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1 Introduction |  coledite Ho popnlin
| /
1.1 Objective of Statiséical Meche{nics and e i =
\

Thermodynamics | \
y &

Statistical mechanics (SM) an /thermodynamics (ThD) descit cid '
-gadre number of particles. Examples are gases, liquids, condWatter photon gas
and many more? % almost systems are made of many particles™True one particle
systems are very rare. The/objective of statistical mechanics is to i
ahout-the-behavieur of a system based on the properties and interactions between
individual particles. In principle it is possible to write down all equations of motion

for an N-particle system and solve them, which might get infinitely complicated if not i, A, g
impossiblej but it is not very interesting anyway as they are not experimentally fefSible’ L
Experimentally only macroscopic quantities and properties are of interest, like temper-

ature, pressure, heat capacity and so on. So one of thé-main objectives is to find those

parameters based onybehaviour of individual particles. TH‘e\ob jective of thermodynamics

is to get-the relationg between macroscopic parameters Withbzit knowing the microscopic

details. ~ ~s

ohinza? | Hls Lgsap | S oine dad)

% n v
age - . \‘

1.2 Systems and Equilibrium \ gfetion
There exist the following three systems to-d-xst&ag&;sh—betmem\ o ——

1.2.1 insulated=/ Isolated system

This system can not interact with its environment, neither by exchanging energy nor by
exchanging particles (example: closed Thermos jug).

1.2.2 Closed System

This system can exchange energy)(with its environment but no particles (example: hot
coffee in a closed glass jug).



1 Introduction

1.2.3 Open System

This system can exchange particles and energy with its environment (example: hot coffee
in an open cup).

1.2.4 Remarks \/W

Of course the first two'are idealised as there exists no real jug which does not exchange
particles or energy with its environment. If all macroscopic parameters of a system are
invariant in time, the system is in equilibrium. So if the system is not in equilibrium,
the parameters will change in time until the system is in equilibrium. (In a stationary
non-equilibrium state the macroscopic parameters do not change either, but energy flows
through the system. An example would be a heat sirk between two differently-tempered

reservoirs. ot olf/estat Comdiretonr )
tw»wp onet MRS

Waa e md towas oliv M~W/.2nm §Y/I% A
M %«Q»JM)

Qa
Thermodynamics (thermostatics would be /E bette:?lzme) describes macroscopicﬁ Sys-
tems with the help of a few phenemenetegicalrules which are called the laws of thermo-
dynamics. These rules are not mathematically derived, but rather are generalisations
or idealisations of experimental results. With this-a-big number of predictions become
possible. The advantage of this is the generality of|the predictions, the disadvantage is
thamproperties like the heat capadity of gases are not deducible.

K_A tawﬂwmaw

1.3.2 Statistical Mechanics

1.3 History

1.3.1 Thermodynamics PR

Statistical mechanics derives predictions with the help of statistical methods based on
physical, microscopic% laws.

1.3.3 Historical Origins
Historically, thermodynamics was created before the idea of statistical mechanics and
also before the atomic@ structure of matter was understood. Important steps were

e Equivalence of heat and energy (Mayer 1842, Joule 1849)

e Formulation of thermodynamics (Clausius and Kelvin 1850, Gibbs 1878)



1.3 History

e Development of statistical mechanics of which the basics still hol(*today (Gibbs
and Boltzmann 1860-1900) o

e Improvements of statistical mechanics with quantum mechanics (>1900)

This lecture does not recreate the historic development, but will rather show the deriva-
tion of thermodynamics based on statistical mechanics.

