i

4 Thermodynamics
'QM‘%“ TR il amacs

As lalready mentioned in Chapter 1.3.1, thermodynamics —(ﬁlermost tics would be a

betfer name) describes macroscopical systems with the help of a few phenomenological

rule$ which are called the laws of thermodynamics. These rules are ngt mathematically

deriyed, but rather are generalisations or idealisations of experimental results. With this- ﬂ\m Q%
a number of predictions becomegpossible. The advantage of is the generality

of the predictions, the disadvantage is that material specific properties like the heat

capacity of gases are not deducible.

4.1 Axiomatic Thermodynamic

Starting with the fundamental equation
U=TS-PV +uN (4.1)
and taking the differential form
YReswatnucl dU =T3S - PV + pudN (4.2)

T(S,V,N), P(S,V,N) and u(S,V,N) can be derived, so U(S,V, N) contains the com-
plete information and everything can be derived from it. T'(S,V, N) does not contain all
the informations gince one would need the three functions 7°(S,V,N), P(S,V,N) and

u(S,V,N) to U(S,V,N) - they are the slopes of the 3-dimensional function
U X' along the 3 directions. Xo one can do the Legendre transform.
F=U-TSdF i 6%-.=dU—TdS—SdT
(4.3)
= -SdT - PdV + udN (4.4)
dF(T,V,N)=-S(T,V,N)dT - P(T,V,N)dV + u(T,V, N)dN (4.5)

So the above Legendre transform is performed by
e obtaining S(7,V, N) by inversion of T'(S,V,N)
e replacing S by S(T,V,N )} so that

F(T,V,N)=U(S,V,N)-TS (4.6)
=U(S(T,V,N),V,N)-TS(T,V,N) (4.7)
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4 Thermodynamics

T Lot 6Cro Fov swamnls)
By—deing-this\F'(T,V, N) does indeed-now contain the@mplete thermodynamic infor-

mation, so do
can be derived.

05 olfpamtntic?
A0e famckros
From these %‘%—%, P(T,F,N) and u(T,F,N) can be obtained. There are many ways

of formulating thermodynamics, but here the focus will lie only on the most important
ones.

(T,F,N), T(F,V,N) and N(F,T,V): From the expression for d§ dv

S 1 m
dV = -2dT - =dF + £aN (4.8)

4.2 Equation of State and Response Functions
Here_again W2 Qg Comnt ol the olffranbial of [
dF(T,V,N) = -S(T,V,N)dT - P(T,V,N)dV + u(T,V, N)dN (4.9)

where F(T,V, N) contains the complete information, the functions S(7',V, N), P(T,V,N),
u(T,V,N) however do not. They contain other useful information though and so they
are called equations of state and they are first derivatives of thermodynamic potentials.
The following one is called the thermal equation of state.

_OF (T,V,N)

-Q-L{,wﬂkiaw) @ WML‘““ al j

P(T,V,N),V(P,T,N),N(P,T,V)]in fact P(T,V,N) = P(T,v) iwhere Y= %i The
so called caloric equation of state can be derived fromr_@ J

P(T,V,N) = (4.10)

dU =TdS - PdV udN (4.11)
t ol P 7
ds = TdU+ TdV TdN (4.12)
dS(U,V,N) 1
= ' 4.13
ou T(U,V,N) da)

T (V) cmmacks B vural, T 0 1 M amd 29 called calmic , (419

CYRLY Sy A

~V5 —~ i . So in conclusion,first
derivatives of thermodynamic potentials are called equations of state. Now one can also
take the second derivatives. These give the so called response functions. Therefore-here

again jythe thermal equation of sta,tej
N
@ V(P,T,N) = QC_’(_];’}TQ L (4.15)

T/‘“X’()":(A»LQ/D oy N .(~
OT v, Wi s damad
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G =U =T C.4 P/ 4.3 Maxwell Relations

Here & is the Gibbs free energy. Now-there-are-a lot of possibilities to take-seeond .
derivatives. Bﬂt-&ﬁartmg-frem the total differential of V(P,T, N) this-results-in 7, oL Aam

