3 Classical Statistical Mechanics

As already mentioned in Chapter 1.3.2, Statistical mechanics derives predictions with
the help of statistical methods based on physical, microscopical laws.

3.1 Watroduction _C0oumica Meck amier
f(w‘\ pM«J‘MMdAﬂW\N\AM

Newton’s equation of motion is ef-eeurse

mi(t) - f(z,t) =0 U f(\é' Ao (31) P
(o.1) - -Mz:) a»bwbcn i (32) atily UALA
BT Ox

d

p(t) = —(mi(t)
d C Lo t
dtp}éz'ﬂlgmxz

= E 8:1: (—') (3 4)
T(z) (3.5)
M chw% dta '\A/Q‘.B«.(T dh—u“—h LQ-\ ,Qw;-.),«c
Knewing that Newton’s equation can be rewritten as
e ny
0= EZE_T( z)+ (3.6)

With this the Lagrange function and the Euler-Lagrange equation can be written.
L(z,z)=T(z) - V() (3.7)
I(x. i .
b Geat 4 0L(=, 2\, 2) i (3.8)

dt 0z Ox
This formalism is veM problemSwith many constraints. In sta-

tistical mechanics however it is not useful. Instead the Hamiltonian _gpproach is used.
To derive Hamiltonian mechanics the Lagrangian L(z, ) is repla.cee Hamiltonian

H(z,p) via the Legendre transform.
oL OT D

P= 5 =52 (3.9)
H(z,p,t) = &p - L(z,z,t) (3.10)
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3 Classical Statistical Mechanics

This is called the Hamilton function. Now the total differential can be calculated.

. . OL ,. OL
dH = zdp + pdzx - %da:—adt
with
oL _
oz ¥
this becomes
dH = zdp - —{)—lﬂz - Qédt
T ot
oL
= dp — pdxr — —dt
Zdp — pdx 5%

In general the total differential of a function H(z,p,t) is

0 OH 0
dH = ,tdaz + %Ix,tdp + éfr!vmdt

By comparing the coefficients the Hamiltonian equations can be written as

OH .
glx,t = ()
OH .
'3—x|a:,t = —p(t)
oH oL
ot "= N gE’

(3.11)

(3.12)

(3.13)

- (3.14)

(3.15)
(3.16)
(3.17)

(3.18)
(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
(3.24)

With these the time derivatives of the solutions of the equations of motion are determined

by H.
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3.2 Liouville Equation and Theorem

Conservation of Energy

dt —— Oz dt Op dt Bt :
chain rule %
=-p(t)z(t) + z(t)p(t 5 (3.26)
(3.27)
So the total time derivative of H is the partial time derivative of H.

OH dH
bk T 2
Or dz e

If H(z,p,t) = H(x,p) is not explicitly dependent on time, then H is constant in time. H
is a constant of motion. But what information does H hold?

H=ip-L (3.29)
=2T-(T-V) (3.30)
=T+V (3.31)

So H is the total energy of the system)which is conserved.

3.2 Liouville Equation and Theorem

AD
A gas of N atochiﬁed by 3N spatial coordinates g, ...,g3y and 3N momentum
coordinates pi,...,psy. The 6N dimensional coordinate space is called phase space
(sometimes also referred to as I' space). A point in phase space completely specifies
the system. This is called a micro state of the system, which moves according to the
Hamilton equations

OH(g3N,p?N)

Gi(t) = o, (3.32)

.o OH(gN,p*N)

pi(t) = = BT (3.38)
(3.34)

Her@rhis yields 6N equations. H does not depend on ¢,p;... . This uniquely

deter S gsn(t) and psy(t) for all times ¢. The total energy is conserved.

dH OJOH
Tty 0 (3.35)
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3 Classical Statistical Mechanics
Since g3y (t) and p3n(t) are unique, their trajeftories must not cross. Because if they
would, then at the crossing point there woulg’ be two different derivatives and the tra-
jectory would not know what to do. The/trajectories are closedor never cross. In
statistical mechanics following the 6 N dinfensional coordinates is not possible because
there is just too much information. Many|points in phase space are interchangeable or
equivalent (via permutation) that may lead to similar macroscopic properties such as
temperature, pressure and others. To sotve-this a probabilistic description is necessary

(Gibbs around M Now-as-p-is-used—for momentan every point in phase space has a_

probability p(gsn,psn,t) which can be normalised as
3N 3N 4\ _
Lo P@ 7 8) =1 (3.36)

So the expectation value of any observable like the pressure or energy A(g*V,p*V) can

be calculated & AA&

(A)=[d3qu3NA(q3N, BN (N, pPV 1) (3.37)
= (A(2)) (3.38)

psn with|a certain probability p(gsn,psn,t) at time ¢t moves according to the Hamilton
equation.\It must obey a conservation law. Now (2 be a fixed volume in phase space. The
change in probability p integrated over €2 is balanced by fluxes of probability through
the surface S(2) of Q.

_i 3N . 13N _ [ S o
= [ d]){ ™ ppGor . 1) = [ dSHE)-5(S)(S, ) (3.39)
17:(q17""q3N1ﬁ1a'--,p3N) (340)

Here 9(s) is the six-dimensional velocity in phase space. Using Gaul’ theorem this can
be written as

- [ ENapZptam i t) = [ ad PTG, o P (@41

S
f d*Nqd*Np ( (%P(%N,psmt)“fv (@(¢*N, p*M)p(¢®*N, p*", t)))
(3.42)

Since 2 is fixed, but arbitrary, the integrand must vanish.

