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Exam Solutions: Advanced Statistical Physics
Part II: Problems (75P)

1 Lenoir Cycle (25P)

Consider 1 mol of an ideal gas, which initially has a volume V1 and temperature T1 at pressure p1. The gas
undergoes the following cyclic process:
1→ 2: isochoric (constant V ) heating to T2
2→ 3: isentropic expansion to V3
3→ 1: isobaric cooling

a) Sketch the P-V and the T-S diagram for this cyclic process. (6P)
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V1 = V2, p1 = p3

b) For each step calculate the performed work W and the heat transfer Q in terms of p1, V1 and V3. (15P)

1→ 2 :

W12 =

∫ V2

V1

p1 dV = 0, since V1 = V2 (1)

Q12 = cV (T2 − T1) = cV
V1
R

(p2 − p1) = cV
V1 p1
R

((
V3
V1

)γ
− 1

)
(2)

using p V = RT (ideal gas law) and V γ3 p1 = V γ2 p2 (adiabatic relation)

(3)

2→ 3 :

Q23 = 0 (adiabatic process) (4)

W23 = cV (T2 − T3) = U2 − U3 =
cV
R

(p1 V3 − p2 V1) =
cV p1
R

(
V1

(
V3
V1

)γ
− V3

)
> 0 (5)



3→ 1 :

W31 =

∫ V1

V3

p1 dV = p1 (V1 − V3) (6)

Q31 = W31 + U1 − U3 = (U1 + p1 V1)− (U3 + p1 V3) = H1 −H3 = cP (T1 − T3) = −γ cV p1
R

(V3 − V1) < 0 (7)

c) Calculate the efficiency η in terms of α = V3/V1. (4P)

η =
W23 +W31

Q12
= 1 +

Q31

Q21
=
αγ − α+ R

cV
(1− α)

αγ − 1
=
αγ − 1 + γ(1− α)

αγ − 1
= 1− γ α− 1

αγ − 1
(8)

2 Adsorption (25P)

Consider an ideal gas (temperature T , chemical potential µ) in contact with a surface with N adsorption sites.
Each adsorption site may be occupied by 0, 1 or 2 gas molecules. The energy of a vacant site is zero, the energy
with one adsorbed molecule is −ε and the energy with two adsorbed molecules is −(3/2) ε. ε can be positive or
negative. There is no interaction between molecules at different adsorption sites.

a) Calculate the grand canonical partition function for a fixed number N of adsorption sites. (10P)

Z1 = 1 + eβ (ε+µ) + eβ (3ε/2+2µ) (9)

ZN = ZN1 (10)

b) Use the grand canonical partition function to derive the mean number of adsorbed particles per site 〈n〉 and
the mean internal energy per site 〈u〉 as a function of T, µ and ε. (8P)

〈n〉 =
1

N

∂(lnZN )

∂(β µ)
(11)

=
eβ(ε+µ) + 2 eβ(3ε/2+2µ)

Z1
(12)

〈u〉 = − 1

N

(
∂(lnZN )

∂β

)
z,V

= − 1

N

∂(lnZN )

∂β
+ µ 〈n〉 (13)

= −
ε eβ(ε+µ) + ε 3

2 e
β(3ε/2+2µ)

Z1
(14)

c) For T = 0 sketch 〈n〉 for constant µ as a function of ε. (5P)

d) Calculate 〈n〉 for large temperatures. (No corrections in T are necessary.) (2P)

For large T and no corrections:

β ≈ 0→ 〈n〉 =
e0 + 2 e0

1 + e0 + e0
=

1 + 2

1 + 1 + 1
= 1 (15)



3 Spin 1/2 Fermions in an External Magnetic Field in 2 Dimensions (25P)

Consider an ideal gas of N spin 1/2 Fermions at zero temperature confined to an area A in two dimensions.

The Fermions are in an external magnetic field H. The energy of a particle is ε = p2

2m ± µBH, where µB is the
Bohr magneton.

a) Give an expression for the chemical potential µ0 for vanishing magnetic field as a function of the particle
density N/A. (5P)

At T = 0 and for vanishing magentic field the chemical potential µ0 equals the Fermi energy εF :

µ0 = εF =
p2F
2m

(16)

Since the Fermi-Dirac distribution is for T = 0 a step function we can integrate over a circle up to the Fermi
momentum pF :

N = 2
A

h2

pF∫
0

d2p = 2
A

h2
2π

pF∫
0

pdp = 2
A

h2
πp2F

(16)
=

4πmA

h2
µ0 (17)

⇔ µ0 =
h2N

4πmA
=

1

2m

h2N

2πA
(18)

b) Calculate the average particle energy as a function of µ0 for weak external magnetic fields. Calculate
corrections in H up to second order. (14P)

For H 6= 0 the system has two Fermi momenta p±:

µ0 =
p2±
2m
± µBH (19)

⇔ p± =
√

2mµ0

√
1∓ µBH/µ0, (20)

where p− is the Fermi momenta of the spins oriented parallel to the external magnetic field H.

The total energy E+ of the spins oriented anti-parallel to the external magnetic field is:

E+ =
A

h2

p+∫
0

ε+dp2 =
2πA

h2

p+∫
0

(
p2

2m
+ µBH

)
pdp =

2πA

h2

(
p4+
8m

+ µBH
p2+
2

)
(21)

Analogously we find for the total energy E− of the spins oriented parallel to the external magnetic field:

E− =
A

h2

p−∫
0

ε−dp2 =
2πA

h2

p−∫
0

(
p2

2m
− µBH

)
pdp =

2πA

h2

(
p4−
8m
− µBH

p2−
2

)
(22)

The average energy per particle E/N is:

E

N
=
E+ + E−

N
=

2πV

h2N

(
p4+ + p4−

8m
+ µBH

p2+ − p2−
2

)
(18)
=

1

2mµ0

(
p4+ + p4−

8m
+ µBH

p2+ − p2−
2

)
(23)

p4+ + p4−
8m

=
(2mµ0)2

8m

[
(1 + µBH/µ0)2 + (1− µBH/µ0)2

]
= 2mµ0

[
µ0/2 + (µBH/µ0)2µ0/2

]
(24)



(p2+ − p2−)µBH/2 = 2mµ0µBH/2 [1− µBH/µ0 − 1− µBH/µ0] = −2mµ0(µBH/µ0)2µ0 (25)

By inserting equations (24) and (25) in equation (23) we determine the final result:

E

N
= µ0/2− (µBH/µ0)2µ0/2 (26)

The first correction term reduces the average particle energy in second order of the strength of the applied
magnetic field H.

c) Calculate the susceptibility χ = ∂m/∂H for weak external magnetic fields. (6P)

The average number N− of spins oriented parallel to the magnetic field is:

N− =
A

h2

p−∫
0

d2p = 2π
A

h2

p−∫
0

pdp =
πA

h2
πp2− =

πA

h2
2mµ0(1 + µBH/µ0)

(18)
=

N

2
(1 + µBH/µ0) (27)

Analogously we find for the number N+ of the spins oriented anti-parallel to the external magnetic field:

N+ =
N

2
(1− µBH/µ0) (28)

The average magnetisation m per area is:

m = µB
N− −N+

V
=
Nµ2

BH

V µ0
(29)

The susceptibility χ is:

χ = ∂m/∂H =
Nµ2

B

V µ0
(30)


