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5 Statistical Mechanics of Real
Systems

5.1 Virial Theorem Ty, dov o yviak ¥e TR P
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Here N will-be-(as-usted) the number of mﬁerae%m-gi(gas% particles. The Hamiltonian
therefore is

H = Hkin ot I-Hlpot (51)
N pZ
: Hyy, = 21 %{L— (5.2)
% > [@-a)]? (5.3
Hpot = Gj — G a}? Ak 5.3
j=1 k=j+1 W dw./tlf)

Here the parameteifa,, giveX the strength of the potential. With this, different scenarios
J g P"‘“"("'

-~

can be considered. 2
3 Wﬁ M,

e Gravitation, where n = -1 and a,; o< —m;my
e One-component plasma, where n = -1 and a;j, o< ¢ axf 9 = PO‘V‘~ NI 0N C’Q«Mae
e Two-component plasma, where n = -1 and a; o< q;qx . q5 M L0 CQN d{ PaJ")V@\S =

This model is very general, as this is a power law interaction model and n can be

any arbitrary number. Se-soLwng,tlns—pxoblem—eould_bﬁ._a.np_Led_twan%many.m
examples: The partition function Z again is %Afo"\ QQ

d®p o “ ¢
[[ f J] "6(Hkin+Hpoc) (5 4)
Ll ey . H oueyen S o )\MMAAS
An important note js that Z cannot be calculated anaﬂytte&lly,-onl—y—br-&pp:omm Movw‘ oha o
At-this-peint-is is useful to rescale T.,p and ¢, using a rescaling factor of >7 Con L= A Aartd

Fo»'\w e e T =TAn (565‘“%"\ .
p=qA (5.6)
p=pA2 (5.7)
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5 Statistical Mechanics of Real Systems

This rescaling was constructedyso that the Hamiltonian stays invariant under this rescal-

ing, so-ée—bhemnber—ef.pa.ntwles

W OlA’ww th-c W?W /% n%HE" (5.8)
(3&9 Lackpw wolas | ) A | . (5.9)

But the integration boundaries however do cha,nge.cu>

Lok
/ dq = f Adg (5.10)
0 0 "

- fo i (5.11)
L=\ ' (5.12)
V=XV (5.13)

) (5.14)

Here L is the length of a cube with volume V. Now the partition function in rescaled
coordinates becomes

" Hyin ($)+Hpot (7)
Z(V,T,N)-— [f 3G ,\3fdpu“ ] S (5.15)
= )\3N(1+3)Z(V T,N) (5.16)

This A factor has no physical meaning, 1t is just a scahng factor. Now from the three
variables V, T, N three new variables VT , T'and N are defined; with those the partition
function beeomes Cams Q,-g '\w/buﬂ\ o>

Z(v,T,N) =fvr-3,1,N) 5.17)
=B VT-NB AT N = |y (O F =2 (518
oA We e I% ) L‘(VT 7/2'£7'\~'1)}V)

Here ‘9 is an tmiegewn function. With that \ only appears as a pre-factor to P
/ ‘ ;W\ C\ACQZM 2 bk (5.19)

y o 2 M+ mn I?)

Fheretore the partition function haste-he
Wik £ o &, ﬂw P ,f e

Z QT (5.20)

ol (o Z(NVT)= (AnT)JQ}(VT-- N) (5.21)

Here ¢ is 31 unknown function. This formula for Z is exact, as no approximation were
made. Now this A was used to reveal certain symmetry relations but can well be set to

Tha S«aﬂm—f) ?o»d‘w

—~
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5.2 Virial Expansion

A =1 now. With that Z becomes

2Ty =TSR v vy e Comedanlt ‘Lu}w“‘@

Fe —kBT[3N (1 , )ln(T) . ln(gb(VT‘?)] (5.23) /(ﬂ
. _’a %
P %{E LA (5.24)
= kBTT'%ﬂK-T_—j) (5.25)
‘\qS(VT‘;)
§e a(i“T'V gf( o (5.26)
F # (V)
BN, kBT—(l b )— — kTS T---lv——-3— (5.27)
e 2 )
i dasafead e e SR
s —T+k3—(1+§)—;—fP (5.28)
FeUTS i Anst obrtous (5.29)
: A 'U=k3Tﬁ(1+f)-§VP (5.30)