—% V‘/-(\z('{} g) (3.43)

3N

}:[ (di(t)p) + ——(pz(t)p)] (3.44)

1

This yields the Liouville equation, where L is the Liouville operatorp Si’ap W 3 !
ap(q3Nap3N, t) L 9
Ol o) 5 [+ i

L 3.45
ap, p (3.45)
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3.3 Postulate of Equal A Priori Probability

The Liouville equation describes how p changes in time at a fixed position in phase space
(¢3n,p3n). What happens if the observer moves along with the trajectory?

dp(gsn(t), psn(t),t) _0Op 3@ Opdg; Op dp,-)
dt - ot *;1 dq; dt T dp; dt Siag)

=0 (3.47)

This is the Liouville theorem. The density along a trajectory does not change in time.
p moves in phase space like an incompressible fluid.

3.3 Postulate of Equal A Priori Probability

If a trajectory visits every point in phase space compatible with energy conservation
(H = const.), then the Liouville theorem tells us that

p(q,p, t)onst. |U<H(G,p)<U +A
: (3.48)
=0 |otherwise

This defines the micro canonical ensemble (isolated system).

Remark

If we more generally consider an ensemble where different energies are populated with
different probabilities, that is

urt oo p(@.5.8) = p(H(G.9),) (3.49)
then this-resultsa the Liouville equation
. 3N (9p ap

™ da 47t o [.i— + ‘i_] 3.50
p(d,p,1) ;qaqi Pig, (3.50)

W [0H 0p OH OH dp OH
- 2|5 58550, ot | @)
=0 (3.52)
Coue bas 8k P(H(@E D)) = p(H(G5) (3.53)

which is independent of time! This whete statement is true for arbitrary systemsjfor a

general H(q,p). < O

A ditnlotis: ok cluyt o
PRaw Goae Aon: all, ey 11 31
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3 Classical Statistical Mechanics 0. W,

3.4 Concepts of Entropy W"&wf

The number of all micro states in the energy range U < H(g,p) <U + Arn cx Art Q,_a

I'(U,V,N)= .. d3N qd*N p1 (3.54)

This is the allowed volume in phase space with H(g,p) » U. This relates to the density
of states. The total number of states with the energy H< U is

2(U) = Aﬁ - d*Ngqd*Np1 (3.55)

T(U) =Y (U+A)-> (U+A)-2(U) (3.56)

=X2’(U) 5 Aé’) =T (3.57)

=AY () (3.58)

e Mo daorbo w(U) = }E%F(TU)” (3.59)
A st i, & - Z’:(U) (3.60)

Y(U) = f : dU"w(U") (3.61)

Dot atdB R

The following two systems 1 and 2 are compeound, which means that they can exchange
energy U. They can not however exchange nether particles N, war volume V. )U; and
U, are not constant, but Vi, V2, N; and N; are obvieusly. -

34.1 i

Brtomple of Tavo Couplod Suglins
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3.4 Concepts of Entropy and Temperature

Figure 3.1: Compound System

The number of total states I'(U, V, N) is calculated by
I(U,V,N) = / AU (U)T(U - Us) (3.62)

For a fixed energy U; the number of micro states of the total system is the product of
the number of micro states of each of the subsystems. This originates from the product
rule in probability calculus. But th@xergy can vary, so that is why the integral over
U; is necessary.

Definition 6. A new function S(U) is introduced. Later it will be shown that this is
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3 Classical Statistical Mechanics
the entropy in thermodynamics. It is calculated by the following equation.

S—](CZ—) s@r(U)) (3.63)

With this the problem can be further evaluated.

S,(CZ) ( [ g ’753‘”"”) ol U,l (3.64)

Assuming that the integrand has a maximumm maximum, too, as the
exponential is a monotonic equation. This can be Taylor expanded /=
S1(U ) + 53U = Ur) » $i(U}) + Su(U = Uj) + (U - U{)(S{(U{ )

- L - SO + SUU - UR) O - T (365)

S(U) sl(ug’ 2+SQ(U—-U]') (U1 -U) (S (U-UD)+S5 (U-U1))
k =1In dU]C kB de16 kB
B

(3.66)

S(U) = Sy(U!) + Sao(U - UY) + kg ln (\/ S f’;’ZB(U - U{)) (3.67)

This is done with the assumption that S”(U) < 0 at the maximum, which is always true.

ol
e The entropy of the total system is ti%:ilﬁfl of the entropies of the subsystems.

#

TMM Here the entropy S(U) is extensive. S§ S(U) is proportional to the system size.
S(U) o< N. Extensive variables are the nass m, the volume V and the energy U.
Intensive variables on the other hand do not scale with the system%size. Examples
of intensive variables are the temperature 7" and the pressure p.

2S(U)

S(U) = o )) (3.68)

_d(Ns{ 1
= A(Nw)? (3.69)

2
Mo S omd m ot .o, )] (3.70)
N  du?
Covrckion
Hs Gaussian jon term scales 1ogarithmically@N )<< N as N - oo.
With this equation 3.67 becomes

S(U) = S1(U7) + S2(U - U7) ‘ (3.71)

This is exact in the thermodynamic limit (N — oo).