Cornr it oy / av

av = Sl ndP+ —|deT 5 ]‘\/,|P,TdN (4.16)

So the second derivatives of thermodynamic potentials describe how state variables
change, when other state variables are varied. These response functions are extremely
important to characterise tie systemg’so they are very useful in applications and hence
they are tabulated in books. Now with this the isothermal compressibility k7 can be
written down as

18V(P,T,N)

kr(P,T) = v 9P (4.17)
V(P,T,N
—>  _Vip(P,T)= La’Pv_l (4.18)
_0°G(P,T,N)
— _TP?_. (4.19)
Now the expansion coefficient « is
_19V(P,T,N)

= (4.20)

«
caterpy— )

And the volume per particle is

8V(N,P,T) 8Nu(P,T)

3N = AN (4.22)
=y(P.T) (4.23)
With that equation (4.16) can be written as
dV = -VkpdP + VadT +vdN. (4.24)
Hence differentials of equations of state define response functions.
4.3 Maxwell Relations
Again starting from the fundamental differential form dU = T'dS — PdV + udN':
oU(S,V,N)
T=——"= :
35 (4.25)
=T(S,V,N) (4.26)
~P(S,V,N) = ?_U(*;’#V_) (4.27)
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4 Thermodynamics

So since
0 oU 5] oUu :
Q,,QQM WlS,N%lV,N = %l%NWlS,N (4.28)
it ts-adse-trae that

- oT(S,V,N OP(S,V,N
%LMM% (E)V )=— (BS . M U\-!»Q‘l’(429

This is called a

axwell relation (not to be confused with Maxwel’s equation from
electrodynamics), Wthh relates derivatives of state variables. Thig concept is a very
powerful, but , because there are many . Just from U ( S A /v/
many pairs can be formed and there are many more:

F(T,V,N),G(T,P,N),H(S,P,N),Q(T,V,N)... (4.30)

4.4 Adiabatic Processes and the Application of
Thermodynamic Calculus

The differential form of the first law of thermodynamics is (again)

TdS = dU + PdV - udN (4.31)
= AQ (4.32)

Adiabatic processes are processes where no heat is exchanged with the environment, for

example by doing the process as quickly i ly no heat can be conducted
away from, the system. To describe typi i i , such as compression of a
l { 0 gas, it is i to switch variables from U, V, N, for example to V, P, N or V,T,N.

To make calculations easier, the /N in equation (4.31) is droppey, as NV is constant most
of the time anyway. t/@d o~ Yt

oUu oU
dU = -a—P"TdP+ ﬁlPdT
From the thermal equation of State V' (P, T)} dV becomes

av ov
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4 Thermodynamics

AT, : ,

Wo v tmd b vl Ha prefackon im Fa (36 & 4.3 b
KAaauvae 10,
as = 23K, dT+(5+la—U| )dV (4.52)

G ToT" T Tov'" :

Suklery: 82 828 ;
Q . ngvzag/aTP ;;" oA (4.53)
1 1

W'T'T‘a—T'V=5T"V(a~'+f5vlT) (4.54)

18y U \ 18P, 1.5°U
e Lol ekl OO R, o4 4.
TovaT = T2 (P+ av'T)+ 7TV " Tarav a3
U AR e
P + WIT = TE,I‘—IV (456)

The second step now is to relate %lv to something already known.
- Al dv
oP |z aP|T

With that the derivative of P with respect to 7" can be rewritten as

P & lp

— |y =L 4.58
aq-t IV g_}/)lT ( )
It
4.59)
r)
(4.60)
(4.61)
With all of this
oU oP
P+ B_VIT s TE'T—IV (4'62)
- ?& A 4.63
KT L ( )
Therefore \/\‘—‘T‘
TdS = cydl + %dV (4.64)
T
TdS = cpdl — aTVdP (4.65)

K7 C
= V. 4.66) .
Qo j an om L0}

Where the first one was derived above and the second and—thied are left fof exercise.
These TdS equations are important since for adiabatic processes 7'dS = 0.
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4.4 Adiabatic Processes and the Application of Thermodynamic Calculus