This is an exact relation between U, 7, N,V and P for an interacting system. It is not
an equation of state, as it depends on 5, et statevariables. This is called the virial
theorem. For n = -1 (gravitational or Goulombic systems this becomes)

}U - —3’“32TN +3VP (5.31)

e RO Mt Abdss- (53

5.2 Virial Expansion
C P"""‘ S | ow-o-Q«Tws o’i Q K(J W
This virial expansion is really a kind-of-Faylor-expansien. This chapter is also about

perturbation theory. The partition function for an interacting gas is as—usuat

/V\T\V)Z fﬁ:)__ [ di%; g [ékm) (5.33)

=5 34

H, f? ik (5.34)
N TEN

]HIpot = Z w (QI = qk) (535)
I=1 k=l+1

e~ putsmbrl i



5 Statistical Mechanics of Real Systems
First-of-al the momenta can be integrated out exactly.

Zy (V,T) = H f @ €% e~B T w(a-ax) (5.36)

W
Here ); is again the thermal wavelength. Theﬁckvﬁmm«switch oter.

to the grand-canonical ensemble.

Z(p,V,T)= Z PN Zn (V,T) ' (5.37)
TRy W Aha~ %y Mo Gal A aiccl Qmetaon o w..,é,
In the-ehapter from statistical mechanics the p i}

PV:kBTln(Z(p,V,T)) . d‘(@ﬂéﬁ"f

19In(Z(u,V,T))
B o ¥

2 = P+ is called the fugacity and with this the grand-canonical pai’tition function from
equation (5.37) can be written as a power series in 2.

Z(u,V,T) = WT) (5.40)

. A;i NI (V,T) (5.41)
=0

N=

(5.39)

With that the equation of state can also be written as a power series.

PV
ko7 22 Bintn Lone o ' g
o0 l 4
v (F b (5.43)
l=i° t [\

fln[gozN%d 2/\/ ! | (5.44)

With Zj = 1 the first few terms can be written V>

= In[1+ 22, + 227, + 23Z3 e 8 4 | (5.45)
using the Taylor expansion for In (1 + €) this y1elds
1
=27, +2* (Z2 - %Zf) +28 (23 =712, + ng) +0 (z*) (5.46)
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5.2 Virial Expansion

By comparison with the definition from equation(5.43) the coefficients of b; can jhetf be

read of o>

bi=3t2 ‘ (5.47)
A i3
9
b3 = )\Vt (Z3 = lez + -;-Zf) : (549)

Using the Mayer function fi, = e#w(a1-%2) — 1 the Z, become

dr %eo g (5.51)
. s 6

(5.52)
(5.53)
< 27@)[ d3q1d3q{+ f12) (5.54)
2, - @ P dasdas (1+ fiz) (1+ fas) (1+ f) (55)

and finally the coefficients b; can-be_caloslated—eo=> { e on
1 | (5.56)
- %f ggql—xfngf 13 ' (5.57)
b=t [ LOCEPOIG L ) (14 i) (14 fs) =30+ fi) 2] (5,50
7 _613 / w@[g f12f23f13 + fiafos + fiaf13 + fosf13 + frofastfaz] (5.59)
= %f w[ﬁzﬁsfls +3f12f23] (5.60)
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5 Statistical Mechanics of Real Systems

With this N becomes
N 10mEw)

R (5.61)
0z 0ln
=%£%(“)) (5.62)
. =2@P_(azzﬁl (5.63)
Ut ¢ 6 " %) N
o C== (5.64)
W Z A\ \
L l;z (A_?) b _ (5.65)
c~b1§+b22(/\i?) i ‘ (5.66)
%Nc—2bgc2+0(c3) _/ S dl 2 ‘ (5.67)
Pt @/—Y L\®
Sl ”0((7)) iy
=c-byc? +0(c?) . ‘ (5.69)

The leading term is the ideal gas law and the correction term is proportional to —byc?.
With the model of hard spheres with diameter d this becomes

by=1 (5.70)
g a8

bz = % f TG (pun-) _ 1) (5.71)

14w
= —m—(® 172
23 : \&:72)
i -%vez (5.73)

Here v, = %"d“ is the excluded volume. And with all of that E% becomes

k_B]% =c+ %vwc2 +0(c*) (5.74)

So the first correction to the ideal gas law is proportional to the excluded volume of the
hard-sphered particles.