¥ 0o we wll torw Laton
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3.5 Canonical Ensemble

e The function

SU) = Sy(U?) + So(U - UY) (3.72)

is maximised with respect to the freq variable U; at the value U], the composite
system automatically goes to the &t that maximises S(U). Fhe-system—takes

the-state-that-maxcimises-the-total-entropy
S(U)=51(U1)+S(U—U1) (373)
This is so that U; = U]. This is the second law of thermodynamics.
e At that equilibrium U; = U]

dSi(U7) _ dSy(U3)
U} avy

(3.74)

So per definition d‘zgj) = 7. Here T is the absolute temperature.

Definition 7. Systems zn heat contact (that can exchange energy) have the same
temperatures. This is the zeroth law of thermodynamics.

3.5 Canonical Ensemble

covuled Lo 2ol Abor

Again two systems are eempeund so that they are in heat contact and can exchange
energy. The figure 3.1 still holds for this case. The total number of micro states for a
given energy U is

(U, Uy) o T1(Uy)To(U - Uy) (3.75)

The number of micro states of the composite system per micro state of system one is

the probability of a certain micro state of system one.

LU, i, NOI'(U -0,V -V, N - N,)
F( U17 ‘/11 N. 1)

_F(U UlaV I/iaN Nl) (3 77)

S (0, M,V ) A =e S S(0 ~Uyy Vay,) pie M) (3.78)

sy U]S'(U) vf s”g .
=e kB + Wo‘o & (3.79)

This expansion was done at U; = 0, 3¢ Q‘:g_em:saﬂy assume that No = N - N; >> N,
so that U - Uy » U >> U;, Hem system two tekes—the-form—of a reservoir that is big
enough that none of its pyoperties change when coupled to a small system like system
one. (Na=N-N; » 2=V -Vi~V,Uy=U -U, »U). With the knowledge that

dS(U) _ 1

p(UI;Nh‘/l): (3'76)

” ot (3.80)
Toudet 0 F dS(v) <
Scfon LK, A2 35
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3 Classical Statistical Mechanics

is the inverse temperature of the system the Boltzmann distribution cen-be-derived—

_ 5 LT

oL P(Ul)“M‘Hﬁ? 2. U" / (3.
This is of course not (yet) normalised. The BoltzIann (or canonical) distribution’ for
a closed system that can exchange energy with reservoir: All states are possible,
even high energy states are not impossible, but they are very, very unlikely as kg7 with
T = 300K is around kg -300K ~4 pN - nm =4-10"2 J.

8

W 3.5.1 Expectation Values and Variances in the Canonical Ense

. . A .
—Fhe-tolowing discrete states i have the energy U;.

Q%M 104 W <U>:W (3.82)

U;
..
E i l)le kT

7 (3.83)
2 e FaT
2iUip(Ui)
, : = Sl (3.84)
e ARy lefimeksicn, Zeo(0)
R B=gr Wt ‘Q\ ar
¥ Uieh%
(U) = S (3.85)
9 -BU;
_ OB Zz €
= ——?—_— In (Z e"ﬁU") (3.87)
o \5
gey gt (3.88)
{Uy = L30 InZ (3.89)
op
Here Z is the partition function. It is the central object in statistical mechanics. It
allows to calculate expectation values, Mfariances and much more. The variance

of Hut iy
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3.5 Canonical Ensemble

is

9? 0
% In(Z) = —%(U) : ( (3.90)
9 [ X:Use P .
) —% (Ei Use-Pt S
L Ui TiUefO 0 o
=S e > Ue ﬁl@)z%;e BU, (3.92)
Y UZe PO (T Use PUE)?
TP (e PR e
=(U?) - (U)? (3.94)
LT (3.95)
This now is the variance of the energy.
3.5.2 Connection to Thermodynamics
7] or o
: féE(U) = —5537-((]) (3.96)
. 0 s W |
1
e (3.98)
20 =2 Ul (3.99)
=C, (3.100)
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3 Classical Statistical Mechanics

Here C, is the (always positive) heat capacity, which describes the increase of the sys-
tem’s energy with temperature. It is an extensive quantity. W.Q, Eons. ol A( {0 ot

(%) ~{U)? = - 52{0) (3.101)
5 _%TE%(U) (3.102)

= kgT?C, (3.103)

x - (3.104)

AU (U -({U))?)
. - (3.105)
_ VksT?Cy kBgzc”' (3.106)
N3
_ 7\{_ (3.107)
- (3.108)

d this again is the law of large numbers. The energy fluctuations around (U) are
negligible as N > 0. TRy weonm 1ok LBu  Cann amicdd Qumertly
N !
Wﬁ%WV{QWCMWMAlmdﬁQ* W ot i P
Concept of Free Energy D ) \
el uAe o' Moy A (md | B

ids~ tha 2 canonical partition function Z(T,V,N) = ¥, e with f = TcB%T" Here i is the-swm- s
= all micro states.  (Umaia ) Y4 MMJ:‘) . - ,{
B e . [oodUé(U—IHL-) - (3.109) S
{Qat 2umtrules i N M oA ans ‘
) [ dUS(U - H;)e (3.110)
= Z[mdUé(U—]HI,-)e‘ﬁU (3.111)
2 /: " dU Y 6(U - Hy)e (3.112)
E[mw(U)é_BU d (3.113)
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" 3.5 Canonical Ensemble
— S Jd(u-H )

Here w(U) is the density of states.