ALk gnof Anthey | Ut tann S\
With those equation (4.31) becomes TS m lme vl AT and o V'B

8V U oV
TdS = [ |T+P6P|]dP+ e+ Porle ]dT )(4.36)

TdS = -a—T|VdT [P Lyl |T] av (4.37)

T totprmip U.36 and 433 i P ptal okl of G s Sl
Obtaining the Heat Capacity (0, it Ngp ~C Yead Aom o4, P;T Oang
VT2 Dn oot fo S5 T Uk V' Hhing oo

The heat capacity is

Cv=i—§v Ml vmakam, (4.38)
*Mﬂ'\ Y32 oned g ou
ok AQ= TS =TV (4.39)
Cr=22e (4.40)
/(M“-\ 4,34 ond agam _ iqlp+P§K|p ()
parys b BAT D g{U+PVE§T
= ———aT—Ip (4.42)
~U4Pv = f%{Ip (4.43)
Here mhalpy. For an ideal Gas U = %kBTN and hence
s %Uh, (4.44)
. —kBN WW%" (4.45)
ol %Uh, . Pg%p (4.46)
= ngN + Nkg (4.47)
” g—NkB . (4.48)
W ey Ul A Rave 2y (4.49)
Se the equation of statefs
PV = NkgT (4.50)
v _mp NAhe (4.51)

TFIAN TR
So in general cp > cy, because part of heat is conneeted to mechanical work.

Covmtleel
e alobed
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4.5 Different Ways of Expanding a Gas

4.5 Different Ways of Expanding a Gas
Tt 0 edman

Different paths of expanding a gas from an initial Volume V; to a final volume V; > V;.
The mechanical work W performed by the gas is

Vs
W= [V P(V)dV. (4.67)

Pe

\\ s
V; Vi
v

Figure 4.1: P -V diagram of an expanding gas from initial volume V; to final volume

V. Green lines are isotherms and blue lines are isochors. on A+ c,e,m
\/'\/\/\/\,

Here it can be assumed that the state changes are slow, so that the equilibrium holds
and T'(P,V') is given by the equation of state. So the path 1 can be assumed to be an
isothermal expansion (P = 2%2T) The work W along this path is

Wi = N@T@—“—//ﬁ & Aot (4.68)
i
Obviously path 2 and 3 are not isothermal

W2 = P(V;-V) = N"“/?T =NkBT(§- ) (4.69)
W;= Pi(V;-V;) = L NkgT (1 B E) (4.70)
Z; Vs

Clea@)W2>W1>W3, since%—1>ln(¥f)>1—‘l,/fisincex—1>ln(a:)>1-£forz>1.

The\Wbrk is not an exact differential, since W, is path dependent. So the tota rk
Wiot done L m A Cadic PWU» M

Wtot = AW (471)

b = 5[ 1% (4.72)

We Lakey Si & £0 (4.73)
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4 Thermodynamics

this is the area of a cyclic process in the PV diagram, so the work done is not a state
function. Because of that statementsike W (P, V') have no meaning.

4.5.1 Conclusions

Kol Gk g

e Using a path integral over the first law of thermodynamics

dU = AQ - AW (4.74)

it becomes clear that heat is also not a state function, since in general

f AQ - f AW (4.75)

X2 0. (4.76)

Hoaw e maed TN § o 57,
In this example, since U = %N kT (for an ideal mono-atomic gas) it also becomes
clear that Uy - Uj; = 0 and with that the absorbed heat @ is the work W performed

along the isotherm for an ideal gas Q;y = Wiy. ;M SR»D
For a thermally insulated system, so that AQ B 0, ~s that
dU = -AW (4.77)
=-dW (4.78)

and the diﬂerentia@rk becomes an exact differential.