1.3.4 Motivation

A mole (English name: mole, international unit: mol) of any substance is made of (by
definition) N4 = 6.0221 - 10% molecules. Here N, is the Avogadro constant (or: Avo-
gadro’s constant, not to be confused with the historical, closely related term Avogadro’s
number). One mole of gas has a mass of 2g-100g and a volume of (at standard condi-
tions (0°C and 10° Pa)) around 22.71. It seems to be infinitely complicated to calculate
any parameters of a system this size, but it will become clear that statistical methods are
especially good for larger systems. With this,accurate descriptions will actually become

W (as long as one only tries to only calculate macroscopic properties of the

system). (MM":M”

1.3.5 The Boyle—Mariotte Law ,
stot iohica@ itk @

To understand how thermedynamics works, a simple example will be solved using only
Newton’s laws and some basic statistics: An ideal gas made from N non-interacting
particles is confined in a container with volume V. It is sealed with a lid of area A which
can move up or down (due to an outside force F'), while keeping the container sealed,
effectively changing the volume inside the container. In equilibrium the pressure P = /4
is compensated by the particles inside the container; here m is the mass of the particles,
m is the mass of the lid, v is the velocity of the particles, © is the velocity of the lid, v’
and v' are the velocities after collisions between the lid and a particle.

Figure 1.1: Container with N particles and volume V
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With every elastic scattering between a particle and the lid the conservation of mo-
mentum and energy needs to be satisfied. Before the collision the lid is at rest. The
conservation of momentum is the following.

mv, = mv, + mi’ (1.1)

mv, - mv’ = mu, (1.2)

(mv, - mi')? = m?v? (1.3)
1 ey

mu2 = E(mvz - m')? (1.4)

Here v/, is the vertical velocity after the collision; all other components are not relevant.
The conservation of energy is the following.

il 1
é-mvf = §mvf + ﬁ’L’D’z (15)

Rearranged and combined with equation (1.4) this becomes

~ N ~

= ~2i'y, + %v;+ wd (1.6)
e 2mu,
mv'=1+m/ . A (1.7)
% ‘on

For a very heavy lid (2 - 0) the momentum transfer p’ becomes

p =mt’ _ (1.8)
= 2mv,. : (1.9)
The vertical distance Az travelled by a particle in the interval At is Az = Atv,. The

probability p that a particle hits the lid (or any wall) in a volume of V = Av,Atis p=0.5.
With that the number N’ of particles hitting the box within At is

N'= lﬁszAt (1.10)
| 2 |4 J
= N/V = —pszAt N Qt (1.11)

2 {/_—ﬁ/
Here p is th den31ty of particles in the box. The force is simply the momentum transfer

per colhs10n imes the number of colhs1ons? divided by the time interval, as the force
is just the time derivative of the momentum.

F= gAmvf L, (1.12)
g

The pressure P caused by the vertieal-metien of the particles 96 the lid is given by

c,,QQ,,;;w/ an

(1.13)

I
<|=z»l™

NN

(1.14)

10
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Actually, a reat gas has ratﬁer a continuous distribution of velocities and the pressure
should d)epend on the average square of the velocity (v2) (more on statistical distributions
later). For symmetry reason (v2) = (v2) = (v2) and (2) = (v2 + v2 +v2). With that the

pressure p can be written
.-
P=22(5.) = we (1.15)
< V3 L
g 5>

O2ypec s AL (7521 W‘/I(’) s Al ok o,
’ < . | (1.16)
- )
From experimental data is is further known that P-V is constant for a fixed temperature,
even for different atomic/ molecular masses. However it is clear that (Fi,) becomes
larger with higher temperatures. Actually with (Exin) and the use of the Boltzmann
constant kg = 1.381-10-23 JK-! the temperature 7" can be defined via

3
(Buin) = §kBT (1.17)
3PV

such that for 273.15 K water freezes and for 373.12 K water boils. & B is not a fundamental
constant of nature, but chosen in such a way that the temperature scale of thermody-
namics matches the temperature scale of Celsius/ Kelvin. All this can summarised into
the ideal gas law.