[ Z dU'w(U’) = M (3.114)

=y fde’é(U’—]HI,-) (3.115)
i,M,'(U 29

= )4 (3.116)
‘i,Hi<U

I

5 (v) SU) ~ WA By 9““‘“"(:3%%"

~his mows-ef-eonrse is the number of states! With=this

(3.118)
2= f ~ dUene)-pu (3.119)
Previously %2 was defined as
S(U)
o ) (3.120)
Inw(U)A) (3.121)
w(U))+ InA (3.122)
A ~——’
extensive non-extensive
(3.123)
With this 3.119 becomes
2 f " dUeAU-TSO) g (3.124)
And the free energy can be written as
F=U-TS (3.125)

39



3 Classical Statistical Mechanics

and the partition function becomes

Z- f : dUp(U) (3.126)

2 [ : dUe PP, (3.127)
dZ(UU)‘U, = E%(U ~ TS‘(U)(U, (3.128)
_1- Tdfi(g) B (3.129)

<1 T% | (3.130)

-0 (3.131)

d25(§§] ) -desé—zm o (3.132)
_ _TdT;éU) t“ (3.133)

. %%J|U, (3.134)

-z (%): ") (3.135)

= Tlc’,, >0 (3.136)

Some conclusions from this are:

U’ is determined by the minimum of F(U).

The most probable U’ does exist since @*F/av?|yr > 0.

The variance of the energy ((U - U’)?) » C, o< N is extensive.

The relative deviation is \/(({ - 1)?) o< 7= > 0.
° < ¢ = gy X/

e The most probable energy results from equilibrium between minimising the energy
U and maximising the entropy.

A [ By A0k P iibegad e U 25

-

Mﬂcdth ook By 2—: g (U'): 2_(5F(U')
ond t2fu F =-LaT Q2
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3.6 Application of Canonical Distribution, Maxwell-Boltzmann Distribution and the Barometric ( Height) Fo

3.6 Application of Canonical Distribution,
Maxwell-Boltzmann Distribution and the
Barometric (Height) Formula

TLe waau/ot & Goan o ginec Ly

Hiot = ; mz V(a) ;];IVQ(@-@-)' (3.137)

The first term is the kinetic energy. The second term is the Mxternal potential
~(enexgxy. The third term is the two-body-interaction, but this is neglected here. So the
Hamiltonian becomes

NI-)'2
Hio, = Y= + V(G 3.138)
= 5,V (@) (

z= [ dpr...dpn [V dGy . .. Gige Mo (3.139)
2 o N

ZN=[ f dpe P f dﬁe‘ﬂ% (3.140)

=ZY 3.141

4 V2 neg '(“M ( )

Here Z{¥-is the single particle partition function. (&the ideal many-body partition

function factorises into the single-particle partition function. The kinetic energy of one
2 2 2
gas atom is Ey, = {% = p’—g’f’g&. For an isotropic system the expectation values of the

momenta are equal: (p2) = (p?) = (p?). Each of them can be written as

= 5BZ (3.148)

L (3.149)
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3 Classical Statistical Mechanics

3.6.1 Velocity—Bistribution and Kinetic Energy of Gases

The kinetic energy of one coordinate is E%I This is called the equipartition theorem.

Each atom has the kinetic energy of P"Q
EKi\-\ = %3(’&?) = ngT (3.150)
For N atoms this becomes
B = ﬁv-kBT (3.151)
= U (3.152)

More generally for a Hamiltonian defined by a total of f degrees of freedom and a

N\

ian frem
f k; "
H=) 5% (3.153)
i=1
and a partition function 2_‘
) Z = Y oofz, ...dzse "R (3.154)
Ut htarm g
ttresuits that
H=U (3.155)
&= ngT. (3.156)

Here the degrees of freedom can be momenta, positions, anything! The heat capacity is
constant as a function of temperature.

e 3‘% (3.157)
. f% (3.158)

For a monatomic gas f = 3N and for a diatomic gas f = (6 + 1)V (6 momenta and 1

distance coordinate). Th(MWWW

(3.159)
(3.160)

(3.161)

(3.162)
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3.6 Application of Canonical Distribution, Maxwell-Boltzmann Distribution and the Barometric (Height) Fo

WMWC&M&WMKQG( Osune f an
Since kgT at T = 300K is 4-10721 J, the kinetic energy of a gas atom at room temperature
is a very small. The velocity can be calculated by setting the energy equal to the formula

for the kinetic energy. wt M e

g.kBT_-. (m_;f) (3.163)
(v?) ST (3.164)
(02) = 460% (3.165)

So the velocity is very fast: of the order of the speed of sound.