4.5.2 Adiabatic Expansion of an Ideal Gas

As-a—reminder, the T'dS equations were O ong éq >y 2 ) &

T

TdS = cydR+ A4dV (4.79)
R

TdS = cpd? - XTVdP. (4.80)

Alsopreviousl  Frghna Ec‘ ey Wt obkar

L

ol.r oV

dv + ZLqp (4.81)
«

So now equation (4.81) can be inserted into (4.79) and (4.80), which results in

66
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_ VAT p, P
TdS = =—=dP + —dV. Y,

: domar !

(4.82)



4.5 Different Ways of Expanding a Gas

This now is the third 7'dS equation. It can be used to describe an adiabatic process
(TdS =0).

CyRT cp
= —_ 4.
TdS N dP + anV (4.83)
=0 (4.84)
i (4.85)
Frem-that-follews
10V
= 4.
Fr=-v5 P]T o (4.86)
1 ONkgT,
=——— 4.
vV op T (4.87)
_ NkgT
=+ pe (4.88)
1
=5 (4.89)
For a monoatomic, ideal gas
Cy = gNkB (490)
5
Cp = —NkB (4.91) .
2 . .
which are independent of V' and P. Beeause-this-is-an-adiabatic-preeess, L .85 1. oX Eos
i = - Uis 5 . (4.92)
B _(%Y (4.93)
P, \Vy '

This M is the adiabatic equation and 7 = ?5 > 1 is the adiabatic exponent. Since vy > 1
the adiabatic P(V') curves fall off faster than the isotherms. The temperature decreases

during this adiabatic transformation. So 7 is g ov- B A M W

y=£ (4.94)
Cy
5
2 4.95
: (4.95)

which can be used to describe the Carnot process.
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4 Thermodvnamics
4.6 Carnot Process

The Carnot process is the idealisation of real heat engines which convert heat into work.
The P - V-diagram can be seen in figure 4.2.

Cu : T, = const.
T, = const.

%st. sQ<o |
= CORst. Aa:o ¢

Figure 4.2: P-V-diagram of a typical heat engine / Carnot cycle

The cycle consist of four steps (colours refer to figure 4.2).
e a - b: isothermal expansion at 77 (green)
e b— c: adiabatic expansion (light blue)
e ¢ — d: isothermal compression at 75 <7} (blue)

e d — a: adiabatic compression (red)

Figures 4.3 and 4.4 show these four steps again but how it wouldleek-inside-areal engine
with-eylinders. Heat is transferred from a hot reservoir (7}) to a cold reservoir (73).

/\nqu%)
A;\AOLW~\—M veadoaah s
w it o O&QA-‘JM 3/

o’ chicalley Comtksd Lo
Clires At ek ¥,
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4.6 Carnot Process

STEP 1 (a — b) STEP 2 (b c)
Z

V.P //Tz

7 7
Figure 4.3: Carnot process steps 1 and 2: isothermal and adiabatic expansion. Heat-is
t i i (in step 2 the

cylinder is thermally insulated - shown with the cross-hatching pattern).

STEP 3 (c — d) STEP 4 (d - a)

1 .

T;

RLLees s

Figure 4.4: Carnot process steps 3 and 4: isothermal and adiabatic compression. Heat
i i . ) (in step 4
the cylinder is thermally insulated - shown with the cross-hatching pattern)

As in every cycle the integral over U is zero

f dU =0, (4.96)

it follows that
f AW = Wiy, (4.97)
= Q1+ Q2. (4.98)

In the adiabatic processes no heat is absorbed.

Here W, is the total work done by the system. This is equivalent to the area within
one cycle in the P-V diagram. @ is the heat absorbed from reservoir 1 (which has the
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4 Thermodynamics

temperature 77). @, is the heat absorbed from reservoir 2 (which has the temperature
T5). Further

f dS=0 (4.99)
= Qun + @2/, (4.100)
and thus
T
Q2=-7@ (4.101)
1

So heat is injected into the reservoir 2 and the total work W, is

T: st Ve
Wit = Q- -1 Oscnfz ¢ (4.102)
=il A
=@ (1 T1) (4.103)
= Q7). (4.104)

Here n = %fi =1- % is defined as the efficiency of the heat engine; it Jis the net@rk
done per absorbed heat from the hotter reservoir. Since 0 < %2 < 1/ Fhe-total-werk