5.2.1 Side Note on the Inversion of Power Series

=Skt zQ r-dp 2l 5

=1
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5.3 Van-der-Waals Equation of State.

Starting from the Ansatz

(o<}
©Fn
. 1=1
and inserting it ¢ becomes

c=d1@d2@+d3@(@

= dl (nlc + TL2C2 S i 9 ) dz (nlc + TL262

"+...)2+...

=dinc+ (d1n2 + dgn%) E+...

By equating the coefficients this yields
S
diny =1 —> = /c[,
d1n2+d2nfé0 "‘—7 V]L: e

5.3 Van-der-Waals Equation of State.

The typical pair potential w(r) (figure 5.1) of a real gas is

._ ) |r< D
i {_wo(g)s >R

T

(5.76)

(5.77)

(5.78)
(5.79)
(5.80)

(5.81)
(5.82)

(5.83)
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5 Statistical Mechanics of Real Systems

1.0 . , . i

2k | :
= 0.0

=00

DL a4 56

w S:é.l

Figure 5.1: Typical pair potential (Here for example: D = 2,(s = 2

The first non-trivial virial coefficient is the second one, which becomes

.

az = % /oo drdmr® (1 - ePe() (5.84)
0
D (o] w S
=or [ drr?+ 27rfD drr? (1 ~ efpr(¥) ) (5.85)
0

The second integral can not be solved in closed form as it will result in a gamma function.
So rather weak attraction can be assumed and

Wo .
— ‘ 5.8
T <1 (5.86)
2m TR P
ay= 3 D* - 2nD¥ L drr?s. (5.87)
For s > 3 the integral converges and it can be written as
2 27 wWo
i e [ o v L Phtonein 5.88
MEF T e=8. kel o)
with :
M A 2n
- (@2 L D3w, (5.89)
s-3
@ 2—37303 ’ (5.90)
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5.3 Van-der-Waals Equation of State.

this becomes
al

=b - — : 5.91
ax=b kaT ( )
(5.92)

Which is now the second virial coefficient. It can be plugged into the virial expansion.

= ¢+ agc? : (5.93)

=c+ @ ) o (5.94)

Pt kT + BT {a)y? (5.95)
5 P+a'c®=ckgT (1+bc) (5.96)

k5T

with the expansion for =~ 1+ €+ O (€2) this becomes

k

~ (5.97)
’ 2 CkBT
P+a o (5.98)
(P+d'c®)(1-Vc)=ckgT (5.99)
(5.100)
With ¢ = & this becomes the Van-der-Waals equation of state.
a'N? '
(P S ) (V-¥N) = NKsT . (5.101)
5.3.1 Conclusions /\NQ ol
e In the ideal limit (wo - 0 and V' — Oa =b = an—der—Waals equation of state

becomes the ideal equation of state.
e The real volume Ve, =V - b'N is reduced by the volume of particles.

e The real pressure Pie, = P + %VE is increased by the attraction between the parti-
cles, as ag o< wyD3.

AN .
( S = can be rewritten as

Ipa NkBT_ q’N2
Q~&q l~9 =N 12

and.plotted in figure 5.2.

(5.102)
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5 Statistical Mechanics of Real Systems

Pu

Figure 5.2: P-V diagram of the Van-der-Waals equation

So there is a finite range of volume for 7" < T, within which the volu ne goes up when the
pressure increases. As a negative compressibility is unphysical, the &xwell construction
is used.

dF = -SdT - PdV (5.103)
With a constant 7" this becofnes
=-PdV. ' (5.104)

Hence the free energy difference between two volumes V; and V, along an isotherm is

AF == [Vg P(V)dV (5.105)

i

The AG for two system parts with the same F; is

AG = AF + BAV . (5.106)
. fv ? (By= P(V))dV (5.107)
-0 . (5.108)

This is the equilibrium condition at phase coexistence.
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5.3 Van-der-Waals Equation of State.