3.6.2 Maxwell Boltzmann Distribution

The unnormalisedWeomponem vy 18 Oeenthat A kaa &u .
3., R Brmmamn bl

p ] PUg o< € 2m . (3.166)
| b *
ce 7, (3.167)
The expectation value of the second moment of ¥ is 2 U \
SRR
(-:2) J dvv*p(9) i ‘%(’U’} 4 (3.168)
J dvp(v) 4 '
24 232
2 _m”a:*’”;!"’"zﬁ

b _mpy?
Jo dvdmvivie "z

00 7 _mpBv?
o, dvdmv?e 2m

Here pyp (0) i
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3 Classical Statistical Mechanics

Yvo
since
[ div?e "5 2 wdﬁvze‘# (3.174)
5 2d(mﬂ/2) [ ' (3.175)
5 2d(mﬁ/2) (3.176)
=% %%( (3.177)
214%_( ) (3.178)
2 4i (2"kBT) (3.179)

The maximum of pMB@ is at

i&ﬂﬂ@= (mﬁ)( = S e“ﬂi&z) (3.180)

dv? 27 2
2
3 = 181
kT
_ 2T (3.182)
m
Compared with equation (3.164) this yields
(¥?) _3
— = 3.183
T 2 o

So the mean and the maximum are not the same. The law of large numbers does not

Ouppls  dreid, as this-enty-nbout-ane atom. ;tLMuW,J,o RwU‘/}M,wwn

3.6.3 BarometriciHeight Formula I ot ol Am .
Close to the ground of the earth the total Hamiltonian for N partieles-is-
X, Oy oty /"3
' Hiotal = Z 57;—1 +mgz;. (3.184)

i=1

ML::M w1t
W abp o‘—we O‘QDQMM""'
’Lv?..«:Q, 2 %' Q (3.185)

The height distribution of one atom is

p(2) = e7Pme:

# iharelal s /Pa/d-w‘.fz,o,tm



3 Classical Statistical Mechanics
o el o

46

function is-dependant-on-those Z(7,V,N) the free energy asaaell?F(T, V,N )5
J
1 1 oo
Z= I, [ﬁ f &p, fv d3qj]e ATk (3.194)
1L [ a2 a1V
= TV—I [ﬁ f d’pe " 2m Vd q] (3195)
LV e, 2 Y
-2 (75) [ [~ ape ﬂﬁ] (3.196)
N 3N
" % (%) ( ’ " (3.197)
1 .
= 55 (A—?) (3.198)
WO . (3.199)
' 2rmksT '
Here )\; is the de-Broglie wavelength at temperature){T. T/Q«L QMSL »thmw
z?JvQ«svvz )
F =-kgTn(Z) (3.200)
3
p :
~ kTN [m( N‘i‘t W 1] (3.202)

Abhor g aaned Al Sianlinq



O 3.7 Ideal Gas in the Canonical Ensemble

and with that the expectation value for the height z is Ckz

YIS o  _fma
¥ @2t =-%— She s
S / 4 1 °k( (5 MSN o
b - _d(,Bmg) 3 (ﬂmg) (3.187)
1

{’Dﬁﬁg I (3.188)
PAJZ&M V\MIV“VQJM/QNﬂ] ik Ok %l

3.7 ldeal Gas in the Canonical Ensemble %

z <y h? p3 v (3.189)
Z(v thT> - jvl—!Hj"il = [, d)3Qj] e"”“’a”) (3.190

) s
“This-is-the partition function for an ideal gas of N identical mono-atomic atem in a
volume VAn  oypurtm

ﬁ‘—-\ 2 ~\_® The pre-factor % avoids over counting of micro-states due to permutation of in-
s dices. Frem-thisfellows the Gibbs paradox oilson—extensive entropy.

(o3
e h is Planck’s constant and has units of an acfion (Js). It makes the integral over

phase space and thus Z itself unitless. For all physical observable, the value of h .
is not important since F' = ~kgT In(Z).Owm A 'LQ\,M(M b ﬁu,av«n orn OelededAant
Combonk A

e The (inverse) pre-factor (N'!h?) follows from quantum statistics.
e H(psy,q@sn) = TN, 2—’32;,; and ,no dependence on ¢{ for an ideal gas
volume V' enters via integfation boundaries.

the finite

(3.191)

(3.192)
= (3.193)

e Clearly Z depends on the thermodynamic parameters N,T,V so the partition
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3.7 Ideal Gas in the Canonical Ensem/b]s_)

The free energy is extensive and scales like N. Without the factorial it would be F' o

Ni(N) . We haw prrstdh £ wledats oav skab ani olilis fon B,

=Y T v) ? - kBTN[ln(%h?’(zﬂkaT)‘%) -1] (3.203)
='kBTN[1n(Eh3) — din(2rmkpT) - 3in(T) - 1] (3.204)
OF Y
_§= ? : (3.205)
= 5~ 5ksN (3.206)
S-= —-1; £ ngN (3.207)
SShe 2 (3.208)
= —kgN [ln (-]‘—\/[—)\f) ~ 1] + ngN (3.209)
kN [m (ﬁVA—?) _ g] (3.210)
F=U-TS (3.211)
U(MTv) B=F+Ts (3.212)
= 3Nk (3.213)