1

performed-is-thearea-in-the-RV-diagram. W, is larger, the smaller 75 is. For T, =T}

the work and the efficiency are zero.
% @\-J\n Oon Hea,']‘ PUW\P NIS@
4.6.1 Principle of Cogeneration (of Heat and Electricity)

The idea is to heat a house as efficiently as possible. In the house is a tank with natural
gas to burn and below the house ground water can be found. By just burning the gas
per one Joule of burned gas the house is fed with (obviously) one Joule of heat. By
using a Carnot engine this can be done much better: The first idea would be to just
burn gas in a heat engine and use the electricity to power other appliances. The room
is at 7} = 313K and the gas burns at 7> = 873K . The efficiency of the heat engine is

gelas = 0.64 (4.105)

So for every Joule of chemical energy 0.64J go into mechanical (quasi electrical) work
and 0.36.J go into the house. But this can be dene-better: The 0.64J can be fed into the
heat pump to transfer heat from the grouncywtter at 283K to the house as well. The

Jprthi g
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" 4.7 Transfer and Creation of Entropy
Coefl: uonk of o] ovm amnep

efficieney can be calculated via

1 Ti
= 4.106
n Th-T5 ( )
313
red . 107
313 - 283 :107)
- 10.4. (4.108)

This means that for every one Joule of electric power 10.4 Joule of heat can be trans-
ferred. Using the 0.64J of electricity from above to power this ground-water-based heat

engine
E=0.36J +10.4-0.64J (4.109)
% 6.7J (4.110)
Ry Comatnaki o Cman

of heat can be transferred to the house per one Joule of burned gas. This seems like a

violation of the-laws-ef-thermedynamies, but it is not to forget that the groundwater

actually became &d&t colder by doing this. This is where the energy eame from. There is
just a huge amount of ground water, so the effect is not really noticeable. These systems
are used in many private and public buildings. The process is called co-generation (of

heat and electricity) (German—Kraft-Warme).

4.7 Transfer and Creation of Entrogy

New 1ot dincwmy rdoaliss
Why real engines are less efficient than the aceerding Carnot process. AQ is the heat
transfer from reservoir 1 at 7T} to reservoir 2 at 75. The two reservoirs are connected via

% ahfgﬂr et Thet Comluabpologal: Mo & sebom atic

- {
A
4.7.1 Reversible Case )e Wt ,
T M/Ww;) CBbrgpr A /d« Yonm, MR
Ty=Ts-with AS; = __Q. <0 and ASz = —— > 0. For T = T; the total entropy change 4

ASior = AS1+AS; = O "This is an example of a reversible heat transfer. Heat-ané-entropy H ,Q(J M
ake transferred, 8o the total entropy stays constant. The second law of thermodynamics
allows these kind% of reversible processes to happen.

but

4.7.2 Irreversible Case

Vus\s W vl
@ opposite to the reversible case, hese T} > T,. The heat will flow from the hot to the
cold reservoir. AQ is so small that 77 and 75 stay quasi constant. The entropy however

71



S Vivamw2ed

4 Thermodynamics

increases.

AStot = AS]_ i ASQ (4111)

TL-TZ

T wd% .. L
=AQ(-T;—§;;) - QR T T2 (4.112)
>0 (4.113)

And thus this process is irreversible. N c)’zk&o" /t&* "PPU‘)&J ()\'U"U/r),
Uor heod By fipm +20 (R ke Akt roimus, Ul
o ot (Bs ok iy amd A9 et ol el

4.7.3 Comments s Dok Qoo Q o Wt Lo Ao
e The Carnot process is reversible if the-mechanical-energy-is-stored-in-betwecn. (Rd .
Wk~

e The heat flow from the hot to the cold reservoir without the conversion to me-
chanical work is the main reason for the low efficiency of real heat engines.

e There is no heat engine with a higher efficiency than the Carnot engine.