PV = NkgT (1.19)

1.3.6 Velocity of Gas Molecules

From the relationship between average kinetic energy and temperature results the aver-
age velocity to be

eyt (1.20)

m

for-F==2371 |
Fov PE2T T=300x e dtanm

For hydrogen (m ~2-1.661-10"2"kg): \/(v2?) = 18002 and

for oxygen (m =~ 32-1.661-10-2"kg): \/(v?) = 460, so in fact molecules are moving quite

fast. Furthermore (Eyy) = $k5T shows that there is a temperature point of absolute zero,

at which all molecules stop moving W (exeeption:- quantum mechanics).
g S, m ol
Ottnelan o ) o . Pyteroud
. N
SONERPE. s)cdm/'cay o E

-



2 Mathematical Statistics

This chapter is about the the mathematical aspects of statistics and how to make sta-

tistical predictions based on microsecopical.individuahphenomena.
2.1 Probabilities

An experiment gﬁs conducted N times. Each experiment results in an integer number
m. After the experiments there will be N numbers m; with i € {1,..., N }. The absolute
(statistical) frequency of outcome m is called n(m), which is the number of results m.
The relative frequency of event m is called h(m) = =5 ) which e&n—be-narm&hsod as

S h(m) = 1. A (2.1)
In the limit » — oo the relative frequency approaches the probability distribution.
p(m) = lim h(m), (22
where
;p(m) =1, (2:3)

2.1.1 Law of Additivity

For mutually excluding events the probability to observe one of a few events in an
experiment is the sum of the individual probabilities.

p(ma v 12 v ma) = PO p(ma) + p(ma) + plms) 3 (24
Here v is the logical or operator.
; /

Now a singutar die is thrown. The probability to roll a (1) or a (2) is the sum of the
individual probabilities.

Wl =

(2.5)

| =

p(1v2)=p(1)+p(2)=%+

13



2 Mathematical Statistics

-~

2.1.2 Multiplication Theorem WWM-"&“)

Now independent experiments are considered. The probability of observing two events

is the thty of the individual probabilities.
P p(ma Amy) = p(my) - p(my) (2.6)

Here A stands for logical and.

Exconmple

Experiment 1
Now two dice are thrown. The probability to roll two (1)s is the product of the individual
probabilities.
p(1a1) = (1 b(1) 2.7
11
T8 (2.8)
1
(2.9)

Experiment 2

Now four dice are thrown. . The first guess would
be that the first dice needs to show a (1), fhe second one needs to show a (2) and so
on. Then the probability would be éf = /355 = 0.00077. But the ordering of dice does
not matter because when they are rolleq together, they are indistinguishable: getting a
(1)(2)(3)(4) is the same as (4)(3)(1)(2). So the probability becomes

!
p([l/\2/\3/\4]v[2/\3/\4/\1]v...)=$ (2.10)
1-2-3-4
A i %
1296 (245
~0.019. (2.12)

2.1.3 Expectation Values and Variance [, to.l

We
~One-usuady definey an observable z(m). The expectation value o@is, using the
normalised probability distribution p(m), given by (z).

(z) = ) z(m)p(m) % (2.13)
m m#Y

- 1 248 ad+5+0

Fov 100 3preitic gacomply o 214
X(ml=m mc =2 (2.15)

14



2.2 Binomial Distribution, Random Walk Example

To estimate derivations from mean the variante Az is défined as

Az? = ((z - (z))?) ' (2.16)
= (22 - 2z(z) + (z)?) (2.17)
= (2?) - 2(z){(z) + (z)? (2.18)
- (2?) - (af? (219)

The deviation is the the square root of the variance.

Az =\/(z2) - (z)? (2.20)
Ex ampllp |

-Experiment

Now one die is rolled. A"Kw— M. Lo dan )(("“\) =M,
(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)

(2.27)
(2.28)
(2.29)

(2.30)

(2.31)

(2.32)
2.2 Binomial Distribution, Random Walk Example

A one dimensional random walker (in old literature sometimes called the drunk walker)
makes a step up with probability p or a step down with probability g = 1-p per time unit.

15
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Examples of random walkers are animal , protein conﬁguration!r diffusion
processes. What is the probability that after N = 5 steps the random walker is at

position z = +1?7 The walker peeds to go up three steps and down two steps. The
probability is (from section 2.1 3q2. But there are ten different paths to achieve

this.