2 i
e /%=U(T,N) ol pre thot By phomeal  (3:214)
it OF - T VIR (A A (3215
Gen ot

oV _kgTN

% (3.216)
=P (T, N> o v, (3.217)
This is called the thermal equation of state of 3 ideal gas. @
dF = 8—F|V,NdT 4= 6—F|T,NdV =+ —FIVTdN (3.218)
oT ov ON'™ PO\/ N Cormd O
,QM,M U= F+T S\ =-5(T,V,N)dT - P(T,V,N)dV (3.219)
Ak ofhons /U =-SdT - PdV +TdS + ST W | (a220)
dU = -PdV +TdS AA rmn (3.221)
=-P(V,8)dV +T(V,S)dS (3.222)
To summarise
ou
P (3.223)
U
T{s (3.224)
1 S
= {E—U (3.225)
(ﬂ') w Coans Viyw %\tl CAa’\m 7t9u A7

Ear oljfommtsoad «f A fra iy,



3 Classical Statistical Mechanics

3.7.1 First law of Thermodynamics in Differential Form

The EAR slfanchicd & U Kominp ouds o H ok S of

dU(S,V)=TdS~Pdv Ao Wm:a 926)

. dU(S,V)=AQ-AW 3227)
Atine AWZ\QdeCQ\Q ey omn ced wm
nar A O Q3 TAS A Al Wuak el o QAA

3.8 Ideal Gas in the Microcanonical Ensemble

p A= [J<M<U+A
Here g\ W

is the number of micro-states in the energy rangd U < H < U + A. So the number
B-of micro-states with the energy H < U is given by

S B oIy oy
@MY /% (3.231)

omd o & —w(U) (3.232)

—

dVv r‘] /
(3.233)
D ( ™y )
For a mono atomic ideal gas of N atoms ® volume Vthe shape of the container is not

relevant. To calculate ¥ a (quantum mechanical) correction factor has to be introduced.

(3.228)
(3.229)

(3.230)

¥ L) f dgy ... dgndp; . .. dipn (3.234)

153N Yaeu

) rYva— )

i H = Z[_m"'VWa.ll(qz)] (3.235)

0 |gieV
= 3.236
Viwan {oo G gV ( )
=% H 15 (3.237)

)
As i au My, Qekin 1 clball

A R oond pW o ndt had Afawtiah,
FhS ™o F0E Q ond W oot

Sk ols /g,w-«‘,iow:
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3.8 Ideal Gas in the Microcanonical Ensemble

S6 6} ntribdte t inte,
Y.(U)= N'h3] qi - [d(INsz By dp; ...-dpn (3.238)
N,hw(2m)“’ / dz; . (3.239)
P, e
dpy = (2m)54 ' (3.241)
N 3N 3k
Z(U) Nlh3N(2m)TV3N (U§) (3.242)
(3.243)
oA

Here v3y is the volume itégrad-aver a 3N dimensional hypersphere which is v,(R) =
cpR™. The coefficient ¢, turns out to be ¢, = 7’;—%3 With this the volume becomes

T/P"‘ o ol ki M (3.244)

wl3

Va(R) = R :
F( 1) M M volen
rdb=n% dU ¥, (3.245)
Tm 3N A
‘f;‘? i ( ST 2 0 (3.246)
S = kg In (T(V)) . (3.247)

2rmU \ 2 3N A
= ” ! £
k,(]%lsn(V( 5 ) ) In(N) - ln( ( 5 ))+ln(U)) (3.248)
For very large systems (N >> 1,V >> 1) N >> In(N) and the Stirling approximation
(In(N!) = Nin(N) - N) the expression simplifies a lot. g e .
3
= ' I
N (ln(K(M)2)+§) Coleadokion ! (3.249)

N \ 3hR2N 2

So the entropy S is extensive, but only because the N, factor was introduced in the
beginning. With the thermal Wavelength ¢, introduced earlier, this-yields

OMAMM;_(DHO) U~-leT )MC«MM
S=kgN (ln (%)\;3) i g) (3.250)
= -kgN (ln (-I‘Z—Af) - g) (3.251)

Uil o Hos Somostamth wt SRR
o A o tad M,w&, > X
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3 Classical Statistical Mechanics

3.8.1 Efeftise [oob wpouly o) o siid

A very simple model for a mene-atomic solid is just a cube lattice with localised atoms
that can be modelled a 3N harmonic oscillators with the same frequency w. The Hamil-
tonian H is given by

1
(3.252)
P *Qws ant Lrollinsd o

As the particles are distinguishable at-edtimes, )Qno ~7 1s needed. W

(3.253)

o m (3.254)

(3.255)
U =3NkgT (3.256)

SOpABLD etk Cy | 6257

3.9 Grand Canonical Ensemble < o A0 "‘”‘“PM

also the particle number can fluctuate, for a open system, where
particles can exchange with the reservoi f6T example in cells, chemical reactions, etc.

/ Here H(psy, sy, N) ~» H(psn, qsn, N1) + H(psn, gsn, N2) + interactions. The canonical

partition function becomes Rl N, < N -xN
fouro complid s4plirn 0 '

A%"‘w b i ZIZT) = M [ i, dstag, X [3.258)
2 [\/,V(T) @ZI Nl!Nz![ D (o«»J

= Z ZNl(%’T)ZNz(‘/évT) (3 259)

N1=0

AN S
which is normaliz “d8s M)
V2)
dSNlpldaMP(Pl,Qth) = I(W ! (3.260)

N1—0

Here the probability distribution is
Ul

Zn, (Va, T) e PH(P3N, ,a3Ny»N1)
P(p3N1aQSN2,N1) = ZN hleNl!