Ex‘{' (vaw(
4.8 External Properties of Thermodynamic Potentials

e In an insulated system the entropy S(U,V, N) is maximised. ap Dainam A S’J;\f" “

e If energy transfer is allowed between the small system and the reservoir,

W xe dU =TdS - PdV + udN (4.114)

\ 1 P I
% == —dV - =dN 4.115
Wb dsS TdU+TdV T ( )
Stot=S(Ul,‘/l,Nl)+S(U‘U1,V—‘/1,N—N1) (4116)
=S(U1,V1,N1)+S(U,V,N)—y1:1 (4.117)
U
= 5(U, Vi, M) - ==L (U s ) (4.118)
i { '
sy ciinl ol (4.119)
Vi 22 d L
So from the second law of thermodynamics follow} that S; - QTl is maximised. So
t imised. The free entropy,is mzﬁe wed when T, V, N is fixed and

({L’TS\

Fir=tr—FSris-also maximised-— Lezu, 2rg
e If entropy transfer and volume transfer are allowed, G(P,T,N)=U -TS + PV is

imised. . .
maximise ;M o3 < s /Q!_J/Wwi
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4.9 Thermodynamic Description of Phase Transitions
4.9 Thermodynamic Description of Phase Transitions

Simple substances can exist in one of three phases, solid, liquid, vapour (gas).

PIL I

solid 1

PC ] l liquid ;' —————

: / I gaseous
= / i
] ] C¥i‘ti'68| tempe_!;&t“;e
'] A

l
Figure 4.5: Example (;rg' phase diagram. .
I Hanebao- phane Cotrpif amct

Along the lines in the diagram, two phases coexist, here are two solutions to the equation M’
of state with different volumes v = % per particle. Fer-afixed—#; the system splits into

two coexisting phases (phase separation / phase equilibrium). At the triple point all three

phases coexist. At the critical point the difference between two phases (liquid/vapour)

vanishes.

4.9.1 Thermodynamic Stability at the Phase Transitions Anr /)ﬂ\uwv« po g""'J“""
xy

Consider a two phase system like liquid-vapour at constant 7" and P. At constant T, P,
equilibrium is characterised by a minimum of the Gibbs free energy (free enthalpy)

G=U-TS+PV (4.120)

Now let N = N; + N5, where N; is the number of particles in phase 1 and N, the number
of particles in phase 2.

G = Nypy + Nopio (4.122)
= Nypg + (N = Ny)po (4.123)
This can be minimised with respect to Ny
9 0 e
oN. - BN, 11 + (N = Np)ps) (4.124)
= p1 — ph2 (4.125)

We SuetBak i 2l O, (4.126)

The chemical potential has to be equal for the two phases.
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4 Thermodynamics

4.9.2 Clausius-Clapeyron Equation Qi
We i div o wenotarneg plowa

This is the Clausius-Clapeyron equation.
i den eSS

74

For each phase mt-is~tzuerthat,_
U Lo VDY G AP (4.127)
=d(piN;) 1 (4.128)
o S Vi
duy =~ 5-dT + 3-dP (4.130)
with the definition of the total differential this yields
Opi Si
=—— 4.131
aT |, N, (4.131)
Opi Vi
= — 4.132
3P|y~ N, (4.132)
Oz — pi1) (5‘2- Sl)
Y (o W 4.133
2 = =D/ (4.134)
OMpz-m)| _Va Wi
b 1ol LA g e S g B 4.135
oP 7 Ny N ( )
=y _ (4.136)
UWhia DS ;% Ondd 2 ‘/4, Gan
with Ay = po — py this becomes (Bs 9,‘,\,") ond A 1vlure R
P adrLe .
(4.137)
(4.138)
B I —i—g> (4.139)
B s ML ‘l‘/vm«(wvha}w‘ 2t v
dP.,(T) 0P
bkl b SR PRIl 4.140
Ut LanA pd s b B T O lago 0
. =e Co X
oLl e ohis L 268D (4.141)
With Ag; = TA8) which is the latent heat required for vaperisatien, this becomes
21160 = —= 4.142
daT (7) TAv ( )

COq, Sk phent g



