N, V, T ) = Nf(v, T ) as assumed in the derivation of (∂2P/∂µ2)V,T in the previous
section). The chemical potential µ then follows as

µ = ∂F

∂N
= kBT ln

(
Nλ3

t

V

)
. (3.155)

From this relation we conclude

eβµ = Nλ3
t

V
, (3.156)

and combining eq. (3.156) with eq. (3.154) leads to

NkBT = PV . (3.157)

This result is the – by now familiar – ideal equation of state, which we have thus re-derived
in the grand canonical ensemble. In the thermodynamic limit, the description of the ideal
gas is consistent regardless of which ensemble we use.

3.11 Chemical reactions and the law of mass action
We have introduced the grand canonical ensemble as a framework to describe systems with
variable numbers of particles. An important application are chemical reactions, where the
involved types of particles constantly change their amounts. In this section, we will focus
on bimolecular reactions of the type

A+ A
 B .

For example, this simple case occurs in a hydrogen gas when two hydrogen atoms recombine
to molecular hydrogen or vice versa (H +H 
 H2).

We consider a gas confined in the volume V at temperature T , comprised of particles
of the two types A and B. The total particle number is given by the sum of individual
particle numbers, N = NA +NB. Furthermore, we denote the chemical potentials of the
types by µA and µB, respectively.

The grand partition function of the reacting system is the product of the two individual
grand partition functions (see sec. 3.9),

Z(µA, µB, V, T ) =
∞∑

NA=0

∞∑
NB=0

eβµANAeβµBNB ZA(NA, V, T )ZB(NB, V, T ) . (3.158)
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Let us assume that the canonical partition functions ZA and ZB each describe an ideal
gas, i.e.

ZX(NX , V, T ) = 1
NX !

(
V

λ3
t,X

)NX
, X ∈ {A,B} . (3.159)

Then, eq. (3.158) becomes

Z =
∞∑

NA=0

1
NA!

(
eβµA

V

λ3
t,A

)NA ∞∑
NB=0

1
NB!

(
eβµB

V

λ3
t,B

)NB

= exp
[
eβµA

V

λ3
t,A

+ eβµB
V

λ3
t,B

]
. (3.160)

The expectation values of NA and NB are

〈NX〉 = 1
β

∂ ln(Z)
∂µX

= eβµX
V

λ3
t,X

, X ∈ {A,B} . (3.161)

In the following, we omit the brackets for the expectation value (i.e. 〈NX〉 ≡ NX).

During the chemical reaction A + A → B, one particle of type B is created while two
particles of type A are destroyed. This requires the chemical energy ∆µ = µB − 2µA.
Rewriting NB (eq. (3.161)) in terms of ∆µ and µA, we obtain

NB = eβ(∆µ+2µA) V

λ3
t,B

= eβ∆µ
(
N2
A

λ6
t,A

V 6

)
V

λ3
t,B

, (3.162)

where in the second equality we have used eq. (3.161) for type A.

Let us now define the concentrations CA := NA/V and CB := NB/V of the types A and
B, respectively. According to the law of mass action, the rate of a chemical reaction is
proportional to the concentrations of the involved reactants. In equilibrium, we expect
the recombination A+A→ B to occur as frequently as the dissociation B → A+A, such
that the ratio of the products of involved reactants is constant. This ratio is termed the
equilibrium reaction constant K. In our case, it is given by

K := product of concentrations of reactants for B → A+ A

product of concentrations of reactants for A+ A→ B
= CB
C2
A

. (3.163)

Note that in the denominator we get the concentration of A to the power of two because
two particles of type A are needed for the reaction. Generally, the powers of reactants’
concentrations are given by their multiplicity in the reaction.

Using eqs. (3.161) and (3.162), we get

K := CB
C2
A

= eβ∆µ
(
λ6
t,A

λ3
t,B

)
. (3.164)

Let Ctot
A := CA + 2CB denote the maximal concentration of particle type A. In terms

of the hydrogen example (H + H 
 H2), if CA = Ctot
A then the gas consists purely
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of atomic hydrogen H, whereas all particles are molecular hydrogen H2 if CA = 0 and
CB = Ctot

A /2. Thus Ctot
A V states the total number of hydrogen atoms contained in the

volume V (no matter whether they are single or bound as a molecule). Starting from
K = CB/(Ctot

A − 2CB)2, we compute

CB
K

= (Ctot
A − 2CB)2

= (Ctot
A )2 + 4C2

B − 4CBCtot
A

⇔ 0 = C2
B − CB

(
Ctot
A + 1

4K

)
+ (Ctot

A )2

4 . (3.165)

The solution to this quadratic equation reads

CB,± =
Ctot
A + 1

4K
2 ±

√√√√(Ctot
A + 1

4K

)2

4 − (Ctot
A )2

4 . (3.166)

Since CB cannot exceed Ctot
A /2, we can physically exclude the larger root, leaving us with

CB = Ctot
A

2 + 1
8K −

√
1

64K2 + Ctot
A

8K . (3.167)

This result is plotted in fig. ??. We conclude with an asymptotic analysis of the molecular
concentration CB in the limit of low and high total concentration of atoms.

• Low concentration limit.

• High concentration limit.
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4 Thermodynamics

In the previous chapter, we started out from microscopic properties of a large number of
individual particles and employed a statistical description to derive macroscopic properties
of the whole system. The derivation prompted us to define concepts like entropy and
temperature, and to introduce thermodynamic potentials for the different statistical
ensembles.

Historically, Thermodynamics was developed before the framework of Statistical Mechanics.
Based on physical experiments, researchers deduced phenomenological relations between
Thermodynamic quantities – such as energy, temperature, pressure, volume, or entropy –
without involving any microscopic information. The most fundamental generalizations
of the empirical findings were formulated as Laws of Thermodynamics. While not math-
ematically derived, these laws offer an axiomatic basis for a consistent mathematical
description.

This chapter takes axiomatic Thermodynamics as a starting point to derive various relations
between thermodynamic quantities. We calculate response functions such as the heat
capacity and introduce Maxwell relations as powerful tools. These results will allow us to
discuss thermodynamic processes, e.g. adiabatic processes, the expansion of a gas, and
the Carnot cycle. Finally, we will study phase transitions.

4.1 Laws of Thermodynamics
We have occasionally come across the Laws of Thermodynamics in chapter 3 because
the derivation of Statistical Mechanics produces corresponding results. In the context of
Classical Thermodynamics, they are simply postulated:

• Zeroth Law. At equilibrium, two systems in heat contact with each other have the
same temperature. If a system A is in thermal equilibrium with a system B, and if
B is in thermal equilibrium with a third system C, then A and C must also be in
thermal equilibrium.

• First Law. In an isolated system, the total energy is constant. If a closed system
exchanges heat with its environment, its change of internal energy U is given by

dU = ∆Q−∆W , (4.1)

where ∆Q and ∆W denote the heat absorbed and work done by the system, re-
spectively. (Here d denotes a total differential, while ∆ represents an inexact
differential.1)

1The internal energy U and entropy S are state functions and can thus be written as a total differential.
Conversely, quantities like heat Q or work W cannot be expressed in total differential form since they
are path-dependent quantities. We discuss this further below (see sections 4.5 and 4.6).
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• Second Law. The total entropy of an isolated system cannot decrease. For a closed
system undergoing a reversible heat exchange with its environment, the entropy
change is given by

dS = ∆Q
T

. (4.2)

• Third Law. For any system, the entropy approaches a universal constant S → S0 as
the temperature approaches absolute zero (T → 0).

4.2 Axiomatic Thermodynamics
The laws of Thermodynamics may be seen as axioms which allow formulating Thermody-
namics in a versatile, yet consistent manner.2

We begin with the fundamental equation in Thermodynamics,

U = TS − PV + µN , (4.3)

which we already encountered in eq. (3.138) when discussing the grand canonical ensemble.
In total differential form, the fundamental equation becomes

dU = TdS − PdV + µdN . (4.4)

This formula also follows from the first law of Thermodynamics (when generalized to an
open system where the particle number may vary).

From eq. (4.4), we can derive T (S, V,N), P (S, V,N) and µ(S, V,N). This means that
the internal energy U(S, V,N), as a function of entropy, volume, and particle number,
contains complete information; everything can be derived from it. In contrast, T (S, V,N)
does not contain all information because we additionally require the functions P (S, V,N)
and µ(S, V,N) to reconstruct U(S, V,N). Geometrically, we may visualize T (S, V,N),
P (S, V,N), and µ(S, V,N) as the slopes of the three-dimensional function U along the
three respective directions.

Let us now perform a Legendre transform in order to switch from the energy differential
dU to the free energy differential dF . Since F = U − TS (see section 3.5) we have, using
eq. (4.4),

dF = dU − TdS − SdT
= −SdT − PdV + µdN . (4.5)

From this we see that the free energy is now expressed as a function of T , V , and N ;
explicitly,

dF (T, V,N) = −S(T, V,N) dT − P (T, V,N) dV + µ(T, V,N) dN . (4.6)

In practice, the Legendre transform is done by
2The axiomatic description of Thermodynamics goes back to the mathematician Constantin Carathéodory.
See his original work [1] (in German language) for further background.
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1. inverting T (S, V,N) to obtain S(T, V,N) and

2. replacing S by S(T, V,N) wherever it occurs in U(S, V,N), such that

F (T, V,N) = U(S(T, V,N), V,N)− TS(T, V,N) .

Just like U(S, V,N), the function F (T, V,N) contains all thermodynamic information.
The same holds for the inversions T (F, V,N), V (T, F,N), and N(F, T, V ). For example,
from the total differential dF we can derive an expression for dV :

dV = −S
P

dT − 1
P

dF + µ

P
dN , (4.7)

which in turn yields the functions S(T, F,N), P (T, F,N), and µ(T, F,N). In conclusion,
there exist many ways of formulating Thermodynamics, although we mostly deal with the
most important ones.

4.3 Equations of state, response functions
Let us revisit eq. (4.6). Since we can write the function F (T, V,N) as a total differential, it
contains complete information about the thermodynamic system. However, the functions
S(T, V,N), P (T, V,N), and µ(T, V,N) do not. This does not mean we should not care
about them; they contain useful information and are named equations of state. Generally,
equations of state are first derivatives of thermodynamic potentials (e.g. F , Ω).

For example, we see from eq. (4.6) that

P (T, V,N) = −∂F (T, V,N)
∂V

. (4.8)

This equation is termed thermal equation of state. The functions P (T, V,N), V (P, T,N),
and N(P, T, V ) are equivalent. In fact, since the pressure is intensive, we may write P in
terms of the volume per particle v = V/N such that P (T, V,N) = P (T, v).

For a second example of an equation of state, we return to the fundamental equation (4.4),
which we may rearrange to yield

dS = 1
T
dU + P

T
dV − µ

T
dN . (4.9)

This implies the so-called caloric equation of state,

1
T (U, V,N) = ∂S(U, V,N)

∂U
. (4.10)

T (U, V,N) connects the variables T, U, V , and N . Typically one writes U(T, V,N), which
is derived by inversion.

We may also take second derivatives of thermodynamic potentials. The resulting functions
constitute an important class called response functions.
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Consider the thermal equation of state (4.8). Transforming, via a Legendre transform,
from the free energy F (T, V,N) to the Gibbs free energy G(T, P,N), we have

G = F + PV

= U − TS + PV , (4.11)

and thus

dG = −SdT + V dP + µdN . (4.12)

. With this, the thermal equation of state takes the form

V (P, T,N) = ∂G(P, T,N)
∂P

. (4.13)

Now we compute the total differential of V (P, T,N),

dV = ∂V

∂P

∣∣∣∣∣
T,N

dP + ∂V

∂T

∣∣∣∣∣
P,N

dT + ∂V

∂N

∣∣∣∣∣
P,T

dN . (4.14)

Eq. (4.14) elucidates that second derivatives of thermodynamic potentials describe how
state variables change – or “respond” – under variation of other state variables. Since they
are easily measured in practice, response functions are extremely important to characterize
systems and have many applications.

The total differential in eq. (4.14) contains three response functions. The first one is

−V κT (P, T ) = ∂V (P, T,N)
∂P

= ∂2G(P, T,N)
∂P 2 , (4.15)

which defines the isothermal compressibility κT ,

κT (P, T ) = − 1
V

∂V (P, T,N)
∂P

. (4.16)

Since κT is intensive by construction, it cannot depend on N . The last equality in eq.
(4.15) makes it explicit that κT is given by a second derivative of the thermodynamic
potential G. The next second derivative is linked to the expansion coefficient α,

α(P, T ) = 1
V

∂V (P, T,N)
∂T

= 1
V

∂2G(P, T,N)
∂T∂P

. (4.17)

Finally, the third response function states the volume per particle v, or inverse density,

∂2G(P, T,N)
∂N∂P

= ∂V (N,P, T )
∂N

= ∂Nv(P, T )
∂N

= v(P, T ) . (4.18)

Combining these formulas, eq. (4.14) becomes

dV = −V κTdP + V αdT + vdN . (4.19)

Thus, total differentials of equations of state define response functions.

To summarize:
Equation of state ↔ First partial derivative of thermodynamic potential
Response function ↔ Second partial derivative of thermodynamic potential.
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4.4 Maxwell relations
In Thermodynamics, Maxwell relations3 establish connections between different state
variables by relating partial derivatives of these variables.

Consider the fundamental equation for a closed system (i.e. N = constant),

dU = TdS − PdV .

This implies

T = T (S, V,N) = ∂U(S, V,N)
∂S

, (4.20)

P = P (S, V,N) = −∂U(S, V,N)
∂V

. (4.21)

According to Schwarz’s theorem, which states that second partial derivatives are symmetric
in the order of differentiation, we have

∂

∂V

∣∣∣∣∣
S,N

∂U

∂S

∣∣∣∣∣
V,N

= ∂

∂S

∣∣∣∣∣
V,N

∂U

∂V

∣∣∣∣∣
S,N

(4.22)

Using eqs. (4.20) and (4.21) in eq. 4.22 yields one Maxwell relation:
(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

. (4.23)

Note that numerous other Maxwell relations exist; this is merely one example. Their
derivation, however, always follows the same recipe:

1. Take a pair of thermodynamic variables and express each of them in terms of a
partial derivative of a thermodynamic potential.

2. Use Schwarz’s theorem to relate them.

Just from U(S, V,N), we can form several other pairs besides T and P , and many more
Maxwell relations arise from the other thermodynamic potentials, e.g. from

F (T, V,N), G(T, P,N), H(S, P,N), Ω(T, V, µ), . . .

Thus, Maxwell relations are a powerful concept in Thermodynamics.

4.5 Adiabatic processes and the TdS equations:
Thermodynamic calculus

A thermodynamic process is adiabatic if no heat is exchanged between the system and
its surroundings, i.e. ∆Q = 0. In practice, this might be (approximately) achieved if the
process occurs quickly, such that there is no time to conduct heat to or away from the
system. (Note that when a process is conducted very quickly, it will become irreversible.)

3Maxwell relations should not be confused with Maxwell’s equations of Electrodynamics.
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The fundamental equation (4.4), which expresses the First Law of Thermodynamics
combined with eq. (4.2), states:

∆Q = TdS = dU + PdV − µdN . (4.24)

We reemphasize that ∆Q 6= dQ, i.e. heat is not a potential or state function and cannot
be written as a total differential. For an adiabatic process, eq. (4.24) reduces to

0 = dU + PdV − µdN . (4.25)

TdS equations. To describe typical adiabatic processes like the compression of a gas,
it is often useful to switch from the independent variables (U, V,N) to, say, (V, P,N) or
(V, T,N). Our aim in the following calculation is thus to express the RHS4 of eq. (4.24)
in terms of different variable combinations. This is interesting because the LHS vanishes
in the adiabatic case, TdS = 0 . To keep it simple, we assume that the particle number is
constant and omit the dN term.

By suitable variable transformation, we may write the caloric equation of state (see
eq. (4.10)) as U(P, V ), U(P, T ), or U(V, T ). For instance, we obtain U(P, V ) from the
equations of state U(V, T ) and T (V, P ) (eqs. (4.8) and (4.10) with constant N). Let us
look at these cases consecutively:

• Using U(P, V ), we write the total differential of U as

dU =
(
∂U

∂P

)
V

dP +
(
∂U

∂V

)
P

dV .