Pl

Figure 5.3: V-P-diagram. The two areas A; and A, must be equal: only then the
integral becomes zero.

The region with % > 0 is never observed, because the system splits into two volumes
Vi and V5, at pressure F,. These so called binodals limit the two-plane coexistence re-
gion. Below the critical temperature 7" < T, there are two planes and there are volumes,
where the slope is zero, there is a volume where the curvature is zero. At the criti-
cal point the slope and the curvature are zero. This is how the critical point can be
found. So from equation (5.102) the volume, temperature (up to a factor of kg) and
the pressure at the critical (¢) point Q. are Viitical = 30’ N, kT, = %‘;—,' and P...0= ﬁ

So what does allP&f this mean? The equation prM a critical point at V,, P,,T..
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6 Quantum Statistics
Seaet ko d

6.1 Quantum Theory

o W Loel
There are a smatt number of experimental imsights that lead to th development of
quantum theory. One of them is the photo electric effect, where an electron is emitted
from a metal surface, when hit by radiation, which ton that the energy
is quantized by A w1th E = hv. The second one was the electron diffraction experiment
which resulted in A = p ) A
In classical mechanics iewtons equation of motion describes the energy E of a system
L= éﬁ;; This can also be applied to waves. The simplest possible wave is a planar wave

U(z,t) o< eitke—wt) (6.1)
with the momentum

p= ks (6.2)
ot T %A (6.3)

h
x
= hk
zé; (6.4)

with w = 27v the energy can be written as

E=hv - (6.5)
= hw (6.6)
: 1
& : = 2
Gz P [2m _ ~p". (6.7)
And from +4hi§ the Schrodinger equation emerges.

ih )( e ' (6.8)

—1 0%V
"m0z (5:9)

With an external potential V' the energy becomes

2

T 2p_m +V(z). (6.10)
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6 Quantum Statistics

And the stationary Schrodiger equation is

E,V,(z) = HV,(z). . (6.11)
With the Hamiltonian .
L b2 B2

U(2)¥(2) = V(@) lansy 1L, 42 (6.13)

6.1.1 N Particle Wave Function
TN ok oo ok

RSNy N N
H=—>Vi+ Yu() + Yo(fi-) (6.14)
2m =+ i=1 i=1
| e—
external potential interaction potentlal ozt
: TR
The Schrodinger equation becomes I A G- q,v\ ”’ Q~
u 'D""{ PTEW INE c/é ﬁ

]I:]I\Iln(Fl, aTN) E \Iln(rlv

operator F;;, exchanging the ith and the jth particle.
PU\II (P Py on iy B i TR % W (P Fss B i
Clearly double application of P results in the original order.
PR (Fyy By oy By oy F) = Uiy, 1y

But how is this interesting? The eigenvalue of P? is 1. In principle the sign in front of
U after application of P can be either one (& ¢n M g

ijn(i:l) F‘i) v ,TJ TN) :l:\I’n(’I”l, Tja a TN) , (618)

the sign tells what klnd of partlcles one is deahng Wlth

| Sign Spin | ' Particles
+ integer Bosons (Photons, Phonons,He* atoms, Li, Na, ...)
- | half integer Fermions(electrons, He? atoms, ...)

Table 6.1: Particle overview, sorted by spin and sign of ¥ after application of the
permutation operator
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6.2 Boson and Fermion Statisﬁcs: General Results

Fo\( FMUW)

Consequences
A product wave furlction can be expressed as = A UM
lIl(z:q,ozg,“.)(f:l) v ,’FN) = ¢(a1)(f1)¢(a2)('f:2) gaete ¢(aN)('FN) (619)

A
Where a are quantum numbers characterising the N particle state.  Now P can be

applied.

Bijd(an)(71) -+ Do) (Fi) - - - Dag) (F5) - - - Bam) (FN) (6.20)
= =P(a1) (1) + + - D) (F5) + - - D) (Ti) - - Do) (FN) (6.21)

If the particles ¢ and j are in the same quantum state a; = a; = a then

o
e LY Gy (6.22)

I NAINGHE
AT R .
78 gm0 629

Which would result in 1 = —1 which means that the 'a’ssumption was wrong. So what
this shows is that all particles, that have a negative sign when the permutation operator
is applied, can never ave beemin the same state. This is called pauli’s principle that
states that all fermions must be in different states.