(3.261)




(/rfﬂ/ ,Q/\wwx-) ,Z (M V( 3.9 Grand Canonical Ensemble
With the fametion F(N, V,T) = —kpT In(Zn34T) folows}~ 4 oA arm

Zn,(Va, T) _ _g(p(N-Ny,V-VA,T)-F(N,V.T))
e : : A 3262
Zn(V,T) ~© S

Now N; << N, which means that system 2 is a particle and volume reservoir. Now
F(N - N1,V -V;,T) can be expanded around N; =0 and V; = 0.

OF(N,V,T)

=-P(N,V,T 3.263
oV |N,T ( y ¥y ) ( )
Here w| = u(N,V,T) is the chemical potential. Furthermore p is the free
energy needed to add ﬁﬁ particle to the system.
F(N—NI,V—Vl,T)wF(N,V,T)—Nlp+V1P (3.264)
ZNz(VZ,T) BN u—BPV;
—2 =L =P ! 2
Zn(V.T) e (3.265)

e~B(PV-uN+H(p,q))
p(p,q,N) = NN (3.266)

With this the grand canonical partition function can be written

Z,(V,T)= ) e Zn(V,T) i
N=0
oo d3N qd3N o
.2 Z BNpu R BH(p3N 3N N) (3.268)
= PPV Y N gd™ pp(p, g, (3.269)

it fusne omartd (597
e Goarmd ~ Comntul(3.271)

Qtan ahan of stk (3:272)
g " (3.273)

ks T In(Z,Y(V, T)>= -, V,T)

= P(u, vV, T)V(p,T)

Here Q(u,V,T) is the grand (canonical) potential.

3.9.1 Properties of Particles in the Grand (Canonical) Ensemble

Mean Number of Particles

j{w,t&_\ olufmdn ~ o AR opurd = Cor e’ tad P okl o,
(T ‘@“"*d\"’“ (3.274)

Bou

Rgwx g (3.275)
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3 Classical Statistical Mechamcs

W watt el ke PMA %Q«al,uub ¢
The Flugtuatign (N?) -

d o o 8
M, e BNy
ﬂaan“(V re @ea ln(z e ZN) (3.276)
N ﬂNuZh
= ol s 2y (3.277)
OM BOn TaeE QN
L EulPM 2y (T NePezy ) (3.278)
YnePNeZy YnePNuZy
= (N?) - (N)? ' (3.279)
d 8 PV
" B Bou kT e
1 8, PV
- B oz v = (3.281)
2P
= kBTV28 Sl (3.282)
PP(u,T,V)
o< N (3.284)

So (as for energy fluctuations in the canonical ensemble) the relative particle number

deviations from the mean number are ¥"—~—— (Nz)_W)z N-z. This tends to 0 as N - oo. This
means that there are no particle ﬁuctuatlons as N becomes large and thus (N) = N'= N

for large systems. AP N w VG,) 7:,?,\1 \A2OTeS 4
PRdLe poakidy g

The important conclusion from this is that the grand canonical ensemble, the canonical
ensemble and the micro canonical ensembleSare equak Therefore the grand canonical

Conclusions

partition function Z,(V,T) becomes 0
Z,(V,T)= Y eNeZy(V,T) (3.285)
N=0
n eAN'B Zn(V,T) (3.286)

Here N’ is the most probable particle number which is of course equal to the mean.
Thus the logarithm of the partition becomes

InZ,(V,T) = BN'pu+In Zy: (3.287)
(3.288)
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3.9 Grand Canonical Ensemble

The grand potentlaly Q = F - uN, which~comes—frem F = —kgT'InZy and Q = A
~ksTInZ,. WM S Y

¥ 0 ’ A, ;} “ " 4 a5 d Ldl 2 v OTzal C FD
e With Q = —-PV it follows F = uN — PV. And from F = U - TS"%WS
TS + uN — PV. This is & fundamental equation. All thermodynamic potentials

(U, F,9,(G)) can be expresses in a bilinear form as products of extensive(S, N, V)
and intensive (7, u, P) state variables.

3.9.2 Total Differential of

dF(T,V,N) = udN - PdV - SdT (3.289)
Q=F-uN (3.290)

dQ = dF - d(uN) (3.291)

= pdN - PdV - SdT - pdN - Ndp (3.292)

= —PdV - SdT - Ndy (3.293)

=dQ(u, T, V) (3.294)

3.9.3 Gibbs-Duhem Equation

Since 2= -PV

dQ = -PdV - VdP (3.295)
= -PdV - SdT - Ndp. (3.296)

0=VdP - SdT - Ndp. (3.297)

TR, & Mt 25 lls - Dukiurmne Sogmakior | Uhaich

y is the most important relation between all intensive differentials.