Inserting this in eq. (4.24) gives the first TdS equation,

TdS =
(
∂U

∂P

)
V

dP +
[
P +

(
∂U

∂V

)
P

]
dV . (4.26)

• Using the equations of state U(P, T ) and V (P, T ), we may write the total differentials
of U and V as

dU =
(
∂U

∂P

)
T

dP +
(
∂U

∂T

)
P

dT ,

dV =
(
∂V

∂P

)
T

dP +
(
∂V

∂T

)
P

dT .

With this, TdS in eq. (4.24) is expressed in terms of dP and dT , yielding the second
TdS equation:

TdS =
[(
∂U

∂P

)
T

+ P

(
∂V

∂P

)
T

]
dP +

[(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

]
dT . (4.27)

• Finally, using U(V, T ) to write TdS with respect to dV and dT , the third TdS
equation becomes

TdS =
(
∂U

∂T

)
V

dT +
[
P +

(
∂U

∂V

)
T

]
dV . (4.28)

4RHS – right hand side, LHS – left hand side (of an equal sign in an equation)
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Note that the canonical variables of dS are the energy U and volume V (together with the
particle number N in case µdN 6= 0). These are the “natural” variables of dS which also
appear in the fundamental equation (4.4). In terms of U and V , the total differential dS
thus contains complete information. In contrast, the expressions in eqs. (4.26)-(4.28) in
terms of non-canonical variables do not include all thermodynamic information about the
system. Note, however, that TdS in eq. (4.28) becomes an exact differential if dV = 0.
The TdS equations (4.26)–(4.28) feature several partial derivatives of equations of state
which we now want to relate to response functions such as heat capacity or the thermal
expansion coefficient (see section 4.3).
Heat capacity. The heat capacity at constant volume is defined as

CV :=
(

∆Q
∆T

)
V

, (4.29)

where ∆T denotes the temperature increase associated with adding the amount of heat
∆Q to the system. Looking at infinitesimal changes in heat and temperature, we can use
the TdS equation (4.28) together with ∆Q = TdS to deduce

CV =
(
∂U

∂T

)
V

. (4.30)

Similarly, we define the heat capacity at constant pressure as

CP :=
(

∆Q
∆T

)
P

. (4.31)

Combining ∆Q = TdS with eq. (4.27), this yields

CP =
(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

=
(
∂(U + PV )

∂T

)
P

=
(
∂H

∂T

)
P

, (4.32)

where we have defined the enthalpy H := U + PV .

Example 4.1. Heat capacity of ideal gas

For an ideal gas, the internal energy is given by U = 3
2NkBT , and the state variables

volume, pressure, and temperature are related according to the ideal gas law (1.10),
PV = NkBT . This implies (

∂V

∂T

)
P

= kBN

P

and hence

CV =
(
∂U

∂T

)
V

= 3
2kBN (4.33)

CP =
(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

= 5
2kBN (4.34)
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We thus see that CP > CV .

In general, the heat capacity at constant pressure is never smaller than the heat capacity
at constant volume:

CP ≥ CV .

The reason is that when adding heat at constant pressure, a fraction of the absorbed heat
gets converted into mechanical work, thus not contributing to an increase in temperature.
At constant volume, the system does not perform any mechanical work.
Isothermal Compressibility and expansion coefficient. To relate the remaining expres-
sions in the TdS equations to other known response functions, we make use of a Maxwell
relation. Dividing eq. (4.28) by temperature, we obtain

dS = 1
T

(
∂U

∂T

)
V

dT +
[
P

T
+ 1
T

(
∂U

∂V

)
T

]
dV . (4.35)

Using Schwarz’s theorem, we equate

∂2S

∂T∂V
= ∂2S

∂V ∂T
, (4.36)

where the partial derivaties ∂S/∂T and ∂S/∂V are given by the total differential in eq.
(4.35), such that eq. (4.36) becomes

∂

∂V

(
1
T

(
∂U

∂T

)
V

) ∣∣∣∣∣
T

= ∂

∂T

(
P

T
+ 1
T

(
∂U

∂V

)
T

) ∣∣∣∣∣
V

1
T

∂2U

∂V ∂T
= − 1

T 2

[
P +

(
∂U

∂V

)
T

]
+ 1
T

(
∂P

∂T

)
V

+ 1
T

∂2U

∂T∂V

⇒ P +
(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

. (4.37)

With this Maxwell relation, we may now progress by relating
(
∂P
∂T

)
V
to something already

known. The thermal equation of state (relating P, T, V at fixed N , see section 4.3) may
be written as

dV =
(
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP = dV (T, P ) , (4.38)

which we invert to find

dP = 1(
∂V
∂P

)
T

dV −

(
∂V
∂T

)
P(

∂V
∂P

)
T

dT = dP (T, V ) . (4.39)

This result implies
(
∂P

∂T

)
V

= −

(
∂V
∂T

)
P(

∂V
∂P

)
T

= α

κT
, (4.40)

where α and κT denote the expansion coefficient and isothermal compressibility, respectively,
as defined in eqs. (4.17) and (4.16). We remark that the first equal sign in eq. 4.40 may
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be seen as a second version of the chain rule. 5 Now that we have related all partial
derivatives to known response function, we may write the TdS equation (4.28) as

TdS = CV dT + T
α

κT
dV . (4.41)

A similar procedure leads to the final expression for the other TdS equations (exercise):

TdS = CPdT − αTV dP (4.42)

TdS = CV κT
α

dP + CP
αV

dV (4.43)

When a system does not exchange any heat with its environment, we can set TdS = 0 and
obtain relations between T and V , P and V , or T and P . This makes the TdS equations
important especially for adiabatic processes.

When combined, the TdS equations (4.41)–(4.43) tell us something about how the response
functions CV , CP , α, and κT relate to each other. Subtracting eq. (4.41) from eq. (4.42),
we get

(CP − CV )dT = αTV dP + αT

κT
dV . (4.44)

Now, we choose the state function T (V, P ) which implies the differential

dT =
(
∂T

∂V

)
P

dV +
(
∂T

∂P

)
V

dP .

Invoking eqs. (4.17) and (4.40) finally leads to the equation
(
CP − CV
αV

− αT

κT

)
dV +

(
(CP − CV )κT

α
− αTV

)
dP = 0 . (4.45)

Since V and P are independent variables, the coefficients (in large parentheses) must
vanish independently. Thus,

CP − CV = α2TV

κT
. (4.46)

Since κT ≥ 0, we see from this immediately that CP ≥ CV , in agreement with the physical
argument above.

5The chain rule, as you probably know it, states that(
∂P

∂T

)
V

= ∂P (T, V )
∂T

∣∣∣∣
V

=
∂P
(
U(T, V ), V

)
∂T

∣∣∣∣∣
V

=
(
∂P

∂U

)
V

/(
∂T

∂U

)
V

=
(
∂P

∂U

)
V

·
(
∂U

∂T

)
V

,

where U is an arbitrary function.
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As another application of the TdS equations, imagine an adiabatic process described by
the variables volume and temperature. Adiabaticity requires TdS = 0, and eq. (4.41)
describes the process in terms of V and T ,

CV dT + T
α

κT
dV = 0 . (4.47)

From this we infer that (
∂T

∂V

)
S

= − Tα

κTCV
, (4.48)

where all quantities on the RHS are functions of T and V . In general, CV > 0 and
κT ≥ 0. For most systems, also α > 0, from which we conclude that for most systems
(∂T/∂V )S < 0, i.e. the temperature rises upon compression. You may know this from
every-day experience when using an air pump. Water is a prominent exception: for
H2O the expansion coefficient can be negative for certain temperatures, leading to the
well-known anomaly that causes icebergs to float.

4.6 Different ways of expanding gas
There exist many different paths for a gas to expand from an initial volume Vi to a
final volume Vf . For example, the pressure might stay constant while expanding the gas
(isobaric) or the temperature might be held fixed (isothermal), or the temperature and
pressure might change in complicated ways as the gas expands. The mechanical work W
performed by the gas during the expansion is described by the integral

Wi→f =
∫ Vf

Vi
P (V ) dV . (4.49)

Here we assume that all state changes are quasistatic, i.e. so slow that at each point in
state space we can describe the gas by the three state variables P, V , and T . Since the
equation of state T (P, V ) exists (see section 4.3), any point in a P-V diagram completely
specifies the system. Fig. 4.1 shows a P-V diagram including important paths a gas
may take in a thermodynamic process. Curves along constant temperature are termed
isotherms. The work W corresponds to the area under the path in the P-V diagram.

Consider the isothermal expansion of an ideal gas (T =const., Ti = Tf ) corresponding to
path 1 in fig. 4.1. From the ideal gas law (eq. (1.10)) we obtain

P (V ) = NkBT

V
.

Thus, the work W (1)
i→f along this path is

W
(1)
i→f = NkBT

∫ Vf

Vi

dV
V

= NkBT ln
(
Vf
Vi

)
. (4.50)

This shows that the gas does positive work, W (1)
i→f ≥ 0. For the paths 2 and 3, we find

W
(2)
i→f = Pi(Vf − Vi) = NkBT

Vi
(Vf − Vi) = NkBT

(
Vf
Vi
− 1

)
, (4.51)

W
(3)
i→f = Pf (Vf − Vi) = NkBT

Vf
(Vf − Vi) = NkBT

(
1− Vi

Vf

)
. (4.52)
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1
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3

Figure 4.1: P-V diagram of expanding a gas from initial volume Vi to final volume Vf . Green lines are
isotherms and blue lines are isochors (vertical) and isobars (horizontal).

These paths are a combination of isochoric and isobaric processes. While they are certainly
not isothermal, their gas ends up with the same temperature as in the beginning, i.e.
Ti = Tf . Comparing the areas under the curves when taking paths 1, 2, and 3, we see that

W
(2)
i→f ≥ W

(1)
i→f ≥ W

(3)
i→f .

We can confirm this mathematically by defining x := Vf/Vi in eqs. (4.50)-(4.52) and
showing that

x− 1 ≥ ln x ≥ 1− 1
x

(for x > 0) .

All these considerations show clearly that work is a path-dependent quantity. Therefore
work cannot be an exact (total) differential, i.e. we must write ∆W instead of dW . For
this reason, work is not a state function. We can see this by writing down the total work
Wtot done in a cyclic process,

Wtot =
∮

∆W =
∮
P dV 6= 0 , (4.53)

which is generally nonzero as it corresponds to the area enclosed by the cycle beginning
and ending at the same point in a P-V diagram. Thus, a work function W (P, V ) has no
meaning.

From the path-dependence of mechanical work in a thermodynamic process, we draw the
following conclusions.

• The First Law of Thermodynamics states that dU = ∆Q−∆W (eq. (4.1)). Now
we take a closed contour integral,∮

dU =
∮

∆Q−
∮

∆W = 0 , (4.54)

which vanishes since the internal energy U is a state function, U(V, P ) (and, equiva-
lently, because dU is an exact differential). It follows from this and eq. (4.53) that∮

∆Q 6= 0. Thus heat is also not a state function. Moreover, the total absorbed heat
in a cyclic process equals the total work done.
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• In our example of expanding an ideal gas as illustrated by fig. 4.1, the process starts
and ends at the same temperature. Thus we have Uf − Ui = 0 because U = 3

2NkBT
for an ideal mono-atomic gas. Consequently, the heat absorbed during the process
equals the work performed (even though the process is not cyclic): Qi→f = Wi→f .

• For an adiabatic process where ∆Q = TdS = 0, i.e. the system does not exchange
heat with its surroundings, we find that

dU = −∆W = −dW .

Thus, for dS = 0, the work becomes an exact differential dW .

Adiabatic expansion of an ideal gas. In the first part of this section, we have discussed
the expansion of a gas in an isothermal process (T =const.) as well as in a combination of
isobaric (P =const.) and isochoric (V =const.) processes, using the example of an ideal
gas. Now we consider the adiabatic expansion of an ideal gas (dS = 0). What path in a
P-V diagram describes an adiabatic process?

To address this question, we need a TdS equation that relates dP and dV to each other.
From eq. (4.43) we get

0 = CV κT
α

dP + CP
αV

dV . (4.55)

Here the response functions depend on volume and pressure, i.e. CV (P, V ), CP (P, V ),
α(P, V ), and κT (P, V ). Furthermore, the equation of state for the ideal gas is given by eq.
(1.10); PV = NkBT . The thermal compressibility is then given by

κT = − 1
V

(
∂V (P, T )

∂P

)
T

= NkBT

V P 2

= 1
P
. (4.56)

In example 4.1 we have already calculated the heat capacities for an ideal mono-atomic
gas,

CV = 3
2NkB , CP = 5

2NkB .

Note that CV and CP do not depend on P or V .

Now, inserting the result for κT into eq. (4.55) yields

CV
dP
P

= −CP
dV
V

dP
P

= −γdV
V

, (4.57)

where we have defined the adiabatic exponent γ := CP/CV ≥ 1. For an ideal gas, the
adiabatic exponent is γ = 5/3. Integrating both sides of eq. (4.57) from the initial state i
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to the final state f gives

lnP
∣∣∣∣f
i

= −γ ln V
∣∣∣∣f
i

ln
(
Pf
Pi

)
= ln

(
Vi
Vf

)γ

⇒ Pf
Pi

=
(
Vi
Vf

)γ
. (4.58)

This result is an important relation describing adiabatic processes. Since the initial and
final state were chosen arbitrarily, we have derived

PV γ = const. (4.59)

Since for any expansion γ > 1, the adiabatic P (V ) curves in a P-V diagram drop faster
than the isotherms.

Note that like isotherms, adiabatic curves (sometimes called adiabates) never cross each
other in a P-V diagram. However, adiabates cross with isotherms.

4.7 Carnot cycle
The Carnot cycle is a cyclic thermodynamic process which serves as an idealization of real
heat engines converting heat to work. To give an example of a real heat engine, fig. 4.2
illustrates a scheme of the Otto engine and its corresponding cycle.

The Carnot cycle consists of four steps as depicted in fig. 4.3:

• a→ b: isothermal expansion at temperature T1;

• b→ c: adiabatic reversible expansion;

• c→ d: isothermal compression at T2 < T1;

• d→ a: adiabatic reversible compression.

The Carnot cycle is approximately realized by periodically moving a cylinder between
two heat reservoirs of different temperatures. As a result, heat gets transferred from the
hot (T1) to the cold reservoir (T2). Figures 4.4 and 4.5 provide an illustration of the four
distinct steps in this heat engine.

As for any cycle, the integral over the internal energy is zero,∮
dU = 0 .

It follows that the total work Wtot done in the Carnot cycle is

Wtot =
∮

∆W =
∮

∆Q = Qtot = Qa→b +Qc→d , (4.60)

where Qa→b and Qc→d denote the heat transfer to the system during the respective
isothermal processes. Note that no heat is exchanged along the adiabates. The quantity
Qa→b corresponds to the amount of heat the (idealized) engine absorbs from the hot
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Figure 4.2: Four-stroke Otto engine and Otto cycle as an example of a real heat engine.

  

1

2

3

1

2

Figure 4.3: PV diagram of the Carnot cycle.

STEP 1 (a→ b)

V, PT1 T2

STEP 2 (b→ c)

V
T1 T2

Figure 4.4: Carnot process steps 1 and 2: isothermal and adiabatic expansion. (In step 2 the cylinder is
thermally insulated, as shown by the cross-hatched pattern).
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STEP 3 (c→ d)

P
T1 T2

STEP 4 (d→ a)

V, PT1 T2

Figure 4.5: Carnot process steps 3 and 4: isothermal and adiabatic compression. (In step 4 the cylinder is
thermally insulated, as shown by the cross-hatched pattern.)

reservoir (T1) during isothermal expansion. Similarly, −Qc→d represents the heat emitted
to the cold reservoir at T2 during isothermal compression.

Let us now look at the entropy of the system. As a state function, S must satisfy6∮
dS = 0 , (4.61)

and dS is an exact differential given by eq. (4.2) according to the Second Law of
Thermodynamics. This implies

0 =
∮

dS = Qa→b

T1
+ Qc→d

T2

and thus

Qc→d = −T2

T1
Qa→b . (4.62)

Notice the negative sign on the RHS, showing that indeed is transferred from the system
to the cold reservoir at T2. Combining eqs. (4.60) and (4.62), we derive that the total
work done in the Carnot cycle is given by

Wtot = Qa→b

(
1− T2

T1

)
. (4.63)

Hence the work done by the idealized Carnot engine depends on the temperature ratio
between the reservoirs. We define the efficiency of the Carnot heat engine as

η := Wtot

Qa→b
= 1− T2

T1
. (4.64)

6The entropy balance refers to the heat engine itself (which we call system), not including the two
reservoirs. For the reservoirs, the total entropy change is given by∮

dS = −Qa→b
T1

− Qc→d
T2

,

which must equal to zero for a reversible process. Thus, as soon as the heat emitted −Qc→d becomes
slightly larger than T2

T1
Qa→b, the process is irreversible.