2 Mathematical Statistics

— =10 (2.33)
If the up and down motion are equally probable with p = %, the total probability is

Re) - 3‘?—;,?‘ "zL) d (2:34)
~0.3. (2.35)

In general if a walker does NV steps, where m steps go up and N —m go down, the number
of different paths is

N!
NP LV 2.36
m!(N -m)! \4ig6)
The probability is

& ___pmgN-m 2.37

Py (m) = mt® ¢ (2.37)

N!
= ———p™(1 - p)N ™. 2.38

TRin s cllad 20x i omacel duabpllekiom .

aiy

Position
o = N W & U

-1
-2

25

Steps

Figure 2.1: Random walker!

1Seed for numpy.random: 10

16



2.2 Binomial Distribution, Random Walk Example

2.2.1 Moments of Binomial Distribution W

Definition 1. The first moment (m) of Px(m) is demeted by the following expression,
since Py(m) is normalised.

N
= Z mPx(m) (2.39)
= L (1 - p)Nm 2.40
3 s (1p) (2.40)
Evaluating the sum can be done explicitly with a trick.
1=(p+q)V (2.41)
AN
_5 ( )pqu—m (2.42)
m=0 \TT
- N! N
s ___pmgN-m 2.43
,,;0 m!(N—m)!p : (2:45)

Here, of-eeurse (f:i) is the binomial factor which tells the distribution of m objects to /N
places.

Proof that the Binomial Distribution is Normalised

For this set ¢ =1 -p and

JZV: Py(m)=(p+1-p)N=1"=1 (2.44)

m=0

2.2.2 Calculation of the First Moment

With that the first moment can be calculated.
A\ N!

—_——mpmgV " = 2.45
bt el e

with the use of the previous trick (equation (2.43)) this yields

0
= p;(p +q)¥ (2.46)
=pN(p+q)N L. (2.47)
This holds true for all ¢, so it is also true for ¢ =1 - p.
N NI
————mp™(1-p)N"™ =pN 2.4

ngom!(N_m)!mp (1-p) p (2.48)
= (m) (2.49)

17



2 Mathematical Statistics

2.2.3 Second Moment

Now for the second moment.

f: N! m2 m_N-m 9 9 Z N} 2.50
L m N -y P “pappapm-o i -mP ¢ S
9 N
—pé—pp%(w q) (2.51)
(9 N-
=pg, [P +9)™] (2.52)
=p[N(p+@)" " +pN(N -1)(p +q)V?] (2.53)
Now g is set to ¢ = 1 - p again.
= (m?) (2.54)
=pN +p?N(N -1) (2.55)
This can be generalised to higher moments by doing this trick & times to reach the kth
moment. From phis one can calculate the variance or mean-squared-deviation
ha venlhs o Am? = ((m~ (m))?) (2.56)
LS omd LwmtH = (m?) - (m)* (2.57)
=pN +p?N(N - 1) - p>N? (2.58)
= Np(1-p) (2.59)

Am =+/Np(1-p) (2.60)

Here Am is the absolate.deviation from mean. The relative deviation is

A_m = 4 /%L p) m (2.61)

m
(m) 1 p Np
= p—Np (2.62)
Definition 2. As N gets very large ) = /L2 o goes to Zero. This is called the law of

large numbers. Maybe the most zmportant law in statistics.

Ex oy
Experiment-1

N gas molecules are put into a box of volume V. N, is Avogadro’s constant (as described
in section 1.3.4). Now the box is divided into two equal sub volumes:¥"The occupation
probabilities are p = ¢ = -;- If N = 10?4 particles are put into the box the mean number in

one of the boxes is (m) = Np = §. The mean deviation Am =\/Np(1-p) =\/% = NTIQ
The relative deviation though is only 10~!2 which is absolutely negligible. This is the
reason why thermodynamics and statistics work.

RN PRRE, B fod ot f N
%MM’)MNMMM




2.3 Normal Distribution

Experiment 2

With rare events it is the opposite. The relative deviations are large, statistics of course
still works, but these problems need to be treated with extreme care. This is different

from thermodynamics and statistical mechanics. N
QQ ke !
2.3 Normal Distribution Q“" ' :

For large N and finite p the expectation value pN = (m) gets very large and the binomial
distribution simplifies.