3.9.4 Derivation of 2%, O.x.
3[L ’
’/v; \a‘

The free energy is F(N,V,T) = N f( M#4<).” By construction f is intensive, it can only
depend on -I‘{,- =, so F(N,V,T) = Nf(%,T) = Nf(v,t), where v is the volume per
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3 Classical Statistical Mechanics

particle. The chemical potential ;. again is defined as

oF,
am 8NTV

- 2 [N (0, 1)
= f(’l),T) - vaf(avv, T)
= p(v,T)

The pressure P is

Q

F
P=-—rlry

NS, T))

0
" —é;f(U’T)
= P(v,T)

o5

From this

P(v,T) =P (v(gT),T)

=P(u,T)
| 8P| c')v
T Soirg
So with 3.301 %%IT can be calculated.
ou.  Of, Of  &f
%T‘%T_—'lT WIT
3P f
"Vl

P TERf
ov T D prl
ou oP

om A Uhane] ot okl _é_"IT

With all of this 3.308 magCally becomes
oP 1

GulTv_v

o4

(3.298)
(3.299)

(3.300)
(3.301)

(3.302)
(3.303)

(3.304)
(3.305)

(3.306)
(3.307)

(3.308)

(3.309)
(3.310)
(3.311)

(3.312)
(3.313)

(3.314)



3.10 Ideal Gas in the Grand Canonical Ensemble

and
0%P o
E lvr = 8_ZLIT (3.315)
1 ov
= —FalT (3316)

= SR punaant - Oned (3.317
OPT iy 1A an anof f

This is an important property of gases, the compressibility. It tells how much the volume |
of a gas changes if the pressure is changed (at constant temperature). C""‘“‘Y"‘”"‘QJ’:‘ A (

3.10 Ideal Gas in the Grand Canonical Ensemble '
T o 4 ) Ponkiha e T was dfmed @y
Z(u,V,T) = ¥, NHZ(N,V,T) (3:318)
N=0

s damartd &2 i K xXx 09 (3.319)

2 X N3
The free Energy is-again F'(N,V,T) = kgTN ln(vt) ~kgTN = N f(v,T) and the chem-

ical potential is = 2% = kT In( Ny ). So the partition function becomes
-1
l / 1 (V B ¥
! Z= Z ~i1 | 3se (3.320)
N=0 IV: \ A
¥ €
iy il (3.321)
And the grand potential 2 is
Qu, V,T) = ~kgT In(Z(p, V,T)) (3.322)
= —-kBT;‘theﬂ" (3.323)
=-PV. (3.324)
and from that follows \'\»{\J 2:
-kgTN = -PV (3.325)
PV = NkgT. (3.326)
/tQu A- M Q Ml 'a\ )

3.10.1 Chemical Reactions

Raks o
A simple example of chemical reactions are bimolecular ones. Here two atoms react to
+e one molecule which can split back into the two atoms again: A + A = B. Examples
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3 Classical Statistical Mechanics

are gases like hydrogen H + H = H,. Here pus and pug are the chemical potentials, V' is
the volume and 7 is the temperature. The partition function is

Z(MA,/,LB,V, T) = Z Z GBNA“AeﬂNB“BZA(NA,V',T)ZB(NB,‘/,T). (3327)
Ny=0 Ng=0

Here Z, (and similar for Zp)is ( See E q xy>

1 (Vv
ZalNa V. T 5 T 1. :
a(Na,V,T) NA!(/\?A) (3.328)
Ny
© 1 1% e 1 1%
T 5 e eﬂm_) —(eB“B——) 3.329
Ag;o Na ( ’\?A N;O Np! )‘t33 ( )

B \% B \%4
[~ “A;t;—+e uB;a——
A

Z=e ' (3.330)

The expectation values of N4 and Np are

(Na)= N4 (3.331)
10In(Z)
S r—— 3.332
5 ous )
Vs .
= ePra —\(W;) = Ng (3.333)
—— A,
s Y (3.334)
Ay
The chemical energy of the reaction 24 — B is dﬁﬁddl’mm given by Ap = pup—2p14
(one B created, two A destroyed).
Np = eﬁ(Au+2uA)_)\‘_3/_ (3.335)
te
VoA
= ef’AﬂF i (3.336)
B
2 < M
P(w) =g g e O Dl
A A
6
= eBA“D md CB =M 6(3.338)
Als 1%

=K. (3.339)

This is the laf of mass agtion, K is the equilibrium reaction constant. The concentra-
tions of i in a reaction are related by ¥ power laV&S The powers are given by

the multiplicity in the reaction. The total or maximal concentration of A is given by C'4
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3.10 Ideal Gas in the Grand Canonical Ensemble

+ 2 Cp = C3OT (if Cp =0 then C4 = C7°T and if C4 = 0 then Cp = C3°"f2).

Cs
=K .34
(CTOT_2Cp)? (3.340)
(;(B (CTOTY? 4 4(Cp)? - ACHCOT (3.341)
e 1 (CToTY2
TOT A
0=(Cp)-Chs (C - K) [ (3.342)
Cp = CTOT L \J (CTOT R (3.343)
1 :
C}‘OT + 4LK 1 C}OT
Cg= 5 ~V sz + SK (3.344)
So this is the concentration of the resulting-melecute P""M
Limit 1: Low Concentration
Cipt << (3.345)
Ctot
0 " T Cp = ! @1 + 8Tt (3.346)
Liak SFps @C‘“)z (3.347)
Limit 2: High Concentration
Ctot Ctot
Cp» 2 (3.348)
daaru ToT 1

Nmil; A \/WWV A>T (3.349)
o

So all molecules fall apart at low concentrations due-to-entropie-effects F=t=49'S.

k= e (3.350)
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