R. Netz: Statistical Physics and Thermodynamics 82

The efficiency expresses the net work done per absorbed heat. Since 0 < T2 < T1, the
efficiency can take values between zero and one; 0 < η < 1. If T1 is very high and T2
very small, the total work will be large. Conversely, if both reservoirs have the same
temperature T2 = T1, the engine performs no work and the efficiency is zero. We can
visualize this considering that the total work corresponds to the area enclosed by the cycle
in the P-V diagram. The further the isotherms are apart, the larger the enclosed area will
be.

Carnot heat pump. As an ideal process, the Carnot cycle is reversible. This means that
instead of using it as a heat engine that converts heat into work, we might reverse the
process and use the machine as a heat pump which converts work into heat. The P-V
diagram of the reversed Carnot cycle looks just the same and consists of the same steps,
only running in the opposite direction.

A Carnot heat pump transports heat from the cold reservoir at T2 to the hot reservoir at
T1. Specifically, the heat Q1 := −Qb→a transferred to the hot reservoir during isothermal
compression is given by

Q1 = −Wtot

η
, (4.65)

where −Wtot represents the work done on the system. To measure how powerful the heat
pump is, we define the coefficient of performance ε as the inverse of the Carnot efficiency,

ε := 1
η

= T1

T1 − T2
. (4.66)

Thus, to get a lot of heat from a heat pump, the temperatures T1 and T2 should not be
too different. We will calculate an example in the following when discussing the principle
of cogeneration of heat and electricity.

Cogeneration of heat and electricity. How do you heat a house as efficiently as possible?
Suppose that your house features a tank of natural gas and has access to a ground water
reservoir beneath. The most direct way would be to simply burn the gas to produce heat.
1J (one Joule) of burned gas would then yield 1J of heat. However, you can do much
better by using a Carnot engine. First, you would burn the gas to power the Carnot
machine. If the gas burns at 600◦C ≈ 870K and the heating panels have a temperature of
40◦C ≈ 313K, the ideal efficiency is

η = 1− T2

T1
≈ 0.64 .

In other words, 1J of burned gas supplies 0.64J of work (e.g. electricity) and 0.36J of heat
to the house. With the 0.64J of work, you can now run a heat pump. This is where the
ground water comes into play. Suppose the ground water is 10◦C ≈ 283K cold. Then, the
heat pump’s ideal coefficient of performance is

ε = T1

T1 − T2
≈ 10.4 .
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Feeding 0.64J into the heat pump, this means that you will get 10.4 · 0.64J ≈ 6.7J for
heating the house. Together with the 0.36J of heat coming directly from the Carnot engine,
you will obtain a total heat of 7.6J from burning just 1J of gas!

At first glance, this looks suspiciously like a violation of energy conservation. However, a
large amount of energy was extracted from the ground water during the process, which
makes up for the seemingly missing part. Since the ground water reservoir is large, its
temperature decrease will not be noticeable.

The principle described here is known as cogeneration of heat and electricity. It is applied
in many private and public buildings.

4.8 Transfer and creation of entropy
Now we discuss why real engines are less efficient than the idealised Carnot process. ∆Q
is the heat transfer from reservoir 1 at T1 to reservoir 2 at T2. The two reservoirs are
connected via a wire that conducts heat (see Fig. 4.6).

T1 T2

⇒ ∆Q⇒

⇒ ∆S ⇒

Figure 4.6: Two reservoirs with temperatures T1 and T2 can exchange heat and entropy via wires. (The
striped pattern represents thermal insulation from the environment.)

Reversible Case

The entropy changes in the reservoirs are ∆S1 = −∆Q
T1

< 0 and ∆S2 = ∆Q
T2

> 0. For
T1 = T2 the total entropy change ∆Stot = ∆S1 + ∆S2 = 0 is zero. This is an example of a
reversible heat transfer. Heat is transferred, but the total entropy stays constant. The
second law of thermodynamics allows these kinds of reversible processes to happen.

Irreversible Case

Opposite to the reversible case, here the assumption is that T1 > T2. The heat will flow
from the hot to the cold reservoir. ∆Q is assumed so small that T1 and T2 stay quasi
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constant. The entropy however increases:

∆Stot = ∆S1 + ∆S2 (4.67)

= ∆Q
( 1
T2
− 1
T1

)
(4.68)

= ∆QT1 − T2

T1T2
(4.69)

> 0, (4.70)

and thus this process is irreversible. Note that the opposite process, i.e. heat flowing
from the cold to the hot reservoir meaning T1 < T2, would increase the entropy and is not
allowed.

Comments
• The Carnot process is reversible if no heat leaks from the hot to the cold reservoir.

• The heat flow from the hot to the cold reservoir without conversion to mechanical
work is the main reason for the low efficiency of real heat engines compared to the
ideal Carnot efficiency.

• There is no heat engine with a higher efficiency than the Carnot engine.

4.9 Extremal properties of thermodynamic potentials
• In an insulated system U , V , and N are constant and the entropy S(U, V,N) is

maximized with respect to all non-conserved quantities, as shown in section 3.5.

• If energy transfer is allowed between a small system and a reservoir (see Fig. 4.7),
we have

dU = TdS − PdV + µdN (4.71)

dS = 1
T
dU + P

T
dV − µ

T
dN (4.72)

Stot = S(U1, V1, N1) + S(U − U1, V − V1, N −N1)

≈ S(U1, V1, N1) + S(U, V,N)− U1

T
+O

( 1
N

)
= S(U1, V1, N1)− U1

T
+ const.

= − 1
T

(U1 − S1T ) + const. (4.73)

So from the second law of thermodynamics follows that S1 − U1
T

is maximized. And
thus U1 − TS1 is minimized. We conclude that the free energy F = U − TS is
minimized when T, V,N are fixed.

• Now let us allow energy transfer and volume transfer: V1 and U1 can change (see
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U1 U − U1

Figure 4.7: A small reservoir in heat contact with a reservoir (The stripy pattern represents thermal insulation).

V1

U1

V − V1

U − U1

Figure 4.8: A small reservoir in contact with a reservoir, but now V1 and U1 can change (The stripy pattern
represents thermal insulation).

Fig. 4.8):

Stot = S(U1, V1, N1) + S(U − U1, V − V1, N −N1)

= S1 + S(U, V,N)− U1

T
− V1P

T
+O

( 1
N

)
. (4.74)

The total entropy Stot is maximized, and thus TS1 − U1 − V1P is maximized. With
that the Gibbs free energy (free enthalpy) G(T, P,N) = U − TS + PV is minimised
for a system at fixed T, P,N .

4.10 Thermodynamics of phase transitions
Simple substances can exist in one of three phases: solid, liquid, gas (vapor). A phase
diagram of such a substance (see fig. 4.9) illustrates in which phase the substance exists
depending on temperature and pressure.

Along the lines in the diagram, two phases coexist, meaning there are two solutions to the
equation of state with different volumes v = V

N
per particle. On the two-phase coexistence

lines, for a given volume, the system splits into two coexisting phases (phase separation /
phase equilibrium). At the triple point all three phases coexist. At the critical point the
difference between two phases (liquid/vapour) vanishes.

4.10.1 Thermodynamic stability at the phase transition
Consider a two-phase system like liquid-vapour at constant T and P . As shown in
section 4.9, at constant T ,P , equilibrium is characterised by a minimum of the Gibbs free
energy (free enthalpy)

G = U − TS + PV (4.75)
=
∑
i

µiNi. (4.76)
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Figure 4.9: Example of a phase diagram for a simple substance (not water).

Now let N = N1 +N2, where N1 is the number of particles in phase 1 and N2 the number
of particles in phase 2.

G = N1µ1 +N2µ2 (4.77)
= N1µ1 + (N −N1)µ2 (4.78)

This can be minimised with respect to N1

∂G

∂N1
= ∂

∂N1
(N1µ1 + (N −N1)µ2) (4.79)

= µ1 − µ2 (4.80)
!= 0. (4.81)

We see that in equilibrium the chemical potential has to be equal for the two phases.

4.10.2 Clausius-Clapeyron equation
Consider two coexisting phases i = 1, 2. For each phase we can write

dGi = −SidT + VidP + µidNi (4.82)
= d(µiNi) (4.83)
= µidNi +Nidµi (4.84)

dµi = − Si
Ni

dT + Vi
Ni

dP. (4.85)
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With the definition of the total differential this yields

∂µi
∂T

∣∣∣∣∣
P

= − Si
Ni

(4.86)

∂µi
∂P

∣∣∣∣∣
T

= Vi
Ni

(4.87)

∂(µ2 − µ1)
∂T

∣∣∣∣∣
P

= −
(
S2

N2
− S1

N1

)
(4.88)

= −∆s. (4.89)

Here s = S
N

is the entropy per particle.

∂(µ2 − µ1)
∂P

∣∣∣∣∣
T

= V2

N2
− V1

N1
(4.90)

= ∆v (4.91)

Here v = V
N

is the volume per particle. With ∆µ = µ2 − µ1 and using the differential
chain rule7 this becomes

− ∂P

∂T

∣∣∣∣∣
∆µ

=
∂∆µ
∂T

∣∣∣
P

∂∆µ
P

∣∣∣
T

= −∆s
∆v (4.96)

dPco(T )
dT

= ∂P

∂T

∣∣∣∣∣
∆µ=0

= ∆s
∆v , (4.97)

where Pco(T ) describes the coexistence curve in the phase diagram. With ∆qi = T∆s,
which is the latent heat required for the phase change, this becomes

dPco
dT

(T ) = ∆qi
T∆v . (4.98)

This is the Clausius-Clapeyron equation.
7The total differential of ∆µ as a function of pressure and temperature reads

d∆µ =
(
∂∆µ
∂P

)
T

dP +
(
∂∆µ
∂T

)
P

dT , (4.92)

which can be rewritten as

dT = d∆µ(
∂∆µ
∂T

)
P

−

(
∂∆µ
∂P

)
T

dP(
∂∆µ
∂T

)
P

. (4.93)

This implies

(
∂T

∂P

)
∆µ

= −

(
∂∆µ
∂P

)
T(

∂∆µ
∂T

)
P

(4.94)

and, using
(
∂∆µ
∂P

)
T

=
(
∂P
∂∆µ

)−1

T
,(
∂∆µ
∂T

)
P

(
∂T

∂P

)
∆µ

(
∂P

∂∆µ

)
T

= −1 . (4.95)

We call this the differential chain rule.
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Example 4.2. Boiling water and the Clausius-Clapeyron equation

At 100◦C (T = 373.15 K), the latent heat for water is ∆qi ≈ 2.3 MJ kg−1. The liquid
volume of water is Vl ≈ 0.001 m3 kg−1, whereas its gaseous volume is Vg ≈ 1.7 m3 kg−1.
With these values, the RHS of the Clausius Clapeyron equation (4.98) amounts to

∆qi
T (Vg − Vl)

≈ 3600 J K−1 m−3 .

The LHS is found to be
dPco
dT ≈ 3618 Pa K−1 = 3618 J K−1 m−3 ,

which agrees well with the RHS.

Example 4.3. The anomal coexistence curve of water

When melting ice (i.e. frozen water), the change in volume ∆V is very small. The
coexistence curve must therefore have a steep slope dPco/dT . In fact, ∆V is negative in
this case because ice contracts when melting (anomaly of water). This means that also
the liquid–solid coexistence curve of water has a negative slope in the phase diagram!
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5 Statistical Mechanics of
interacting systems

Throughout the previous chapters, the ideal gas served as the standard example for any
application or calculation. Indeed, the ideal gas is a powerful model that allows us to
calculate many properties explicitly. However, this computability relies on ignoring all
interactions between the particles. Real gases interact, and in some cases the ideal gas is
too simple to recover the properties of a real physical system.

In this chapter, we turn on interactions in order to find out how this influences thermody-
namic properties. After introducing the virial theorem and the virial expansion, we derive
the Van der Waals equation of state, which provides insight into the behavior of a real gas
– even when the liquid and gaseous phases coexist! The methods presented in this chapter
also have applications in fields like Astrophysics.

5.1 Virial theorem
Consider a gas of N interacting atoms. Let us suppose that the interaction is described by
a power law, such that the Hamiltonian H of the gas is given by

H = Hkin +Hpot , (5.1a)

where the kinetic and potential contributions are, respectively,

Hkin =
N∑
j=1

~p2
j

2mj

, (5.1b)

Hpot =
N∑
j=1

N∑
k=j+1

[
(~qj − ~qk)2

]n
2 ajk . (5.1c)

Here ~pj and ~qj symbolize the momentum and position of the j-th particle, respectively. In
principle, the prefactors ajk and the particle masses mj may differ from particle to particle.
In addition, the power law exponent n may be any arbitrary number, which makes this
model very general and versatile. Possible applications include:

• gravity, where n = −1 and the prefactor are proportional to the product of the
masses, ajk ∝ −mjmk;

• a one-component plasma of equally charged particles of equal mass mj = m, with
exponent n = −1 and prefactors ajk ∝ Q2, where Q denotes the charge (found in
e.g. heavy planets and white dwarfs); or

• a two-component plasma described by n = −1 and ajk ∝ QjQk, where the charge
Qj of particle j may be ±Q.
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As established in chapter 3, the partition function Z plays a central role in calculating
expectation values of state variables like the pressure P or entropy S. For the interacting
system (eq. (5.1)), it is given by

Z = 1
N !

N∏
j=1

[ 1
h3

∫
V

d3qj

∫
d3pj

]
e−βH , (5.2)

where h denotes Planck’s constant and β represents the inverse temperature as usual.
Essentially, the partition function contains the solution of the problem since we could
derive all thermodynamic quantities from it. The bad news are that we cannot solve eq.
(5.2) explicitly. Nonetheless, we may extract some important information analytically.
To do this, let us rescale T , p and q using a rescaling factor λ. We define the rescaled
quantities

T̃ = λ−nT ,

q̃ = λ−1q ,

p̃ = λ−n/2p .

This transformation leaves the exponential in the partition function, exp{−βH}, invariant:

β̃H̃ =
p̃2
j

2mj + (q̃j − q̃k)najk
kBT̃

=
p2
j

2mj + (qj − qk)najk
kBT

= βH , (5.3)

where H̃ denotes the Hamiltonian in rescaled variables. The bounds of integration change
according to ∫ L

0
dq =

∫ L
λ

0
λdq̃ =

∫ L̃

0
λdq̃ , (5.4)

which follows from the fact that lengths are rescaled as L̃ = L/λ. Thus the total volume
V is related to the rescaled volume Ṽ according to V = λ3Ṽ .

In terms of the rescaled variables, the partition function now reads

Z(V, T,N) = 1
N !

N∏
j=1

[ 1
h3

∫
Ṽ

d3q̃jλ
3
∫

d3p̃jλ
3n/2

]
e
− 1
kBT̃
H̃kin(p̃)+H̃pot(q̃)

. (5.5)

From this we see that

Z(V, T,N) = λ3N(1+n
2 )Z(Ṽ , T̃ , N) . (5.6)

In other words, the rescaling merely adds a prefactor to the partition function. We now
apply another redefinition: instead of using the three variables V, T,N , we substitute them
with the new set of variables V T−3/n, T , and N . In terms of these, we write Z as

Z(V, T,N) ≡ h(V T−3/n, T, N)
= h(λ3Ṽ λ−3T̃−3/n, λnT̃ , N)
= h(Ṽ T̃−3/n, λnT̃ , N) . (5.7)

Here h is an unknown function of the new variables. We note that λ only appears as
a prefactor of the variable T̃ in the last line of eq. (5.7); the variable V T−3/n remains
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invariant under scaling. Connecting eq. (5.7) with eq. (5.6), we conclude that the partition
function must have the functional form

Z(V, T,N) = (λnT̃ )
3N
n (1+n

2 )φ(Ṽ T̃−3/n, N) , (5.8)

where φ is yet another unknown function. This formula for Z is exact since no approxima-
tions were made.

