Freie Universität Berlin Fachbereich Physik May 22nd 2018 Prof. Dr. Roland Netz Douwe Bonthuis Jan Daldrop Philip Loche

Statistical Physics and Thermodynamics (SS 2018)

Problem sheet 5

Hand in: Friday, June 1st during the lecture

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre/

1 Maxwell-Boltzmann distribution in 2 dimensions (8 points)

Consider a particle of mass m moving in a 2-dimensional plane with isotropic velocity (v_x, v_y) . The Hamiltonian in terms of the speed $v = \sqrt{v_x^2 + v_y^2}$, defined as the magnitude of the velocity vector, is given by $\mathcal{H} = mv^2/2$.

- a) Write down an expression for the second moment of the speed, $\langle v^2 \rangle$, in terms of an integral over v. (2 points)
- b) Using that the second moment can be expressed as

$$\langle v^2 \rangle = \int_0^\infty dv v^2 \rho_{\rm MB}(v),$$

derive the expression for the normalized Maxwell-Boltzmann distribution of the speed, $\rho_{\rm MB}(v)$. (2 points)

- c) Calculate the average speed $\langle v \rangle$ and the most likely speed, given by the maximum of $\rho_{\rm MB}(v)$. (2 points)
- d) Calculate the second and the third cumulants of $\rho_{\rm MB}(v)$, given by

$$\langle v^2 \rangle_C = \langle v^2 \rangle - \langle v \rangle^2$$
 and
 $\langle v^3 \rangle_C = \langle v^3 \rangle - 3 \langle v^2 \rangle \langle v \rangle + 2 \langle v \rangle^3$

respectively. What does it mean that the third cumulant is nonzero? (2 points)

2 Equipartition theorem for non-quadratic Hamiltonians (7 points)

Consider a system with a Hamiltonian $\mathcal{H} = A|q|^m$, with A being a positive number.

- a) Write down the partition function Z for a single positional degree of freedom q. (2 points)
- b) Calculate the energy U from a derivative of $\ln Z$ using a suitable coordinate transform. (3 points)
- c) Calculate the heat capacity of the system $C = (\partial U/\partial T)$. (2 points)

3 Energy of an oscillator (5 points)

Consider a one-dimensional harmonic oscillator with Hamiltonian $\mathcal{H} = p^2/(2m) + kq^2/2$, with p being the momentum, q being the position, m being the mass and k being a spring constant.

- a) Write down the partition function Z and calculate the internal energy U of the oscillator from a derivative of $\ln Z$. (1 point)
- b) Do the same as in part a) for (i) an anharmonic oscillator with Hamiltonian $\mathcal{H} = p^2/(2m) + kq^4/2$ and (ii) an anharmonic oscillator with Hamiltonian $\mathcal{H} = p^2/(2m) + k|q|/2$. Compare your results to the result of part a). (4 points)

Hint: The integral $\int_{-\infty}^{\infty} \exp\left[-Aq^4/2\right] dq = 2^{-\frac{3}{4}} \Gamma(\frac{1}{4}) A^{-\frac{1}{4}}$, with $\Gamma(x)$ being the Gamma function.