(et =ta | (263
=mln(p) + (N —=m)In(g) + In(N!) = In(m!) - In[(N -m)!] (2.64)

The Stirling formula is

In(N!) = ln(fylln(j)) (2.65)

N =
= Zln(j) (2.66)

J=1N
. /1 dzn(z) (2.67)
= [zIn(z) - 2]}’ (2.68)
=NIn(N)-N+1 (2.69)
=NIn(N)-N+0O(In(N)) (2.70)
In(Py(m)) = mIn(p) + (N -m)In(q) + NIn(N) - mIn(m) - (N =m) In(N -m)
(2.71)
Py(m) is sharply peaked for large N. Now the Taylor expansion can be done )(m’ 2

In Py {m) = ln{ Bulml)) + %(m , m?% I By (R st e (2.72)

Here m/ is defined by

dIn Py(m) ~
T m=m =0 (2.73)
=lnp-Ing-Inm-1+In(N-m)+1 (2.74)
o(%22) @)
m p

w1 The wit @
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2 Mathematical Statistics

2.4 Poisson Distribution

In the limit that ) and p << 1 such that pN is finite the following holds.
m)N-m = Py(m) (2.76)

(1= p)N-m = gn-m)in(1-p) (2.77)
n e~ (N=-m)p (2.78)
In the limit that mp - 0
w e ND (2.79)
(Nfi”m)! = ¢ln Nl-In(N-m)! (2.80)
using the usefl Stirling approximation efsecond-crder (In N!= N1n(N) - N) this yields
(N]y!m)!' g ORI (S s Ny (2.81)
= N In(FE)+mIn(N-m)-m (2.82)
= e~ Nin(Xg2)emin( 2 ) tmin(N)-m (2.83)
_ e—Nln(l—%)+"@1—%)+ InN)-m (2.84)
x EMHO(B2)+O( B2 )4mIn(N)-m (2.85)

w ~ e"@N) =N™, (2.86)

With all ¥f the probability distribution becomes

Nm o
Pn(m) = —p"e o2 (2.87)
=W(m). (2.88)
And with A = Np the (already normalised) Poisson distribution can be written as
W(m) = e L (2.89)

The expectation value is (m) = Np. The expectation value of the Poisson and binomial
distribution are identical!

2.5 Continuous Distribution

Here z is a random variable, controlled by distribution p(z) such that moments are given
by

{g") = [: dzz"p(zx). (2.90)
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2 Mathematical Statistics

By this method all moments can be calculated from G(k). In turn moments can be used
to construct the Taylor expansion of G.

2.6.1 Characteristic Function of the Normal Distribution

To solve this z is shifted to be z = # + 2’ (with z’ being finite, of course).

In(G(k)) = z ()

W(z) =

(z"), =1

=k d"G(k),

_Z(zk)n M

Definition 4. To know G(k) is nice, but there is an even nicer distribution, which
can be found by just siwmply taking the logarithm In(G(k)). With this new distribution
cumulant moments can be defined as

1
V2r A2

_drin(G(k))
k"

zk)

D |
R

G(k) = f : dze *W (z)

= (2rA?)"2 [wda:e—i

")

)

k=0

ko2

—(271’A2 —-[ die —ika’ —zkzz——AzQ-

By completing the square this yields

22

72

—iki - —— =

248

G(k) =

2A2

—— (% +1kA?)? -

2

el

2

TR = _k2A2
——e e / dze
V21 A2 o0

\e+ika)
2A2)

T

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)



/g ( X> 2.6 Characteristic Function

The expectation value of a function M is denoted by

(1) = [ def@)(a). (291)
. The discrete distribution can be written as
é; p(z) = ; Pmb(z - Tpm) (2.92)
(z) = [ : dzzp(z) (2.93)
= f : EOWMICEES (2.94)

As a reminder the delta function is defined by

| dof@)i(z-y) = f(w) (2.95)

[ " 426z - Tm) 3¢ (2.96)
= Dt (2.97)

Ay (2.98)

2.6 Characteristic Function

Definition 3. The characteristic function is defined by
G(k) = (e7t=) (2.99)
= [oodxe‘ik“p(:c). (2.100)

This is the Fourier transform of the probability distribution. It can be used for the
calculation of moments.