We have shown the following: Apart from the particle number N , the partition function
depends on the variables V and T . These two variables may be rescaled in a way that Z
is given by the product of a prefactor which contains the sole dependence on λ, multiplied
by a scaling-independent function φ.

We utilized the scale factor λ to reveal certain symmetry relations. Since λ holds no
physical meaning, we may now safely set λ = 1. This yields

Z(V, T,N) = T
3N
n (1+n

2 )φ(V T−3/n, N) . (5.9)

Using this formula, let us compute some thermodynamic quantities. The free energy of
the interacting gas is

F = −kBT lnZ = −kBT
[3N
n

(
1 + n

2

)
ln(T ) + ln

(
φ(V T−3/n)

)]
. (5.10)

Since dF = −SdT − PdV (eq. (3.102)), the free energy in turn allows us to calculate
pressure and entropy:

P = −
(
∂F

∂V

)
T

= kBT · T−3/nφ
′
(
V T−3/n

)
φ (V T−3/n) , (5.11)

S = −
(
∂F

∂T

)
V

= −F
T

+ kB

3N
n

(
1 + n

2

)
− 3
n
V T−3/nφ

′
(
V T−3/n

)
φ (V T−3/n)

 . (5.12)

A comparison of eq. (5.11) and (5.12) shows that we can express S in terms of P to
get rid of the unknown functions φ and φ′ in the expression. Then, the internal energy
U = F + TS (see eq. (3.61)) is given by

U = kBT
3N
n

(
1 + n

2

)
− 3
n
V P . (5.13)

Eq. (5.13) is known as the virial theorem. Analyzing the scaling properties of the partition
function, we have arrived at an exact relation between energy, temperature, volume, and
pressure for an interacting gas of N atoms – without the need to solve the partition
function explicitly. However, the theorem requires that the particle interaction potential
follows a power law; otherwise it does not hold. Note that eq. (5.13) is neither the thermal
nor the caloric equation of state (f(P, V, T ) = 0, respectively f(U, V, T ) = 0) but rather of
the form f(U, P, V, T ) = 0.

Returning to the applications mentioned above, we immediately find the energy of a gas
with gravitational or Coulomb interactions by setting n = −1, which yields

U = −3N
2 kBT + 3V P . (5.14)
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The first term on the RHS corresponds to the result for an ideal gas, as follows from the
equipartition theorem (see section 3.6.1). The second term containing the product V P is
the virial term which results from the non-zero interactions. In fact, to be consistent with
previous results, the virial theorem should reduce to the equation of state for the ideal gas
if the interactions vanish. Setting n = 0 in eq. (5.13) indeed leads to

nU = 3NkBT
(

1 + n

2

)
− 3V P n=0==⇒ V P = NkBT , (5.15)

which states the ideal gas law (eq. (1.10)) as expected.

Separation into mean kinetic and potential energy. To separate the internal energy
U into its kinetic and potential energy contribution, we make use of the fact that the
kinetic energy depends solely and exclusively on the momentum coordinates of the gas
atoms. When discussing the equipartition theorem in section 3.6.1, we already derived the
expectation value of the kinetic energy,

〈Ekin〉 =
〈

N∑
j=1

~p2
j

2mj

〉
= 3N

2 kBT , (5.16)

for N atoms with equal mass. Writing

〈U〉 = 〈Ekin〉+ 〈Epot〉 , (5.17)

the virial theorem implies that the average potential energy of the interacting gas is

〈Epot〉 = 〈U〉 − 3N
2 kBT = 3N

n
kBT −

3
n
V P . (5.18)

This underlines that the virial theorem allows to derive exact results for a large class of
interacting systems.

5.2 Virial expansion
As discussed above, the partition function Z of an interacting gas, given by eq. (5.2),
cannot be solved explicitly. In this section we seek an approximate solution. Using a
perturbative approach known as the virial expansion, we wish to derive a correction to the
ideal gas equation of state which adequately describes a weakly interacting gas. The idea
is that interactions in a real gas are weak if the particle concentration, or density, is low.
In that case, the atoms are, on average, far away from other gas atoms, inhibiting strong
interactions. Besides generalizing the ideal gas law, the aim of this section is thus also to
discuss an important application of perturbation theory in Statistical Mechanics.

To reiterate, the partition function of an interacting gas reads

Z (T, V,N) = 1
N !

N∏
j=1

[∫ d3pjd3qj
h3

]
e−β(Hkin+Hpot) , (5.19)
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where the Hamiltonian H = Hkin +Hpot is now – to keep things simple – given by

Hkin =
N∑
l=1

~pl
2

2m (5.20a)

Hpot =
N∑
l=1

N∑
k=l+1

w(|~ql − ~qk|) . (5.20b)

Here the pair potential w(q) may be an arbitrary function of the distance q = |~ql − ~qk|
between any pair (l, k) of atoms. Typical contributions to the potential include steric
(hard core), Coulomb, and/or van der Waals interactions.

Firstly, we can directly perform the integration over the momenta pj. This leads to

Z (T, V,N) = 1
N !

∏
j

∫ d3qj
λ3
t

e−β
∑N

k>l
w(|~ql−~qk|) , (5.21)

where λt represents the thermal wavelength as defined in eq. (3.93). Note that the pair
potential prevents the factorization of the position integral. It is now useful to switch to
the grand canonical ensemble. The grand canonical partition function Z is given by

Z (µ, V, T ) =
∞∑
N=0

eβNµZN (V, T ) (5.22)

in terms of the canonical partition function ZN(V, T ) ≡ Z(T, V,N) (eq. (5.21)). As
derived in section 3.9, the grand canonical equation of state (eq. (3.130)) reads

PV = kBT ln
(
Z(µ, V, T )

)
(5.23)

and the number of atoms follows from

N = 1
β

∂ ln
(
Z (µ, V, T )

)
∂µ

. (5.24)

We now define the fugacity z := eβµ; this allows us to write the grand canonical partition
function as a power series in z:

Z (µ, V, T ) =
∞∑
N=0

zNZN (V, T ) . (5.25)

Then, we may also write the equation of state (5.23) as a power series in z. We therefore
demand

PV

kBT
= ln (Z) = ln

( ∞∑
N=0

zNZN

)
!= V

∞∑
`=1

(
z

λ3
t

)`
b` , (5.26)

where the coefficients b` must be determined such that they satisfy the equality. The
perturbation is hence described in terms of the fugacity. How do we know that z is a small
parameter, you might ask? We do not, but we will eventually replace z by a different
parameter, the concentration.

To find the coefficients b`, we realize that z0Z0 = 1 and invoke the Taylor expansion

ln(1 + ε) = ε− 1
2ε

2 + 1
3ε

3 +O(ε4)
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in order to rewrite lnZ as

ln
( ∞∑
N=0

zNZN

)

= ln
1 + zZ1 + z2Z2 + z3Z3 + · · ·︸ ︷︷ ︸

=: ε


= zZ1 + z2

(
Z2 −

1
2Z

2
1

)
+ z3

(
Z3 − Z1Z2 + 1

3Z
3
1

)
+O

(
z4
)
. (5.27)

Comparing coefficients between eq. (5.27) and the RHS of eq. (5.26), we see that

b1 = λ3
t

V
Z1

b2 = λ6
t

V

(
Z2 −

1
2Z

2
1

)
b3 = λ9

t

V

(
Z3 − Z1Z2 + 1

3Z
3
1

)
. . .

(5.28)

Next, we want to express the functions ZN in terms of the Mayer function fij defined by

fij := exp
(
− βw(|~qi − ~qj|)

)
− 1 . (5.29)

The Mayer function possesses two beneficial properties: a) it remains finite even for
infinitely repulsive potentials; and b) it approaches zero as w → 0. Inserting eq. (5.29)
into the ZN , we get

Z1 =
∫ d3q

λ3
t

1 = V

λ3
t

Z2 = 1
2!λ6

t

∫
d3q1d3q2 e

−βw(|~q1−~q2|)

= 1
2!λ6

t

∫
d3q1d3q2 (1 + f12)

Z3 = 1
3!λ6

t

∫
d3q1d3q2d3q3 (1 + f12) (1 + f23) (1 + f13)

. . .

(5.30)

With this, the coefficients b` become
b1 = 1

b2 = 1
2

∫ d3q1d3q2

V
f12

b3 = 1
6

∫ d3q1d3q2d3q3

V

(
(1 + f12) (1 + f23) (1 + f13)− 3 (1 + f12) + 2

)

= 1
6

∫ d3q1d3q2d3q3

V

(
f12f23f13 + f12f23 + f12f13 + f23f13

)

= 1
6

∫ d3q1d3q2d3q3

V

(
f12f23f13 + 3f12f23

)
. . .

(5.31)

Since the integrals are proportional to the Mayer functions, they converge (as long as fij
falls off to zero fast enough).
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Virial diagrams. We can keep track of the Mayer function terms in the coefficients b`
by drawing diagrams. This technique known as diagrammatic expansion allows a quick
calculation of the terms and is very helpful for bookkeeping. The idea is the following:
first, you draw ` points. Then, you connect the points pairwise in all possible ways. A
connecting line between points i and j corresponds to fij, and you multiply all lines in
the same diagram. Only the irreducible diagrams, i.e. the diagrams where all points are
directly or indirectly connected to each other, contribute a term to b`. For example, the
virial diagram for b3 has four irreducible diagrams of which the last three are equivalent:

We can invoke the chain rule to write the particle number (eq. (3.132)) as

N = 1
β

∂ lnZ(µ)
∂µ

= 1
β

∂z

∂µ

∂ lnZ
∂z

= z
∂ lnZ
∂z

. (5.32)

Thus, based on eq. (5.26), we have

N = z
∂ lnZ
∂z

= V
∞∑
`=1

`

(
z

λ3
t

)`
b` . (5.33)

Defining the particle concentration c := N/V , we arrive at the formula

c =
∞∑
`=1

`

(
z

λ3
t

)`
b` . (5.34)

We have derived an expression for the concentration c in terms of a power series in z. As
mentioned at the beginning of the calculation, we are looking for an equation of state
that, in good approximation, describes an interacting gas with low concentration. In other
words, c is (physically) the small parameter, and we would like to expand the equation of
state in powers of c. To achieve this, we must invert the function c(z) to obtain z(c) and
insert this into the equation of state P (z).

Mathematical intermezzo: Inversion of power series. Consider a power series
c(z) of the forma

c =
∞∑
`=1

d`z
` . (5.35)

Such a series is always invertible. To find the inverse function z(c), we make the ansatz

z = n1c+ n2c
2 + n3c

3 + · · · =
∞∑
`=1

n`c
` . (5.36)
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Inserting this ansatz into eq. (5.35) yields

c = d1z + d2z
2 + d3z

3 + · · ·

= d1
(
n1c+ n2c

2 + n3c
3 + · · ·

)
+ d2

(
n1c+ n2c

2 + . . .
)2

+ d3 (n1c)3 +O(c4)

= d1n1c+
(
d1n2 + d2n

2
1

)
c2 +

(
d1n3 + 2d2n1n2 + d3n

3
1

)
c3 + · · · (5.37)

up to third order in c. In the last line of eq. (5.37) we have sorted the RHS by powers of
c. Since the RHS must equal c, we necessarily conclude:

c = d1n1c ⇒ n1 = 1
d1(

d1n2 + d2n
2
1

)
c2 = 0 ⇒ n2 = −d2n

2
1

d1
= −d2

d3
1(

d1n3 + 2d2n1n2 + d3n
3
1

)
c3 = 0 ⇒ n3 = −2d2

2 − d3d1

d5
1

. . .

These are the coefficients of the inverse power series z(c) in terms of the coefficients of
c(z), which means that we successfully inverted the original power series.

aIf the sum would start at zero, we would have a constant term d0 which would raise an issue for the
inversion. However, we can solve this problem by defining a new power series y := c − d0. This
eliminates the constant term and we can proceed by inverting y. Later, the coefficients of the inverse
of the original power series c can be found by re-summation.

Now that we know how to invert a power series, we can invert eq. (5.34) to obtain the
fugacity in powers of the concentration:

c = b1
z

λ3
t

+ 2b2

(
z

λ3
t

)2

+O
( z

λ3
t

)3
 ⇒ z

λ3
t

= c− 2b2c
2 +O(c3) . (5.38)

Note that we have used b1 = 1 here (eq. (5.31)). Finally, we use this result to rewrite the
equation of state given in eq. (5.26), yielding

P

kBT
= z

λ3
t

+ b2

(
z

λ3
t

)2

+O
( z

λ3
t

)3


= c− 2b2c
2 + b2

(
c− 2b2c

2
)2

+O(c3) . (5.39)

Expanding the square and omitting all terms with c3 or a higher order leads to the virial
expansion of the pressure in powers of the particle concentration,

P

kBT
= c− b2c

2 +O(c3) , (5.40)

where b2 is given in eq. (5.31). This approximation is relatively good for gases with low
particle concentration. Generally, the equation of state for an interacting gas is written as

P

kBT
=
∞∑
`=1

a`c
` , (5.41)
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where the coefficients a` are termed virial coefficients. The first two virial coefficients are
a1 = 1 and a2 = −b2.

In the following, we apply the virial expansion to two examples.

Example 5.1. Ideal gas limit

The ideal gas is characterized by the absence of interactions, i.e. w(q) = 0. This implies
that the Mayer function between any pair of particles vanishes, fij = exp (−βw(|~qi − ~qj|))−
1 = 0. Consequently, all coefficients b` and all virial coefficients a` vanish except for
a1 = b1 = 1. The equation of state for the pressure thus becomes

P

kBT
= c ,

and with c = N/V we arrive, once again, at the exact equation of state for the ideal gas.

The ideal gas limit of the virial expansion shows that the leading term in eq. (5.40)
represents the ideal gas while the second term provides a first-order correction in the
presence of non-zero interactions. In the next example, we calculate this correction
explicitly.

Example 5.2. A gas of hard spheres

Consider a gas of solid spheres with diameter d, interacting with each other according to
the pair potential

w(|~qi − ~qj|) =

∞ |~qi − ~qj| < d

0 |~qi − ~qj| ≥ d .
(5.42)

The second virial coefficient is then given by

a2 = −1
2

∫ d3q1d3q2

V

(
e−βw(|~q1−~q2|) − 1

)
= 1

2

∫
d3q

(
1− e−βw(q)

)
= 1

24π
∫ d

0
dq q2

= 1
2

4π
3 d3 = 1

2V◦ , (5.43)

where V◦ denotes the excluded volume around each sphere. In this case, the first-order
correction to the non-interacting gas is thus proportional to the excluded volume created
by one particle. Since a2 > 0 here, the pressure is larger than that of a comparable ideal
gas. Intuitively we can understand this as a consequence of the excluded volume.

5.3 Van der Waals equation of state
With the virial expansion at hand, let us now explore the thermodynamic properties of a
real gas. Virtually all real gases behave like hard spheres for very short distances between



R. Netz: Statistical Physics and Thermodynamics 98

0 1 2 3 4 5 6
w

1.0

0.5

0.0

0.5

1.0

|r|

Figure 5.1: Typical pair potential (Here for example: D = 2, s = 2)

gas molecules, while exhibiting attractive forces between molecules at larger distances to
each other. This characteristic may be described fairly well by the pair potential w(r),

w(r) =

∞ |r| < R0

−w0
(
R0
|r|

)S
|r| ≥ R0 .

(5.44)

Here r denotes the distance between two gas molecules and S, R0, and w0 > 0 are
gas-specific constants. The potential causes particles to repel for separations of r < R0
and attract for larger separations due to inter-molecular forces. For example, these forces
might be Van der Waals attractions characterized by S = 6. Figure 5.1 shows the graph
of w(r).