In the occupation number picture #e- is the occupation number of state o with the
normalisation : n >3

N=2na ns’l:O""‘ (6.24)

For Fermions there can be either one or no particles in any statef For bosons however
there can be any number of particles (alse-none-er-atl) in any state at the same time.

\/\alton ‘/2' AL
6.2 Boson and Fermion Statistics: General Results

A quantum system of N particles is characterised by the occupation numbers n; of state
i and single particle energy levels €;. The total number of particles N is

N=F s isterdof6:26)
i=1
And the Hamiltonian H is .
H({n}) = Y. me, (6.26)
i=1
The partition function Zy is the sum over all distributions n; of e PHtmT)
Zy = Z e~ PH({ni}) (6.27)
{ni}

89



6 Quantum Statistics

And the grand canonical partition function Z(z) becomes

Z(z)= ) z" ) e PLiam (6.28)
N=0  {n;} g
= Z 2 Zinig=-BLinici (6.29)
{ni}
=5 ¥ A2 BRe, : (6.30)
ny n2
= 3 pigrfan . nesbug (6.31)
ny no
so this factorises completely. For férmions this becomes
1 1
T R e Ry (6.32)
ng=0 ng=0
= (1+zePe1) (1 + zeP2)... : (6.33)
And the grand canonical partitién function for Fermions becomes
Z(z) = [[(1 +ze7P) (6.34)
i=1
For Bosons the grand canonical partition function is
Ziz) = z 2 g Punt Z e Pamz (6.35)
n§0 n2=0
Qe = 14 ze WA G 2670402 4 (g Pur P, (6.36)
ng0
aizaiah (6.37)
~ 1-zePa : '
1 1

1-ze P 1-zePa "

And the grand canonical partition function for Bosons becomes
e 1

Z(z)=]|| ———

( =l 1-zePei

i=1

(6.39)

There is a problem, when ze#¢ — 1 as Z diverges. This results in a phase transition,
the Bose-Einstein condensation. So the grand canonical partition functions Z(z,T,V')
are calculated exactly for Bosons and Fermions. And from these all thermodynamic
relations can be calculated. The mean occupation of energy level m is

E{nj} N 2Tk ke L5 €M

(nm) = = e (6.40)
nj
19 Tuni B E ey
=_E—85_ln(zz Rse g J) (641)
m nj

() = —% g 2 In(1 + ze‘ﬂ‘jj (6.42)
0 2= 4 J
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6.3 Free Ideal Fermions

Here the equation with the plus sign is true for érmions and the one with the minus
corresponds to the %sons.

-Bem
5 (6.43)

(m) = 1+ zeBem

1

= 6.44

@Frria N

This r%r is the distribution function forrbe Fermions and Bosons. The
total particle number is ov -

L N (6.45)
=Y () (6.46)
1
= 4
; mz=l+1] (6:47) :
And the internal energy U is
R (6.48)
. i 6
= =T : 4
N ars i
(6.50)

6.3 Free ldeal Fermions

How to correctly count quantum states? A normalised plane wave can be written as

bp(F) = =% : (6.51)

with
fv Erip,(AP =1. _ (6.52)
(6.53)

So the kinetic energy operator operates on the plane wave such that

h2 " o
; 5 V2,(F) = 2p—m¢,,(f) (6.54)

So ¢,(7) are eigenfunctions to the kinetic energy (and many more) operator(s). With
periodic boundary conditions in a box of length L with Volume V' = L? the wave function
is invariant under translation.

¢p(7 + Léz) = ¢p(F) (6.55)
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6 Quantum Statistics

This means that
2mh

p= 7 " (6.56)
2,04 :
=2p0,4,2,...1 - (6.57)
0.2 .
So the momentum quantum numbers form a cubic lattice with lattice constant
TN Tk
T (6.58)
In the continuum limit L — oo this becomes.
h
[ =3Py - (6.59)
L P
4 -
S [ dp. (6.60)

So ﬁ g'mions such as electrons a@&in (n,) is
1
o =
( - (nm) 51 (6.61)

‘with z = efer n(e) is
' 1

So the Fermi energy is the chemical potential.