The derivatives of G(k) are

dniik) 5 [:(_ix)neikzp(x) (2.101)
d"jgf,’“’w /: da(Sinyp(z) (2.102)

21



2.6 Characteristic Function

Again a shift needs to be done.

i =i -ikA? (2.115)
G(k) . 1 e—ik(t'—kzzAz 00 dée—zi:,z (2 116)
V21 A2 -0 .
_ g-ike/- 242 (2.117)
i, Sg” - B2 (2.118)
—00 r
Ol (2.119)
_dnG(k
(z") =" dk& )|k=0 (2.120)
_drinG(k
(z")c =2"——an( )|k=0 (2.121)

The first two derivatives of In(G(k))are the following.

dln(;;;(k)) s _a{)_ kA2 > (z)c=1a' (2.122)
PIn(G(k)) _ A2 o (P} = A? (2.123)
dk
ALL N6 higher derivativesCu 2on0 2 (")o =0 for n >3 (2.124)

The first two cumulants (equations 2.122 and 2.123) characterise the normal distribution.

Higher cumulants (equation 2.124) describe the deviatiorffromit. ng o IV Wy p

Explicit Expressions for Cumulants olak ’Q ki o :
Gk) =Y (';—’f)"w) (2.125)

= 1—ik(x)—%2(m2)+%(z3)+§—;(x4)—%(ﬁ)... (2.126)

=1-2 (2.127)

In (G(K)) = f;l(‘—:j)f (z") (2.128)

. AAA VQ"“ k2 k2 ]

Q’b PAPETT = —ik(z) - 5 (2%) + 5 (o) + OKY) (2.129)
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2 Mathematical Statistics

and wih by equating coefficients we get

(z), = (z) (2.130)
(2), = (2%) - ()’ (2.131)
(%), = (%) - e(a?) (z) + 2 ()’ (2.132)
= {(z - (2))?) (2.133)
(2), = 2*) - 4 (@) (=) - 3(a?)" + 12(a?) (2)* - 6 )" (2.134)
# ((z - (2))*). (2.135)

2.7 Multi-Dimensional Probability Distributions

mution P(zy,za,...,2,)

-

n random variables z,z,,...,z, are described by
which is normalised. H-ié-is-not-normalised-alreadyi
Often, but not alwa,ys)P(wl,xz, ..., &,) factorises to

Pl@1, Toye s o y%n ) SP(21)P(£2) 50 00 5 2 (Bh) (2.136)

Definition 5. Projection is the process of integrating out el-butone random vam’ables)

fo- P(zy) = / dzs...20P(21, 2, .- Tn) (2.137)

2.8 Central Limit Theorem
For m random variables z; with mean value
y==23 % (2.138)

with all z; following the probability distribution p(z;), what is the distribution of y? To
make this more clear, an example.

2.8.1 Example

p(z;) is the weight distribution of a single person. What is the distribution of the total
weight of m = 100 people? Here y obeys the probability distribution W.

m z;
W(y) = fdxl...dxm p(z1)...p(zm) 0(y - Z;E) (2.139)
—_— =

multiplication theorem
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2.8 Central Limit Theorem

The moments (y) are
- / dyy"W (y)
= / dzy ... d:z;mp(l'l) . .p(CCm) I:i xz:I

i=1 m

Characteristic function of W

G(k) = [ dye ™ w(y)
; m T;
= f dz1 ... dzmp(21) - .. p(Zm) [ dye 5y - 3. )
t=1
= / dzy...dz,p(zy) .. .p(a:m)e-ikZI’il =
—tkzy —ikzg —ikzym

=[dm1 Adzpp(z1) ... p(Tm)e m e m ...em
/dxlp(xl)e ™ fdﬂvzp(mz)e m fdxmp(x m)e=m=

[ i} dxl;z;(xl)e = ]
“[of]

9(q) = f dzp(z)e”

Here k = gm.

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)
(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)

This is called the central limit theorem and it is a very important concept in statistics.

KB Mto prtomple i sy cuiny &.J,u-'3

e msnards !
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