The first non-trivial virial coefficient is a2; for the given potential we find

a2 = 1
2

∫ ∞
0

dr 4πr2
(
1− e−βw(r)

)
= 2π

∫ R0

0
dr r2 + 2π

∫ ∞
R0

dr r2
(

1− e
w0
kBT

(R0
r )S

)
. (5.45)

The second integral cannot be solved in closed form. However, if we assume1 w0
kBT

< 1, we
can expand the exponential up to first order (exp(x) ≈ 1 + x) to obtain

a2 ≈
2π
3 R0

3 − 2πR0
S w0

kBT

∫ ∞
R0

dr r2−S . (5.46)

The integral in eq. (5.46) is now solvable and converges for S > 3, which is typically the
case. Thus, we may write the second virial coefficient for the potential in eq. (5.44) as

a2 = b′ − a′

kBT
, (5.47)

where we have defined the quantities

a′ := 2π
S − 3R

3
0w0 , b′ := 2π

3 R3
0 . (5.48)

1This assumption is related to the high temperature approximation. It is valid when the attractive
interaction is weak compared to the kinetic energy of the gas molecules.
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Now, we plug the second virial coefficient into the virial expansion (eq. (5.40)), which
yields

P

kBT
= c+ a2c

2 = c+
(
b′ − a′

kBT

)
c2

⇒ P + a′c2 = ckBT (1 + b′c) . (5.49)

The next step involves a “dirty” trick: we use the first-order Taylor expansion 1
1−x ≈ 1 + x

backwards for the term (1 + b′c). We thereby assume that b′c� 1, implying that the gas
molecules are not closely packed. This assumption seems unreasonable in principle but
will turn out to be physically justified (as explained below). Applying the trick leads to

P + a′c2 = ckBT

1− b′c , (5.50)

and by reinserting the definition c = N/V we obtain the Van der Waals equation of state,
(
P + a′

N2

V 2

)(
V − b′N

)
= NkBT . (5.51)

This is the equation of state for a real gas described by the potential in eq. (5.44). The
parameters a′ and b′ are stated in eq. (5.48). A comparison with the form of the ideal gas
law suggests that we may identify an effective pressure Peff and an effective volume Veff:

Peff := P + a′
N2

V 2
Veff := V − b′N

 ⇒ PeffVeff = NkBT . (5.52)

From the Van der Waals equation of state we may draw the following conclusions.

• In the ideal gas limit, the interactions disappear (w0 → 0) and the gas particles do
not occupy any volume (i.e. R0 → 0). This implies a′ = b′ = 0 and the Van der
Waals equation of state reduces to the ideal gas equation of state, PV = NkBT .

• Note that b′ corresponds to half the excluded volume occupied by one gas particle.
Thus, the effective volume Veff = V − b′N is reduced by the volume excluded by
the gas particles. When V → b′N , the system volume V approaches the sum of the
particle volumes and the gas becomes closely packed. Physically, this means that
the pressure must diverge, which is reflected in the Van der Waals equation of state
as a consequence of the “dirty trick” we used in the derivation. We may therefore
motivate the trick retrospectively by physical intuition.

• The effective pressure Peff is increased by the attractive interaction between gas
particles (because a′ > 0). As a consequence, the particles move closer together. The
effect is proportional to the interaction strength w0 as well as N2, the number of
pairs of particles.

To analyze the Van der Waals equation further, we now rearrange eq. (5.51) to obtain the
pressure as a function of volume,

P = NkBT

V − b′N
− a′N

2

V 2 . (5.53)
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Figure 5.2: P-V diagram of the Van-der-Waals equation. The black solid lines show the boundaries of
the binodal and spinodal regions, respectively. Horizontal dotted lines illustrate the Maxwell
construction.

Figure 5.2 shows eq. (5.53) in a P-V diagram for several temperatures. Below a critical
temperature Tc, the pressure isotherms exhibit a regime where the pressure increases with
increasing volume. This would imply a negative isothermal compressibility κT (eq. (4.16)),

κT = − 1
V

(
∂V

∂P

)
T

< 0 (!) ,

which clearly appears unphysical. However, we will see below that a phase separation
prevents such unphysical behavior. First of all, let us quantify the region of negative
compressibility.

We begin with determining the critical temperature. Above Tc, the pressure decreases
monotonically; below Tc the pressure behaves non-monotonically. This implies the existence
of a saddle point on the critical isotherm where(

∂P

∂V

)
Tc

=
(
∂2P

∂V 2

)
Tc

= 0 . (5.54)

We call this point the critical point (Vc, Pc, Tc). Calculating the first and second derivatives
from eq. (5.53) and inserting the results in eq. (5.54) yields the two conditions

kBTc
a′N

= 2(Vc − b′N)2

V 3
c

and kBTc
a′N

= 3(Vc − b′N)3

V 4
c

. (5.55)

It follows that (Vc − b′N) = 2
3Vc and consequently Vc = 3b′N . Reinserting into one of the

conditions (5.55) yields Tc, and from this we also obtain Pc using eq. (5.53). Altogether,
the critical point is given by

Tc = 8
27

a′

kBb′
, Vc = 3b′N , Pc = a′

27b′2
. (5.56)
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Figure 5.3: Guggenheim’s fit and the law of corresponding states. The plot shows the reduced tem-
perature T/TC as a function of the reduced density ρ/ρc ≡ n/nc = N/V

(N/V )c
for eight different

substances (see legend). Despite their different properties, all substances follow the same fit (solid
curve) rather well. The data thus provides experimental evidence for the law of corresponding
states. This figure was originally published in [2].

Now, we define the reduced temperature T , reduced pressure P, and reduced volume V
according to

T := T

Tc
, P := P

Pc
, and V := V

Vc
.

In terms of these rescaled variables, the Van der Waals equation of state reads

P = 8T
3V − 1 −

3
V2 . (5.57)

Note that this result does not depend on the parameters a′ and b′ anymore. This means
that eq. (5.57) is universal; it holds for all substances, independent of their properties.
The rescaled equation of state expresses the law of corresponding states, which says that
near the critical point all substances behave similarly. An experimental confirmation of
the law is displayed in figure 5.3.
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As mentioned, the critical point is a saddle point; both the first and second derivatives of
the pressure with respect to the volume vanish there. For any temperature T < Tc, the
corresponding isotherm features precisely two extrema (where (dP/dV )T = 0). The set of
extrema encloses the regime of negative compressibility which we call the spinodal region
(see fig. 5.2).

Let us now return to the issue raised by the appearance of a negative isothermal com-
pressibility – clearly an unphysical feature of the van der Waals equation of state. The
resolution originates from the coexistence of phases. Inspecting fig. 5.3, we notice that
at temperatures below Tc the substances each have two distinct reduced densities. In fig.
5.2, the isotherms T < Tc describe the liquid phase left of the coexistence region, while
the substance is in the gaseous phase right of the coexistence region. In between lies the
so-called binodal region where liquid and gas coexist and a single density is not defined.
Therefore the isotherms have no physical meaning in this regime.

But how do we determine the boundaries of the binodal region in a P-V diagram? What
do the isotherms look like within the binodal region? And what are the densities of the
two coexisting phases? To answer these questions, we first recall from section 4.10 that
the coexisting phases (labeled with subscripts 1 and 2 below) must have equal pressure
and temperature. In addition, two phases in equilibrium must have the same chemical
potential µ,

µ = g1(P, T ) = g2(P, T ) . (5.58)

Here g(P, T ) := G(N,P, T )/N represents the free enthalpy per particle, where the free
enthalpy G, or Gibbs free energy, is defined by

G(N,P, T ) := U + PV − TS = µN . (5.59)

The total differential of the free enthalpy per particle is then given in terms of the volume
per particle v = V/N and the entropy per particle s = S/N according to

dg = vdP − sdT . (5.60)

Along an isotherm, the temperature is constant, so we have

g1 − g2 =
∫ g1

g2
dg =

∫ P1

P2
v(P ) dP . (5.61)

The start and end point of this integral have the same pressure P1 = P2 but different
volumes v1 6= v2 because the function v(P ) is not uniquely defined in the binodal region,
as illustrated in fig. 5.4. But we can split the integral into a sum of well-defined parts
such that ∫ P1

P2
v dP =

∫ PB

PA
v dP +

∫ PC

PB
v dP +

∫ PD

PC
v dP +

∫ PE

PD
v dP

= Area 1 − Area 2 , (5.62)

where the subscripts and areas refer to fig. 5.4. According to eq. (5.58), the integral
must vanish because we require g1 − g2 = 0. This only happens when the areas 1 and 2
are equally large. We conclude that in the phase coexistence region only one pressure is
possible. The value of the coexistence pressure Pcoex(P ) is found by drawing a horizontal
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Figure 5.4: Illustration of the Maxwell construction in a VP diagram. The two areas A1 and A2 must be
equal; only then the integral in eq. (5.62) vanishes.

line in the P-V diagram such that the areas below and above the line become equal. This
procedure is known as Maxwell construction.

The Maxwell construction tells us how to connect the isotherms between purely liquid and
purely gaseous states. In the binodal region, which is defined by the Maxwell construction,
the isotherms actually follow the dotted lines shown in fig. 5.2. As the volume changes,
the pressure remains constant while the relative amounts of the gas and liquid phases
change. Note that at the critical point, liquid and gas coexist at the same pressure and
volume, implying that their density difference vanishes there.

5.4 Transfer matrix method
In some cases, a useful way to tackle the partition function is by exploiting the power of
linear algebra. To demonstrate this, we consider the example of a one-dimensional system
of interacting spins commonly known as the 1D Ising model.

1D Ising model. The Ising model is an idealized system of interacting spins used to
describe magnetism. In the one-dimensional (1D) case, it consists of a chain of N sites.
Each site i ∈ {1, . . . , N} represents an atomic spin si ∈ {+1,−1} that may either take
the value +1 (“spin up”, ↑) or −1 (“spin down”, ↓). Let the boundary conditions be
periodic, such that the chain forms a ring and sN+1 ≡ s1.
Suppose that the spins interact with their nearest neighbors and with an external magnetic
field. In a simple form, the Hamiltonian of the 1D Ising model in the configuration {si} is
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then written as

H({si}) = −ε
∑
〈i,j〉

sisj − h
N∑
j=1

sj , (5.63)

where ε denotes the interaction strength between two spins i and j, while h represents
the coupling to an external magnetic field. The notation 〈i, j〉 indicates a summation
over all nearest neighbor pairs, avoiding double counting. Given that a site i has two
nearest neighbor sites i− 1 and i+ 1, which themselves have site i as one of their nearest
neighbors, we may simplify eq. (5.63) to

H({si}) = −ε
N∑
j=1

sjsj+1 − h
N∑
j=1

sj . (5.64)

The system seeks to minimize its free energy F = 〈H〉 − TS. Assume zero temperature
(T = 0) and let ε > 0. Then, two aligned neighboring spins (↑↑ or ↓↓) would contribute
the interaction energy −ε to the free energy, whereas a spin pair of opposing orientation
(↑↓ or ↓↑) would contribute the energy +ε, leading to a higher total energy. Hence, the
Ising model with ε > 0 favors aligned spins (ferromagnetism). In the case ε < 0, adjacent
spins tend to anti-align in order to minimize the free energy (anti-ferromagnetism). At
finite temperature, the situation is a bit more subtle, as we will discuss below.

The partition function of the 1D Ising model (eq. (5.64)) reads

Z =
∑
s1

∑
s2

· · ·
∑
sN

exp

βε
N∑
j=1

sjsj+1 + βh
N∑
j=1

sj

 , (5.65)

where each summation ∑si runs through the two possible spin states si = ±1. Once again,
especially for large N , this expression is rather clunky. However, we can make use of the
fact that sites only interact with their nearest neighbors. Defining E := βε, H := βh and
using the periodic boundary conditions, we rewrite eq. (5.65) as

Z =
∑
s1

∑
s2

· · ·
∑
sN

exp

E∑
j

sjsj+1 + H

2
∑
j

(sj + sj+1)


=
∑
s1

∑
s2

· · ·
∑
sN

N∏
j=1

exp
{
Esjsj+1 + H

2 (sj + sj+1)
}

=
∑
s1

∑
s2

· · ·
∑
sN

∏
j

Tsjsj+1

=
∑
s1

∑
s2

· · ·
∑
sN

Ts1s2Ts2s3 · · ·TsNs1 . (5.66)

We have shown that the exponential factorizes into terms Tss′ := eEss
′+H

2 (s+s′). Each
of these terms can take one of four possible values depending on the spin configuration
ss′ ∈ {↑↑, ↑↓, ↓↑, ↓↓}, which we may regard as elements of a 2 × 2 matrix called the
transfer matrix T ,

T = (Tss′) =
[
T+1,+1 T+1,−1
T−1,+1 T−1,−1

]
=
[
eE+H e−E

e−E eE−H

]
. (5.67)
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The expression for the partition function in eq. (5.66) boils down to a number of matrix
multiplications. Note that ∑

s2=±1
Ts1s2Ts2s3 = (T 2)s1s3 ,

where

(T 2)s1s3 =
[
(T 2)s1=+1,s3=+1 (T 2)s1=+1,s3=−1
(T 2)s1=−1,s3=+1 (T 2)s1=−1,s3=−1

]
.

Furthermore, ∑
s3=±1

(T 2)s1s3Ts3s4 = (T 3)s1s4 .

We can continue this iteration until we end up with the simple result

Z = tr(TN) , (5.68)

where tr(TN) = ∑
s1(TN)s1s1 is the trace of the transfer matrix to the power of N .

Since T is symmetric, it is diagonalizable (for a quick refresher on matrices, see Appendix
A.2). In other words, we can find a linear transformation U that turns T into a diagonal
matrix Λ with eigenvalues λ1 and λ2 as its diagonal elements. This yields

Z = tr(TN) = tr
(
(UU>T )N

)
= tr

(
(U>T U)N

)
= tr

(
ΛN

)
= tr

[
λN1 0
0 λN2

]
= λN1 + λN2

⇒ Z = λN1 + λN2 . (5.69)

Once we know the eigenvalues of the transfer matrix, we obtain an exact solution for
partition function of the 1D Ising model, which originally was a complicated sum over
many configurations. To find the eigenvalues, we solve the characteristic equation of the
eigenvalue problem:2

det(T − λI2) = 0 ⇒ det
∣∣∣∣∣eE+H − λ e−E

e−E eE−H − λ

∣∣∣∣∣ = 0 . (5.70)

Computing the determinant gives

0 =
(
eE+H − λ

) (
eE−H − λ

)
− e−2E

= λ2 − λeE(eH + e−H) + e2E − e−2E , (5.71)

and solving this quadratic equation for λ yields

λ1,2 = eE(eH + e−H)
2 ±

√√√√(eE(eH + e−H)
2

)2

− (e2E − e−2E)

= eE

coshH ±
√

(eH + e−H)2

4 − 1 + e−4E


= eE

[
coshH ±

√
sinh2H + e−4E

]
. (5.72)

2Here I2 =
(

1 0
0 1

)
denotes the 2× 2 unit matrix.
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With this, we have obtained an explicit expression for Z and may now calculate thermo-
dynamic properties of the ring of interacting spins. For instance, the Gibbs free energy G
follows as

G(h, T ) = −kBT lnZ = −kBT ln
(
λN1 + λN2

)
. (5.73)

After slight rearrangement, the Gibbs free energy per spin, g(h, T ) := G(h, T )/N is

g(h, T ) = −kBT
N

ln λN1 −
kBT

N
ln
1 +

(
λ2

λ1

)N . (5.74)

In the large system limit (N →∞), since λ1 > λ2, this simplifies to

g(h, T ) ≈ −kBT ln λ1 −
kBT

N

(
λ2

λ1

)N
︸ ︷︷ ︸
→0 (N→∞)

≈ −kBT ln λ1 , (5.75)

where we have used ln
(
ab
)

= b ln a and ln(1 + x) ≈ x for ||x|| � 1. Inserting eq. (5.72)
for λ1 now leads to

g(h, T ) ≈ −kBT ln
cosh h

kBT
+
√

sinh2 h

kBT
+ e−4ε/(kBT )

− ε . (5.76)

We have re-substituted ε = EkBT and h = HkBT here in order to use the original
parameters of the Ising model (eq. (5.64)).

The magnetization per spin, m := M/N (M denotes total magnetization), follows from
the Gibbs free energy per spin by taking a partial derivative:

m = −∂g
∂h

= sinh(h/(kBT )) + cosh(h/(kBT )) sinh(h/(kBT ))
cosh(h/(kBT )) +

√
sinh2(h/(kBT )) + e−4ε/(kBT )

(5.77)

With a bit of algebra (factorizing the hyperbolic sine and dividing both the numerator
and the denominator by the square root term), the expression simplifies to

m = sinh(h/(kBT ))√
sinh2(h/(kBT )) + e−4ε/(kBT )

. (5.78)

This result for the magnetization per spin in the 1D Ising model is plotted in fig. 5.5
for different temperatures. Notably, this implies m(h = 0) = 0, i.e. in the absence
of an external magnetic field no spontaneous magnetization occurs. The slope of the
magnetization curve is given by the susceptibility χ := ∂m/∂h, which in the zero field
limit becomes

lim
h→0

χ = lim
h→0

∂m

∂h
= e2e/(kBT )

kBT
. (5.79)

We see that as the temperature approaches absolute zero (T → 0), the susceptibility at
zero field diverges, indicating a phase transition3 at the critical temperature Tc = 0.