1.0 . T=0 (f—0) |

— T2>T1 |
pali ., — T 1 .
0.6} .
-4
0.4} 1
0.2t i
0.0}

0 2 2 6 8 10
FE

Figure 6.1: Fermi distribution for three different temperatures

The Fermi energy e is determined by the total number of particles N. At T=0 N is
R TN A
Pi<pF  Die b
S / &*pl (6.64)
h® Jipl<pr 02( a s‘-«t

V 4r y
" Qh??pg, i (6.65)
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6.4 Free Ideal Bosons and Black Body Radiation

\Wa mal

So-the ep = g:% and the multiplicity which is g = 2 for spin s = % particles. With that p?,

1S

s NK 3
Dhi= =

and the Fermi energy is

W;j/@‘ = %(7%)5'

$o the electron mass »f m, = 9-10-31kg Planck’s constant h =7 - 10-34Js and n

31007 the Fermi energy at room temperature becomes
epn2-107197 _
=50kgT

So typical electrons in metals are in fact very “hot”.

6.4 Free ldeal Bosons and Black Body Radiation

From E =mc? follows

E = \/mic* + p?c?

So in the non-relativistic limit this becomes

E = moyJlb ==
méc
, P
N moc? + —
2m0 7/

In the ultra-relativistic limit this becomes
2.2
_ E=pc\/1+m°2c
ool =7 p
fo~ oA o=

(6.66)
(6.67)

(6.71)
(6.72)

(6.73)

(6.74)

(6.75)
(6.76)

(6.77)

(6.78)

(6.79)
(6.80)
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6 Quantum Statistics ekl
o mlhna- ylak maantic

From these dispersion relations the internal energy becomes

U=g) e(ny) (6.81)
P
x pczePre
= ij iy (6.82)

Here g is the multiplicity which is g = 2 for photons and U becomes

i
U=2- f d*p 2 1o s (6.83)
Here the fugacity z =1 as u = 0 and the energy is i
2V4rc g (&-Ave
TRl [ 1 - ePre Led
With p = %w this becomes
' U 8rh* wd
= | do—s (6.85)
= | dwu(w) . ‘ (6.86)

» h 3 :
: Aomad®s vi(w) = 2—6363%—1 (6.87)

Here u(w) is the spectral energy.” For small w the denominator e#* 1 becomes Shw
and from that the famous Rayleigh-Jeans law becomes M ol ared

w(w) » % (6.88)
and for large w this becomes Wien’s law
w(w) » 2Lcsw e (6.89)
Y¥rere the maximum of u(w) is et Lereated ok .
Wmax = 2. SkL;lT— (6.90)

Se-for-every-temperature-there-is-a-different turve. This can be seen in figure 6.2.
omd Sy Lo Bt gfue QMW“)MW*WM

w

Figure 6.2: MW for three different temperatures

phA B Jul Phanedn. Joromida !
94 oLl (3 ne- EM\AAM u\_\ci,h.od./w\.



7 Appendix

7.1 About this Script

This lecture was given by Prof. Roland Netz in the summer of 2016. This document
started as off as private notes that were turned into a full script.

Most of the script was proof read multiple times, but if you find any errors, please mark
them on a printed or PDF version of the script (or in a plain list with page numbers)
and send them to me. I will try to correct them directly. Most importantly we want
to correct the contextual and mathematical errors, but if you find layout errors, wrong
labels on figures, simple typos or wrong commata or anything else, please also send them
to me. I hope this script helps you with your studies :)

Martin Borchert (martin.b@fu-berlin.de)

7.1.1 Distribution

For the rights about distribution to people outside the physics department or for other
uses, please contact Professor Netz.

7.1.2 Graphs and Figures

All graphs and figures were done in latex via the Tikz package or in python with Mat-
plotlib (of course via Jupyter Notebook!). Note: svg2tikz is an awesome extension for
Inkscape (awesome vector graphics drawing tool) to create Tikz easily!

7.1.3 Version
The current version is 1.1 (18.4.2017)- Updates since the last version (1.0)(16.4.17) are
for example (in addition to small typo corrections):
e Nothing yet
Code character count: 110862
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