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Second Chance Exam Solutions: Advanced Statistical Physics
Part II: Problems (75P)

1 Three-Spin Interaction (20P)

Consider a one dimensional system of N spins with the following Hamiltonian:
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with S; = £1,7 = 1...N being the spin states and J = const being an interaction parameter. Assume open
boundary conditions (not periodic!).

Calculate the canonical partition function and the Helmholtz free energy F. What is the thermodynamic limit
of F'?

Hint: The transfer-matriz method is not necessary for this problem.
The definition of the cosinus hyperbolicus may be helpful:
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Therefore the Helmholtz free energy is:
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For the thermodynamic limit we get:

lim F = f% In(2 cosh(5 J))
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2 Liquid-Gas Phase-Transition (25P)
We want to consider a substance with the enthalpy of the liquid phase
Hy(p,S) =2 (apS N)'/?

and the enthalpy of the gas phase
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where a > 0 and b > 0 are constants, S is the total entropy of the system, p is the pressure and N is the total
number of particles.
a) Calculate the liquid-gas coexistence temperature Ty, as a function of pressure. (16P)
We have to perform a Legrende-Transformation from H(S,p) to G(T,p) = H — TS with T = 0H/JS:
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At the phase coexistence line we have:
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b) Calculate the densities of the liquid and the gas phase at the phase transition line. (6P)

liquid phase:
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gas phase:
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c¢) Calculate the entropy change per volume AS/AV at the phase transition line. (3P)

We can use Clausius-Clapeyron:
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3a Wien’s Law in n Dimensions (15P)

u(w) is the energy density of black body radiation at angular frequency w per volume and angular frequency,
i.e. the spectral density of the internal energy density U/V.

Determine u(w) in n dimensions in the low temperature limit.

The volume of an n-dimensional sphere is C, R™, where R is the radius. You do not have to determine C,,.
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For Shw > 1 we can approximate 1 — e A" ~ 1:
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3b Cosmic Background Radiation (15P)

The universe is filled with a photon gas that corresponds to black body ratiation of temperature Ty csent = 3 K.
In a simple view, this radiation arose from the isentropic expansion of a much hotter photon cloud, which was
produced during the big bang.

If the volume of the universe, and thus the volume of the photon gas, increases isentropically by a factor of two
starting from the present state, what will be the final temperature of the photon gas?

Hint: The Stefan-Boltzmann law can be useful.
Stefan-Boltzmann law: U o« VT*

The total differential is

dU = TdS +pdV (26)
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isentropic: dS = 0
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