3Since a critical temperature of absolute zero Tc = 0 is purely theoretical, it is often said that the Ising
model does not exhibit a phase transition in 1D. At dimensions larger than 1, the Ising model also
features finite temperature phase transitions.
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m

h

T1

T2 > T1

T3 > T2

Figure 5.5: Magnetization m as a function of external magnetic field h for the 1D Ising model (eq.
(5.78)) at three different temperatures, T1 < T2 < T3. At h = 0, the susceptibility (slope of the
magnetization curve) diverges as T → 0.

But how can we explain the absence of spontaneous magnetization, or ordering of spins,
at finite temperatures? As remarked in the introduction of the Ising model (blue info box,
p. 103), spins tend to align in order to minimize the free energy at T = 0 and ε > 0.

Consider first a ring of N spins, all pointing upwards (fig. 5.6a). Suppose now that
L < N adjacent spins flip their orientation, creating a domain wall at the edges (fig. 5.6b).
Compared to the completely ordered configuration, the introduction of the two domain
walls leads to an energy change of ∆U = 4ε, increasing the total energy. However, the
domain flip also changes the entropy. Since there are N possible positions for the domain
walls of a subdomain of length L, the associated entropy change is ∆S = kB lnN . Put
together, the change in free energy becomes

∆F = ∆U − T∆S = 4ε− kBT lnN . (5.80)

The system always strives to minimize the free energy. A domain flip reduces the free
energy if ∆F < 0, hence if

4ε < kBT lnN ⇔ N > e4ε/(kBT ) .

Since we typically deal with large systems (N � 1), this inequality is easily satisfied (for
finite temperature). In that case, introducing a domain wall always pays off energetically,
and any ordered configuration will break into a disordered state (Landau-Peierls argument).

1 2 3 4 5 6 7 8 9 ... N...

Figure 5.6: Domain flip in a 1D ring of N spins, creat-
ing two domain walls (red dotted lines).

1 2 3 ...

sp
in
s

Figure 5.7: 2D Ising model with N sites and one
domain wall (red dotted line).
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In 2D, this argument does not hold anymore. Here the free energy change associated
with the creation of a domain wall as depicted in fig. 5.7 (without periodic boundary
conditions) is

∆F = 2ε
√
N − kBT ln

(√
N − 1

)
. (5.81)

The condition for persistent order, or magnetization, is thus

2ε
√
N > kBT ln

(√
N − 1

)
.

Note that now both sides of the inequality depend on N . For large N , the energy term
dominates if the temperature is sufficiently low, such that order is possible in 2D!

5.5 Variational principle
Suppose we wish to study a statistical system described by the Hamiltonian H, but this
Hamiltonian is so complicated that we must give up all hope for exact calculations. For
example, it would be unfeasible to compute the system’s free energy,

F = −kBT ln
(∫
{dx} e−βH({x})

)
. (5.82)

Therefore, we seek an approximate method that yields a best estimate of the true free
energy. To do this, we introduce a trial Hamiltonian H0 which is sufficiently simple such
that we can solve its partition function. The trial Hamiltonian shall depend on the two
variational parameters a and b, whose values we may choose arbitrarily for now.

We write the free energy in terms of the trial Hamiltonian by “adding zero” to eq. (5.82):

F = −kBT ln
(∫
{dx} exp

{
−H0({x}, a, b)

kBT
+ H0({x}, a, b)−H({x})

kBT

})
. (5.83)

This can be reformulated as

F = −kBT ln
(∫
{dx} e−βH0

)
− kBT ln

(∫
d{x} e−βH0 eβ(H0−H)∫

d{x} e−βH0

)
= F0 − kBT ln

〈
eβ(H0−H)

〉
0
, (5.84)

where F0 is the free energy corresponding to the trial Hamiltonian and 〈· · ·〉0 denotes an
expectation value taken with respect to the trial system. We now claim that〈

eβ(H0−H)
〉

0
≥ e〈β(H0−H)〉0 , (5.85)

which follows from the following theorem.

Theorem. Given an arbitrary convex function f(z) (i.e. f ′′(z) > 0) and another function
a(x) depending on a random variable x, the following inequality holds:

〈f(a(x))〉 ≥ f(〈a〉) . (5.86)
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〈a〉

δf

a

Figure 5.8: Qualitative sketch of the function δf(a), which is always non-negative and zero at 〈a〉.

Proof. Expanding the function f(a(x)) around the expectation value of a,

〈a〉 =
∫

dxP (x)a(x)∫
dxP (x) , P (x) : probability distribution of x ,

we get

f(a(x)) = f(〈a〉) + (a(x)− 〈a〉)f ′(〈a〉) + δf (5.87)

such that the residual δf is given by

δf = f(a(x))− f(〈a〉)− (a(x)− 〈a〉)f ′(〈a〉) . (5.88)

The convexity of f implies that δf is a positive function (see fig. 5.8). Consequently, we
necessarily have 〈δf〉 ≥ 0. Taking the expectation value of eq. (5.88) yields

〈δf〉 = 〈f(a(x))〉 − f(〈a〉)− (〈a〉 − 〈a〉)︸ ︷︷ ︸
=0

f ′(〈a〉)

⇒ 〈f(a(x))〉 = f(〈a〉) + 〈δf〉
⇒ 〈f(a(x))〉 ≥ f(〈a〉) q.e.d. (5.89)

This concludes the proof. �

If we now identify

f(z) = ez and a(x) = β
(
H0({x}, a, b)−H({x})

)
,

we have shown eq. (5.85) (note that the exponential function ez is a convex function
everywhere on the domain R).

Continuing with eq. (5.85), we reformulate the inequality according to〈
eβ(H0−H)

〉
0
≥ e〈β(H0−H)〉0

⇔ ln
〈
eβ(H0−H)

〉
0
≥ 〈β(H0 −H)〉0

⇔ − ln
〈
eβ(H0−H)

〉
0
≤ 〈β(H0 −H)〉0 . (5.90)

Finally, applying the inequality (5.90) to eq. (5.84) yields

F ≤ F0 + 〈H −H0〉0 =: Fvar . (5.91)

This result is Gibbs’ variational principle. It states that the true free energy F poses a
lower bound to the variational free energy Fvar. By minimizing the right hand side of eq.
(5.91) with respect to the parameters a and b, we obtain an optimal approximation of the
free energy given the trial Hamiltonian H0. However, it is important to note that the
accuracy of approximation depends on the choice of the trial Hamiltonian.
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6 Quantum Statistics

Typical thermodynamic systems in the real world – solids, liquid, gases – consist of a large
number of very small particles, such as electrons, atoms, and molecules. On the size scales
of these particles, quantum effects become important. One crucial insight of quantum
mechanics is that quantum objects are intrinsically indistinguishable. This required us to
include the factor 1/N ! in chapters 3 and 4 to avoid over-counting. But the implications
of quantum theory reach much further.

This chapter studies gases from a quantum perspective. Essentially, we combine the
grand canonical ensemble with the occupation number formalism of quantum mechanics.
Quantum statistics is all about counting quantum states, and there are two distinct ways
to count: one for particles called fermions, and one for bosons. We study both cases in
the context of ideal quantum gases (neglecting interactions). Applications include the free
electron gas (Fermi gas) inside a metal, the photon gas (Bose gas) as a model for black
body radiation, as well as Bose-Einstein condensation.

6.1 Retrospective: Development of quantum theory
The origins of quantum theory entail fundamental changes in our understanding of matter,
particles and waves. In classical Newtonian physics, a particle has a well-defined position
and momentum; its energy can take on continuous values. Conceptually different, waves
are characterized by their wavelength and frequency.

Experiments have shown that the classical picture breaks down on very small length scales.
In 1887, Hertz observed the photoelectric effect which revealed that the kinetic energy of
electrons, emitted from a metal by shining light on it with a certain frequency ν, does
not depend on the intensity of the electromagnetic radiation. Instead, it depends on
the light frequency ν. Einstein concluded in 1905 that light comes in quanta – so-called
photons – each with energy E = hν, where h denotes Planck’s constant. For sufficiently
high frequencies, each photon releases one electron with kinetic energy Ekin = hν − hν0
from the metal (here hν0 represents the work function). Thus, light has particle properties
and energy is quantized in quantum mechanics.

In 1927, Davisson and Germer conducted scattering experiments with electrons. They
observed a diffraction pattern, confirming the wave-particle dualism in the sense that
particles have wave properties, too. The de Broglie wavelength λ of a particle relates to its
momentum p according to λ = h/p.

Based on the wave-particle dualism, we may describe a free particle with energy E and
momentum p as a plane wave Ψ,

Ψ(x, t) ∝ ei(kx−ωt) , (6.1)
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where x is the space variable, t the time variable, and (with h = 2π~)

k = 2π
λ

= 2π p
h

= p

~
, ~ω = hν = E . (6.2)

Instead of having a certain and precise position, the location of the particle is given in
terms of a probability distribution ρ(x, t),

ρ(x, t) := |Ψ2(x, t)|2 = Ψ(x, t)Ψ∗(x, t) ∝ ei(kx−ωt)e−i(kx−ωt) ∝ 1 . (6.3)

Hence the free particle has a constant probability distribution. In classical mechanics, the
energy-momentum relation for a free particle with mass m reads E = p2

2m . Combining this
with eqs. (6.1) and (6.2) motivates the free-particle Schrödinger equation,

i~
∂Ψ(x, t)
∂t

= − ~2

2m
∂2Ψ(x, t)
∂x2 . (6.4)

In the presence of an external potential V (x), the energy is classically given by E =
p2

2m + V (x). In quantum mechanics, this translates into the Hamiltonian operator Ĥ,

Ĥ = − ~2

2m
∂2

∂x2 + V (x) . (6.5)

In terms of the Hamiltonian, the fundamental equations of quantum theory are

i~Ψ̇ = ĤΨ Time-independent Schrödinger eq. (6.6)
EΨ = ĤΨ Stationary Schrödinger eq. (6.7)

Typically, the stationary Schrödinger equation has many solutions:

EnΨn(x) = ĤΨn(x) , (6.8)

where En and Ψn denote the eigenvalues and eigenfunctions of the Hamiltonian, respectively.
The energy eigenvalues correspond to the quantized energy levels of the system.

6.2 Many-particle wave functions
In Statistical Mechanics, we deal with systems composed of many particles. Consider, for
example, a gas of N atoms. The (non-relativistic) Hamiltonian of the gas can be written
as

Ĥ = − ~2

2m

N∑
i=1

(
~∇i

)2

︸ ︷︷ ︸
kin. energy

+
N∑
i=1

u(~ri)︸ ︷︷ ︸
ext. potential

+
N∑
i=1

N∑
j=i+1

v(~ri − ~rj)︸ ︷︷ ︸
pair interactions

, (6.9)

where the labeled terms represent the kinetic energy, interactions with an external potential,
and two-body interactions between atoms. The functions u(~r) and v(~r) describe the
external potential and the atom-atom pair potential, respectively.

While written down compactly, eq. (6.9) contains complicated expressions; especially the
pair interactions are generally too difficult to handle. In principle, however, the many-body
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wave function follows from the Hamiltonian as the solution of the stationary Schrödinger
equation:

ĤΨn(~r1, ~r2, . . . , ~rN) = EnΨn(~r1, ~r2, . . . , ~rN) . (6.10)
Evidently, Ψn is a function of all N particle positions. In quantum mechanics, particles
are indistinguishable. You cannot tell two quantum objects of the same type (e.g. two
electrons) apart – not even by trying to color them, label them, or, as Griffiths puts it [3],
hiring private detectives to follow them around.

The fact that we deal with identical particles impacts the symmetry of the many-body
wave function. Following Pauli [4], we introduce the permutation operator P̂ij which
exchanges the positions of particles i and j,

P̂ijΨn(~r1, . . . , ~ri, . . . , ~rj, . . . , ~rN) = Ψn(~r1, . . . , ~rj, . . . , ~ri, . . . , ~rN) . (6.11)
We immediately see that applying the permutation operator twice leads back to the original
wave function,

P̂ 2
ijΨn = P̂ijP̂ijΨn = Ψn . (6.12)

Assuming that Ψn is an eigenfunction of the permutation operator, i.e. P̂ijΨn = λΨn, we
infer that the eigenvalue must be λ = ±1:

P̂ijΨn = ±Ψn . (6.13)
The positive eigenvalue means that the many-particle wave function is symmetric with
respect to the permutation of particles, while for the negative eigenvalue the wave function
becomes anti-symmetric under particle permutations. This indicates two kinds of quantum
particles:
• Bosons: λ = +1, integer spin, e.g. photons, phonons, He4, alkali atoms
• Fermions: λ = −1, half-integer spin, e.g. electrons, protons, He3, ...

The concept of bosons and fermions is highly important. But we still do not know what
the many-particle wave function looks like. Let us now assume that we may construct the
N -particle wave function from products of single-particle wave functions, such that

Ψn(~r1, . . . , ~rN) = φα1(~r1) · φα2(~r2) · · ·φαN (~rN) . (6.14)
Here {αn} denotes a set of N quantum numbers that characterize the single-particle wave
functions φαn . Applying the permutation operator to this product wave function gives

P̂ijΨ{αn}(~r1, . . . , ~rN) = P̂ijφα1(~r1) · · ·φαi(~ri) · · ·φαj(~rj) · · ·φαN (~rN)
= P̂ijφα1(~r1) · · ·φαi(~rj) · · ·φαj(~ri) · · ·φαN (~rN)

(fermions) != −P̂ijφα1(~r1) · · ·φαi(~ri) · · ·φαj(~rj) · · ·φαN (~rN) . (6.15)
The last line of this equation, which must hold for fermions according to eq. (6.13), implies

φαi(~rj)φαj(~ri) = −φαi(~ri)φαj(~rj) . (6.16)
Consider the special case where the particles i and j have the same quantum numbers, i.e.
αi = αj = α. In that situation eq. (6.16) would yield

φα(~rj)φα(~ri) = −φα(~ri)φα(~rj) ⇒ 1 = −1 . (6.17)
Clearly we cannot solve or satisfy eq. (6.17) in any way. The immediate consequence of
this is known as Pauli’s exclusion principle:
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Pauli’s exclusion principle. Two identical fermions cannot occupy the same quantum
state. It is impossible that they are described by the same set of quantum numbers.

Pauli’s principle has wide implications for quantum systems. Let us describe the N -
particle system in the occupation number picture, where the state of the system is given
by specifying how many particles nα occupy each single-particle state α. Naturally, the
sum of all occupation numbers must equal the total number of particles,

N =
∑
α

nα . (6.18)

For fermions, not more than one particle can occupy each state, such that the occupation
number can take the values nα ∈ {0, 1}. Bosons, on the other hand, must not obey Pauli’s
exclusion principle; thus any number of particles could occupy the same state and we have
nα ∈ {0, 1, 2, . . . , N} for bosons.

6.3 Bose and Fermi statistics: General results
Consider a quantum system composed of N particles. The system features a set of single-
particle energy levels εi which we number by i = 0, 1, 2, 3, . . . , neglecting the possibility of
degenerate states. In the occupation number picture, the system state is defined by the
occupation numbers ni of the energy levels. Then, the total number of particles satisfies

N =
∞∑
i=0

ni .

Furthermore, the Hamiltonian of the system is given by the sum of the individual particle
energies,

H({ni}) =
∞∑
i=0

niεi . (6.19)

In the canonical ensemble, the corresponding partition function Z (see section 3.5) is found
by summing over all possible configurations of occupation numbers:

Z(N, V, T ) =
∑
{ni}

N fixed

e−βH({ni}) , (6.20)

where β = (kBT )−1 denotes the inverse temperature as usual. It will turn out convenient
to switch to the grand canonical ensemble. Then, the grand canonical partition function
reads

Z(z, V, T ) =
∞∑
N=0

zNZ(N, V, T ) =
∞∑
N=0

zN
∑
{ni}

N fixed

e−βH({ni}) . (6.21)

Here z := eβµ is the fugacity which we have already defined in section 5.2. In eq. (6.21)
we have two different summations: the first summation sums over all possible particle
numbers N , and the second summation runs through all possible occupation number
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configurations at fixed N . We can combine these sums into a single sum over all possible
distributions of ni without constraints on N . Thus,

Z =
∑
{ni}

z
∑

i
ni e−β

∑
i
niεi

=
∑
n0

∑
n1

∑
n2

· · · zn0+n1+... e−βε0n0−βε1n1−...

=
∑
n0

∑
n1

∑
n2

· · · zn0zn1zn2 · · · e−βε0n0 e−βε1n1 · · ·

=
∑
n0

[
ze−βε0

]n0 ∑
n1

[
ze−βε1

]n1 ∑
n2

[
ze−βε2

]n2 · · · . (6.22)

We see that the grand canonical partition function factorizes completely into sums over
the occupation number for each energy level individually. For fermions, the sums would
range from 0 to 1 (i.e. ∑1

ni=0 for each i = 0, 1, 2, . . . ). In contrast, bosonic systems would
exhibit infinite sums (∑∞ni=0).

Example 6.1. Two-level system of fermions

To avoid orientation loss in this jungle of summations, let us visualize the sum over all
configurations for a simple fermionic system consisting of only two energy levels 0 (ground
state) and 1 (excited state):

∑
{ni}

1 =
1∑

n0=0

1∑
n1=0

1 =
1∑

n0=0

[
—•
— ⊕ —

—

]
=
[

—•
—• + —•

— ⊕ —
—• + —

—

]
,

where the lower and upper line depict the ground and excited state, respectively, while
a filled circle represents a fermion. Thus there are four possible configurations to sum
over: 1) N = 0, no particles; 2) N = 1, one particle in the ground state; 3) N = 1, one
particle in the excited state; 4) N = 2, one particle in each state. It is not possible to
have more than two fermions in a two-level system.

We now examine the grand canonical partition function for fermions and bosons separately.

Fermions. Beginning with fermions, we find that each product term in the last line of eq.
(6.22) simplifies to

1∑
ni=0

[
ze−βεi

]ni = 1 + ze−βεi .

Therefore, the fermionic grand canonical partition function Zfermion is given by the exact
formula

Zfermion =
∞∏
i=0

(
1 + ze−βεi

)
. (6.23)

Bosons. In the case of bosons, the sums go to infinity, and the factorized terms in eq.
(6.22) become geometric series:

∞∑
ni=0

[
ze−βεi

]ni = 1 + ze−βεi +
(
ze−βεi

)2
+
(
ze−βεi

)3
+ . . .

= 1
1− ze−βεi , (6.24)
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where we have used ∑∞k=0 x
k = 1

1−x for |x| < 1. Thus we also obtain an exact expression
for the bosonic grand canonical partition function:

Zboson =
∞∏
i=0

1
1− ze−βεi . (6.25)

Note that in the limit ze−βεi → 1, the bosonic partition function Zboson diverges, resulting
in a phase transition known as Bose-Einstein condensation (see section 6.6).

We can combine the results for fermions (F) and bosons (B) in one compact formula for
the grand canonical partition function of a many-particle quantum system:

ZF/B =
∞∏
i=0

(
1± ze−βεi

)±1
, (6.26)

where the plus sign describes fermions (!) and the minus sign describes bosons. Knowing
the partition function, we are able to compute all statistical and thermodynamic quantities
of interest. For example, what is the mean occupation number nm of the energy level εm?
Starting with the definition of an expectation value, we have

〈nm〉 =

∑
{ni}

nm z
∑

k
nk e

−β
∑

j
εjnj

∑
{ni}

z
∑

k
nk e

−β
∑

j
εjnj

= − 1
β

∂

∂εm
ln
∑
{ni}

z
∑

k
nk e

−β
∑

j
εjnj

,
= − 1

β

∂ ln(Z)
∂εm

. (6.27)

Furthermore, the logarithm of ZF/B becomes

ln
(
ZF/B

)
= ln

[ ∞∏
i=0

(
1± ze−βεi

)±1
]

= ±
∞∑
i=1

ln
(
1± ze−βεi

)
. (6.28)

Combining eqs. (6.27) and (6.28), we obtain

〈nm〉F/B = ze−βεm

1± ze−βεm = 1
eβεm

z
± 1

. (6.29)

With the plus sign, eq. (6.29) defines the Fermi-Dirac distribution which describes fermion
statistics. With the minus sign, the formula becomes the Bose-Einstein distribution for
bosons.

The mean total particle number N of the system follows immediately:

N =
∑
m

〈nm〉 =
∑
m

(
eβεm

z
± 1

)−1

. (6.30)
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Similarly, we find that the mean total energy U is1

U = 〈H〉 =
〈∑

m

εmnm

〉
=
∑
m

εm 〈nm〉

=
∑
m

εm
eβεm
z
± 1

. (6.31)

Finally, using our results from section 3.9, we obtain the grand canonical equation of state
for a quantum gas,

PV

kBT
= ln

(
ZF/B

)
= ±

∑
i

ln
(
1± ze−βεi

)
. (6.32)

Note that the results for N , U , and the equation of state entail the set of single-particle
levels {εi}. Once these energy levels are known – they are easily written down for ideal,
non-interacting systems –, we may conveniently compute thermodynamic properties of a
specific system. In conclusion, uniting the occupation number formalism with the grand
canonical ensemble allows us to solve quantum statistics – at least in principle. We will
discuss specific problems in the following sections.

6.4 Free ideal fermions
Let us now focus on fermions, i.e. quantum particles with half-integer spin such as electrons.
Since they must obey Pauli’s exclusion principle, a system of many non-interacting fermions
(Fermi gas) will behave very different from a classical ideal gas.

Ideal Fermi gas. The particles in a Fermi gas follow the Fermi-Dirac distribution (eq.
(6.29)),

〈nm〉 = 1
eβεm

z
+ 1

. (6.33)

Thus the state of the system is defined by the mean distribution of occupation numbers
〈nm〉 across the system’s single-particle energy levels. We may write the wave function of
an individual free fermion as a plane wave,

φ~p(~r) = 1√
V
e
i~p·~r
~ , (6.34)

1We may also calculate U from the partition function,

U = − ∂

∂β
ln
(
ZF/B

)
,

if we ignore that the fugacity z depends on β and treat z as an independent variable instead.
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where the quantum number is given by the momentum ~p and V denotes the volume. We
easily check that this solution is normalized (omitting the vector arrow on the subscripts):

|φp|2 = φpφ
∗
p = 1

V
e
i~p·~r
~ e−

i~p·~r
~

⇒
∫
V

d3r |φp|2 = 1 , (6.35)

as required. Furthermore, applying the kinetic energy operator to eq. (6.34) yields

− ~2

2m
~∇2φp(~r) = p2

2mφp(~r) . (6.36)

Thus we find that the plane waves are eigenfunctions of the kinetic energy operator; the
corresponding eigenvalue is the kinetic energy.

Let us now imagine a cubic box with edge length L and volume V = L3. By putting the
fermions in this box and imposing periodic boundary conditions at the box edges, we
assume that the plane waves are periodic over the box length L. Choosing a coordinate
system such that the edges lie parallel to the x, y, or z direction, we consequently require
(along the x direction)

φp(~r + êxL) = φp(~r) , (6.37)

where êx denotes the unit vector pointing in the x direction. Analogous periodicity
conditions hold along êy and êz. To satisfy these conditions, the momentum ~p must obey2

~p = 2π~
L
~n , where ~n =

0, 1, 2, . . .
0, 1, 2, . . .
0, 1, 2, . . .

 . (6.38)

By the notation for ~n we mean that ~n may be any vector with integer components. Thus
the momenta constitute a discrete set of quantum numbers. In geometric terms, the
momentum quantum numbers form a cubic lattice in 3D space with lattice constant, or
discretization constant, 2π~/L = h/L. Note that h/L→ 0 as L→∞, i.e. the momenta
become continuous when the box expands infinitely. In this continuum limit, we may
switch from a discrete sum over momenta to an integral over momenta:

(
h

L

)3∑
~p

discretize←−−−−−−−−−−−−−−−−−−→
h
L
→0

∫
d3p ⇒

∑
~p

↔ V

h3

∫
d3p . (6.39)

This transition to a momentum integral allows us to count states in momentum space.

2As a check, we reinsert eq. (6.38) into the exponent of φp to find

i~p · ~r
~

= i
2π~
L

~n · (~r + êxL)
~

= i2π~n · ~r
L

+ i2πnx .

The last term on the RHS is a multiple of i2π which does not affect the wave function. Therefore, φp
is indeed periodic over L.
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Figure 6.1: Fermi-Dirac distribution for three different temperatures. At zero temperature, the Fermi distribu-
tion resembles a step function. With increasing temperature, the Fermi edge smears out more and
more. For εm = εF the distribution yields 〈nm〉 = 1/2.

Fermi energy. Let us return to the Fermi distribution (eq. (6.33)). To get a picture of
what we are discussing, suppose that the box of volume V represents a metal, and the
fermions are free electrons whirring around in the metal. The Fermi distribution depends
on the fugacity z, which we do not know. However, recall that we defined the fugacity in
terms of the chemical potential µ. The chemical potential of electrons in a metal is known
as the Fermi energy εF . In these terms we redefine the fugacity,

z := eβµ = eβεF . (6.40)
Using this definition, the Fermi distribution is now written as

〈nm〉 = 1
eβ(εm−εF ) + 1 . (6.41)

Since each energy level m corresponds to a certain energy and thereby to a certain
momentum, the expectation values 〈nm〉 = 〈nε〉 = 〈np〉 all mean the same. Figure 6.1
shows a plot of the Fermi distribution for different temperatures.

What is the meaning of the Fermi energy, and how do we calculate it? First, we consider
zero temperature (T = 0). In that case the Fermi distribution looks like a step function;
each state is occupied up to the energy ε = εF and no states are occupied above εF . Note
that since we deal with fermions, Pauli’s exclusion principle applies, and even at zero
temperature it is impossible that all electrons occupy the lowest energy level. Instead,
starting at the lowest energy, the electrons “fill up” higher and higher states. The energy
of the highest electron determines the Fermi energy.

Our task is to count all occupied states, i.e. the total number of electrons. Since electrons
have non-zero spin, we must consider the degeneracy of energy levels. The multiplicity of
states g is given by g = 2s+ 1, where s denotes spin. Since s = 1/2 for electrons, we have
g = 2, meaning there are two states per electron energy (spin up and spin down). Using
the continuum limit relation for switching between sums and integrals (see eq. (6.39)),
the total number of electrons in the metal is given by

N = g
∑

pm<pF

1 = g
V

h3

∫
|~p|<pF

d3p = g
V

h3

∫ pF

0
dp 4πp2 , (6.42)
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where the Fermi momentum pF is defined by

εF = p2
F

2m (6.43)

according to the (non-relativistic) energy dispersion relation for free electrons. Performing
the integral, we obtain the particle number in terms of the Fermi momentum,

N = g
V

h3
4π
3 p3

F , (6.44)

where g = 2. Rearranging this result for pF and inserting it into eq. (6.43) yields the
Fermi energy at zero temperature,

EF = h2

2m

(
N

V

3
4πg

) 2
3

. (6.45)

Keep in mind that our calculation holds for free electrons. In a metal, this is a good
approximation for valence electrons. Typically the metal contains one valence electron per
atom.

Example 6.2. Electrons are hot!

What is the Fermi energy of a typical metal? Let us plug some numbers into eq. (6.45):
electron mass me = 9.1× 10−31 kg
Planck’s constant h = 6.6× 10−34 J s
particle concentration N

V
≈ 1

(0.5× 10−9 m)3 ≈ 1028 m−3

With g = 2, this yields

EF ≈
6.62

18.2 · 10−37 ·
( 3

8π · 1028
)2/3

J ≈ 2.7× 10−19 J.

This energy corresponds to about 1.7 eV. We may compare the Fermi energy to the
thermal energy of a classical particle, which is roughly kBT (see section 3.6.1). At room
temperature (T = 300 K), we have

kBT ≈ 4× 10−21 J (at T = 300 K) ⇒ EF ≈ 60 kBT .

Thus EF is about 60 times higher than the thermal energy of a classical particle at room
temperature. Defining the Fermi temperature TF := EF/kB, we find that

TF ≈ 18 000 K .

In other words, electrons are extremely “hot” compared to classical particles.
At the Fermi edge, the electrons have the Fermi momentum pF . From this we may
compute their de Broglie wavelength λ as

λ = h

pF
= h√

2meEF
≈ 10−9 m = 1 nm.
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A wavelength of 1 nm exceeds typical electron distances, which manifests that electrons
are true quantum particles.
The relationship between kBT and the Fermi energy also tells us something about the shape
of the Fermi distribution at a finite temperature T . The Fermi edge, i.e. the transition
region between occupied and unoccupied states, approximately extends to εF ± kBT . In
rescaled units, the borders of the Fermi edge are around ε±/εF = 1 ± kBT/εF , which
becomes roughly 1± 1/60 for a metal at T = 300 K. Thus the width of the Fermi edge
is only about 1/60 of the Fermi energy and the Fermi distribution looks very sharp, or
“step-like”, for metals at room temperature.

6.5 Free ideal bosons and black-body radiation
After discussing fermions, let us now move on to bosons, i.e. particles with integer spin
such as photons, phonons or alkali atoms. Bosons behave fundamentally different from
fermions because several bosons can be in the same state at the same time. In the ground
state of the system (at T = 0), all bosons occupy the lowest energy level, which Pauli’s
exclusion principle prohibits for fermions. Generally, bosons follow the Bose-Einstein
distribution (see eq. (6.29)),

〈nm〉 = 1
eβεm

z
− 1

. (6.46)

Relativistic energy-momentum relation. To deal with photons traveling at the speed
of light, we cannot neglect relativistic effects anymore. Einstein’s famous formula stating
the equivalence of mass and energy reads

E = mc2 = γm0c
2 , where γ = 1√

1− v2

c2

. (6.47)

Here E is the relativistic energy, c is the speed of light, and v denotes the velocity of
the particle. Note the difference between the rest mass m0 and the relativistic mass m.
Squaring and rearranging yields

E2
(

1− v2

c2

)
= m2

0c
4

⇒ E2 = m2
0c

4 + E2v
2

c2 = m2
0c

4 +m2v2c2 . (6.48)

Identifying the relativistic momentum p = mv, we obtain the relativistic energy-momentum
relation:

E =
√
m2

0c
4 + p2c2 . (6.49)

We see that this equation reduces to E = m0c
2 if the particle is at rest (p = 0). For

massless particles such as photons (m0 = 0), we find E = pc. Let us discuss two limits of
eq. (6.49):
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• Non-relativistic limit, v � c.
Rewriting the energy-momentum relation as E = m0c

2
√

1 + p2/(m2
0c

2), we may
expand it as a Taylor series in p2/(m2

0c
2) up to first order to obtain

E = m0c
2 + 1

2
p2

m0
+O

(
p4

m4
0c

4

)
. (6.50)

Note that the second term corresponds to the classical (Newtonian) kinetic energy.

• Ultra-relativistic limit, v → c.
For velocities v close to the speed of light, the (pc)2 term dominates, and we write
the energy-momentum relation as

E = pc

√√√√1 + m2
0c

2

p2 ,

which converges to E = pc as m0/m = γ−1 → 0.

Ideal photon gas. We now focus on free bosons with zero rest mass, which characterizes
a photon gas. In this case the ultra-relativistic limit applies. Furthermore, the chemical
potential for a photon vanishes, µ = 0. This implies that the fugacity is z = eβµ = 1. With
E = pc and using eq. (6.29), the mean number of photons with momentum p (at finite
temperature) is given by

〈np〉 = g

eβpc − 1 . (6.51)

Here the multiplicity is g = 2 for photons because of the two polarization directions.

Suppose the photon gas is confined in a rigid opaque cavity at a constant temperature
T . We call the idealization of this cavity a black body. At equilibrium, the emission and
absorption of electromagnetic radiation at the cavity walls are in a steady state, and the
energy states of the photon gas inside correspond to the levels of a harmonic oscillator,3

Eω = ~ω
(
n+ 1

2

)
= pc

(
n+ 1

2

)
, (6.52)

where the last equality holds since Ephoton = ~ω = pc. The occupation number n follows
the Bose-Einstein distribution.

We now ask, what is the energy spectrum of the photon gas? The total energy is given by

U =
∑
p

εp 〈np〉

= g
V

h3

∫
d3p

|p|c
eβpc − 1

= g
V

h3

∫ ∞
0

dp 4πp2 pc

eβpc − 1 , (6.53)

3The vacuum energy Evac = 1
2~ω is irrelevant here.
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Figure 6.2: Planck’s law. Black body spectrum for three different temperatures.

where we have applied our knowledge about how to switch from a sum to an integral in
the continuum limit (see eq. (6.39)). Using E = ~ω = pc ⇒ p = ~

c
ω, we substitute the

momentum integral by a frequency integral to obtain

U

V
= 8π~4

h3c3

∫ ∞
0

dω ω3

eβ~ω − 1 ≡
∫ ∞

0
dω u(ω) , (6.54)

where we have inserted g = 2. Here the function u(ω) is the spectral energy density,

u(ω) = ~
π2c3

ω3

e
~ω
kBT − 1

. (6.55)

Eq. (6.55) is known as Planck’s law; it describes the characteristic spectrum of black
body radiation at temperature T . Figure 6.2 shows a plot of the spectrum for different
temperatures.

Let us discuss the frequency limits of Planck’s formula:

• Low frequencies, β~ω � 1.
The limit of low frequencies corresponds to the classical limit (~ → 0). We may
approximate exp(β~ω)− 1 ≈ β~ω, which leads to the Rayleigh-Jeans formula,

u(ω) = kBT
ω2

π2c3 . (6.56)

• High frequencies, β~ω � 1.
As ω →∞, the 1 in the denominator of eq. (6.55) becomes negligible compared to
the exponential, and we obtain Wien’s first law,

u(ω) = ~
π2c3

ω3

eβ~ω
. (6.57)
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Furthermore, it is interesting to calculate the maximum ω∗ of the black body spectrum:

0 = ∂u(ω)
∂ω

∣∣∣∣∣
ω=ω∗

=
 3
ω
u(ω)− ~

kBT

e
~ω
kBT

e
~ω
kBT − 1

u(ω)
 ∣∣∣∣∣∣

ω=ω∗
(6.58)

⇒ 3 = ~ω∗

kBT

1
1− e−

~ω∗
kBT

.

Solving the last equality yields

β~ω∗ ≈ 2.8 . (6.59)

This result, known as Wien’s second law or Wien’s displacement law, states that

ω∗ ≈ 2.8kBT
~

or ν∗ ≈ 2.8kBT
h

. (6.60)

Hence the frequency of maximal irradiance depends linearly on temperature.

Example 6.3. Wien’s displacement law

Wien’s displacement law appears in everyday life. You may have observed, for example,
that a heated wire (e.g. light bulb) first starts to glow in a reddish color, then turns orange,
and eventually emits more yellow light as it gets hotter. At an effective temperature of
around 6000 K, our sun emits its highest energy density at roughly λ∗ = 650 nm, which
corresponds to a bright yellow. Camp fires, on the other hand, serve better as heat sources
than as light sources because their peak irradiance lies in the infrared range.

What is the temperature dependence of the total energy density U/V ? To answer this, we
rescale the frequency to ω̃ := β~ω. This yields

U

V
= ~
π2c3

1
~4β4

∫ ∞
0

dω̃ ω̃3

eω̃ − 1 . (6.61)

The rescaled integral has a temperature-independent solution, π4/15, and we find

U

V
= (kBT )4

c3~3
π2

15 ∝ T 4 . (6.62)

This is the Stefan-Boltzmann law, which states that the total energy density scales with
the fourth power of the temperature.

Finally, we want to see how the energy density relates to the pressure in a photon gas. In
chapter 3, we derived the grand-canonical equation of state,

lnZ = PV

kBT
= βPV . (6.63)

Moreover, we know that the total energy follows from the grand canonical partition
function (for fixed fugacity z) according to

U = −∂ lnZ
∂β

, (6.64)
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while at the same time U is given by eq. (6.62). From this we infer

U = −∂ lnZ
∂β

= V π2

15β4c3~3

⇒ lnZ = 1
3 ·

V π2

15β3c3~3
!= βPV

⇒ PV = 1
3 ·

V π2

15β4c3~3︸ ︷︷ ︸
=U

= 1
3U . (6.65)

Our results for the classical ideal gas were PV = NkBT and (for a mono-atomic ideal gas)
U = 3

2NkBT . In comparison:

Classical ideal gas: U = 3PV U ∝ T (equipartition theorem)
Ultra-relativistic boson gas: U = 3

2PV U ∝ T 4 (Stefan-Boltzmann law)
In other words, the classical ideal gas and the photon gas have similar relations between
energy density and pressure but very different temperature dependencies. Note that the
pressure of the photon gas follows from eq. (6.65):

P = π2(kBT )4

45c3~3 . (6.66)

Example 6.4. Photon gas at atmospheric pressure

At which temperature does the photon gas have a pressure comparable to the atmospheric
pressure of about 105 Pa = 1 bar? Solving eq. (6.66) reveals:

T (P = 105 Pa) ≈ 105 K.

This concludes our study of photons – ultra-relativistic massless bosons with vanishing
chemical potential. The following section conversely deals with massive bosons and varying
chemical potential in order to discuss a peculiar quantum phase transition observed for
bosons at very low temperatures.

6.6 Bose-Einstein condensation
When deriving the bosonic grand canonical partition function (eq. (6.25)), we noticed a
singularity when ze−βεi → 1, i.e. when the fugacity z = eβµ approaches the Boltzmann
weight e−βεi of any of the energy levels i = 0, 1, 2, . . . . This requires a closer look.

Consider a system of massive, non-relativistic atoms, e.g. atoms trapped in a volume V .
The fugacity z 6= 1 may vary in order to yield and conserve a certain number of atoms N ,

N =
∑
i

〈ni〉 =
∑
i

1
eβεi
z
− 1

=
∑
i

1
eβ(εi−µ) − 1 . (6.67)

Note that this expression exhibits the same divergence as the partition function. Physically,
we argue that µ < εi for all i because otherwise we would have energy levels with negative
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mean occupation numbers. Thus, as µ increases, the singularity will first appear for the
ground state i = 0 with energy ε0. In a non-relativistic treatment, the energy levels relate
to the corresponding (discrete) particle momenta according to

εi ≡ εp = p2

2m ,

where m denotes an atom’s mass. Then, the lowest energy level ε0 corresponds to the
single-particle state p = 0 where atoms stop moving; they “condense” to a zero-momentum
state.

We seek to find out under which circumstances a significant fraction of atoms occupies the
ground state. The trick is to split the sum over all energy levels into its contribution from
the p = 0 state and a term comprising everything else. Inserting the energy-momentum
relation and replacing the sum over states i by a sum over discrete momenta, we write

N =
∑
~p

1
eβ

p2
2m z−1 − 1

= 1
z−1 − 1︸ ︷︷ ︸

N0

+
∑
~p 6=0

1
e
βp2
2m z−1 − 1︸ ︷︷ ︸
Nrest

. (6.68)

Here N0 := (z−1 − 1)−1 denotes the the number of particles in the ground state with
p = 0 while Nrest represents the number of all particles not in the ground state, such that
N = N0 +Nrest. Assuming a large volume, we may convert from the sum to an integral
following the procedure from eq. (6.39). This leads to

N = N0 + V

h3

∫ ∞
0

dp 4πp2 1
e
βp2
2m z−1 − 1

. (6.69)

Note that the integral only includes the p 6= 0 states since the integrand vanishes for p = 0.
Dividing by volume and rescaling the momentum to p̃2 := β

2mp
2, we get

N

V
= N0

V
+ 4π
h3

∫ ∞
0

dp p2

e
βp2
2m z−1 − 1

= N0

V
+
(

2πmkBT
h2

)3/2 4√
π

∫ ∞
0

dp̃ p̃2

ep̃2 z−1 − 1

= N0

V
+ 1
λ3
t

g3/2(z) , (6.70)

where λt denotes the thermal wavelength (eq. 3.93). Here we have introduced the special
function g3/2,

g3/2(z) = 4√
π

∫ ∞
0

dp̃ p̃2 ze−p̃
2

1− ze−p̃2 . (6.71)

It turns out that we may rewrite g3/2 as an infinite sum. Using the relation
∞∑
`=1

(
ae−b

)`
= ae−b

1− ae−b
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Figure 6.3: Plot of the special function g3/2(z) in the domain 0 ≤ z ≤ 1. This range corresponds to chemical
potentials µ < 0. The upper bound of g3/2 is given by the value of the Riemann-Zeta function
ζ(3/2).

we obtain

g3/2(z) = 4√
π

∫ ∞
0

dp̃ p̃2
∞∑
`=1

(
ze−p̃

2)`
=
∞∑
`=1

z`
4√
π

∫
dp̃ p̃2e−`p̃

2

=
∞∑
`=1

z`

`3/2
4√
π

∫
d˜̃p ˜̃p2e−

˜̃p2

︸ ︷︷ ︸
=1

. (6.72)

In the final step we have substituted ˜̃p2 = `p̃2. In short, we may define the function g3/2 as

g3/2(z) =
∞∑
`=1

z`

`3/2 . (6.73)

The series diverges for z > 1, i.e. for positive chemical potentials µ > 0. At z = 1, however,
it converges to a finite value given by the Riemann-Zeta function ζ,

g3/2(z = 1) =
∞∑
`=1

1
`3/2 = ζ

(3
2

)
≈ 2.6 .

In the range 0 ≤ z ≤ 1, the function g3/2 is finite everywhere and monotonically increasing
with z (see figure 6.3 for a plot). Therefore, we obtain the upper bound

g3/2(z) ≤ ζ(3/2) .

Note that the slope of g3/2(z) at z = 1 is infinite.

To recapitulate, the particle number density n := N/V of the Bose gas of atoms is given
by

n = n0 + 1
λ3
t

g3/2(z) , (6.74)
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Figure 6.4: Bose-Einstein condensation. Particle number densities of atoms in the ground state (n0), not
in the ground state (nrest), and combined (n), as a function of fugacity. For low fugacities
almost no atoms occupy the p = 0 state (orange curve). Contrarily, at a total particle density
n1 > nc = 1

λ3
t
ζ(3/2), the fugacity is z ≈ 1 and a considerable fraction of atoms condenses to the

zero-momentum ground state, as indicated by the finite value of n0 > 0. Thus a Bose-Einstein
condensate forms. (The volume is chosen to conveniently display the different curves in the plot.
As V →∞, the orange curve becomes infinitely steep.)
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where n0 := N0/V denotes the concentration of particles in the ground state. Suppose
we conduct an experiment where the density n remains constant and we control the
temperature. Moreover, the system is large, such that N →∞ and V →∞ (while keeping
N/V fixed). At sufficiently high temperature T , we have

n <
1
λ3
t

ζ(3/2) =
(

2πmkBT
h2

)3/2

ζ(3/2) . (6.75)

This means that the state of the system is realized with a fugacity significantly smaller
than one, z < 1. Since we assume a large volume, we see that in this case almost no
particles occupy the ground state:

n0 = N0

V
= 1
V (z−1 − 1) → 0 (V →∞ and z < 1) . (6.76)

However, if the particle number density n surpasses the critical point defined by

nc = 1
λ3
t (Tc)

ζ(3/2) , (6.77)

the fugacity approaches z ≈ 1 and a finite fraction of atoms occupies the p = 0 state.
Figure 6.4 illustrates the transition. For the critical temperature Tc determined by eq.
(6.77), we find

Tc = h2

2πmkB

(
nc

ζ(3/2)

)2/3

. (6.78)

Below this critical temperature, a so-called Bose-Einstein condensate forms. The number
density of particles in the ground state is then given by

n0 = n− V

λ3
t

g3/2(z) ≈ n− V

λ3
t

ζ(3/2) .

All particles in the Bose-Einstein condensate have zero momentum and are in precisely the
same quantum state. In other words, we may describe all atoms in the ground state by
one wave function. Some physicists describe Bose-Einstein condensation as a condensation
in momentum space: the Bose gas separates into two phases, one with finite momentum
and one standing still, but no spatial separation occurs as in classical phase separations.

Example 6.5. Experimental observation of BEC

Although Bose-Einstein condensation has been predicted by theory about a hundred years
ago (Einstein 1924), it took some time to observe the phenomenon experimentally. The
key limitation arises from the need for extremely low temperatures while maintaining a
relatively high particle number density.
In 1995, Cornell, Wieman, and Ketterle conducted experiments with alkali atoms at a
density of around n ≈ 1014 cm−3. Inserting this into eq. (6.78) yields

Tc ≈ 2 µK,

which is just two millionths of a Kelvin away from absolute zero! To reach such low
temperatures, researchers have employed a combination of
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• laser-light cooling to slow down atomic beams, and
• cooling through evaporation.

The figure below shows the formation of a Bose-Einstein condensate observed in 1996
for a gas of Natrium atoms [5]. The 3D plots illustrate the velocity distribution of Na
atoms before, during, and after Bose-Einstein condensation. At temperatures above 2µK
(left), the velocity distribution resembles the classical Maxwell Boltzmann distribution.
Lowering the temperature (center), a second component containing “cold” and dense
particles emerges. When cooling down even further (right), the non-condensed fraction
diminishes and only the condensate remains.

Figure reproduced from [5].
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Appendix

A.1 Proof of Gaussian integral
When calculating the hyper-surface of a D-dimensional sphere (see blue box on p. 55), we
stated the integral

I =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 · · ·
∫ ∞
−∞

dxD e−x
2
1−x

2
2−···−x

2
D =

[∫ ∞
−∞

dx e−x2
]D

= πD/2 . (A.1)

To prove this, we must show

J =
∫ ∞
−∞

dx e−x2 = π1/2 =
√
π . (A.2)

The integral J is known as Gaussian integral.4 It can be calculated in many ways. Here we
demonstrate a common proof introduced by Poisson that makes use of polar coordinates.
First, consider the double integral J2,

J2 = J
(∫ ∞
−∞

e−x
2 dx

)
=
∫ ∞
−∞

Je−x
2 dx

=
∫ ∞
−∞

(∫ ∞
−∞

e−y
2 dy

)
e−x

2 dx =
∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy . (A.3)

We may consider the variables x and y as Cartesian coordinates spanning a two-dimensional
plane. Then J2 becomes an area integral over this plane. Any position (x, y) is also uniquely
described by the polar coordinates (r, φ), where x = r cosφ and y = r sinφ such that
r2 = x2 + y2. The area element transforms according to dx dy = r dr dφ. Thus, we have

J2 =
∫ 2π

0

∫ ∞
0

e−r
2
r dr dφ

= 2π
∫ ∞

0
re−r

2 dr

= 2π
∫ ∞

0

(
−1

2

) d
dre

−r2 dr

= 2π
[
−1

2e
−r2
]∞

0

= 2π
(

0−
(
−1

2

))
= π . (A.4)

Since e−x2 is a positive function for all x ∈ R, the integral J is also positive. Therefore,
the result J2 = π implies

J =
√
π q.e.d. ,

which concludes the proof. �
4Note that the exponential e−x2 in the Gaussian integral resembles the form of the normal, or Gaussian,
distribution (with mean 0 and variance 1/2).
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A.2 Real square matrices in a nutshell
Let A be a square n× n matrix,

A = (Aij) =


A11 A12 · · · A1n
A21 A22 · · · A2n
... ... . . . ...

An1 An2 · · · Ann

 . (A.5)

• The transpose of A = (Aij) is A> = (Aji).

• A> = A ⇔ The matrix A is symmetric.

• If A is symmetric, then it it diagonalizable.

• The matrix A leaves its eigenvectors ~xj invariant up to a scalar factor, the corre-
sponding eigenvalue λj (j = 1, . . . , n):

A~xj = λj~xj ⇔ (A− λjIn) · ~xj = 0 ⇔ det(A− λjIn) = 0 ,

where the last equation is the characteristic equation and In is the n×n unit matrix.

• If the eigenvalues λj are pairwise different, then the eigenvectors ~xj are orthogonal
to each other. If we further let the eigenvectors be normalized, we can construct
an orthonormal matrix U = (~x1, ~x2, . . . , ~xn), where the j-th column consists of the
eigenvector ~xj. For an orthonormal matrix U>U = In.

• The matrix U transforms the matrix A into a diagonal matrix of its eigenvalues
such that

U>AU = ~λIn ,

with the column vector ~λ = (λ1, λ2, . . . , λn)>.

• The trace of the matrix A is defined as tr(A) = ∑
j Ajj. It possesses the following

properties:

∗ tr(AB) = tr(BA)

∗ tr(A) = tr(In ·A) = tr(U>UA) = tr(U>AU ) = tr(~λIn) = ∑
j λj.
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