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1 Grand potential and Gibbs-Duhem relation (11 points)

The thermodynamic properties of a system are described by thermodynamic potentials. Which potential one
uses depends on the physical situation. For example, for a system with constant particle number N and volume
V coupled to a heat reservoir with temperature T , the Helmholtz free energy F (T, V,N) is typically approximate.

We now allow for particle exchange with a reservoir (with chemical potential µ). To derive the corresponding
thermodynamic potential, one performs a Legendre transformation on F (T, V,N) to eliminate N in favor of the
chemical potential µ. This is done as follows:

1. One calculates

µ(T, V,N) =

[
∂F (T, V,N)

∂N

]
T,V

, (1)

and solves this equation for N to obtain N(T, V, µ).

2. One uses the result from step one to calculate the Legendre transform

Ω(T, V, µ) = F [T, V,N(T, V, µ)]− µN(T, V, µ). (2)

a) In the lecture, we showed that the Helmholtz free energy of an ideal gas is given by

F (T, V,N) = NkBT

[
ln

(
λ3
N

V

)
− 1

]
, (3)

with the thermal wavelength λ = h/
√

2πmkBT , where h is the Planck constant and m the mass of a gas
particle. Explicitly perform the Legendre transfomation for the ideal gas to show that you recover the grand
canonical potential,

Ω(T, V, µ) = −kBT
V

λ3
exp

(
µ

kBT

)
, (4)

which was derived in the lecture using the grand canonical partition function. (3 points)

b) Show that N(T, V, µ) derived from Ω(T, V, µ) is the same expression you obtained in a) from F (T, V,N).
(1 point)

c) Show that in general (i.e. for a general Helmholtz free energy, and not just for the ideal gas considered in
task a),

dΩ = −SdT − pdV −Ndµ. (5)

(2 points)

Hint: Start from eq. (2), where Ω is expressed as a function of (T, V, µ). Then use the definition of the
total differential, dΩ = (∂Ω/∂T )V,µdT + (∂Ω/∂V )T,µdV + (∂Ω/∂µ)T,V dµ, the chain rule and the fact that
because of dF = −SdT − pdV + µdN you know the partial derivatives of F (T, V,N), to derive eq. (5).



d) There cannot be a thermodynamic potential which only has the intensive variables (T, p, µ) as independent
variables. This follows from the Gibbs-Duhem relation,

0 = SdT − V dp+Ndµ, (6)

which states that the three intensive variables (T, p, µ) of a 1-component system are related. In the lecture,
you derived this relation from the grand canonical potential. Derive this relation from the Gibbs free energy
G(T, p,N).

Proceed as follows:

1. In analogy to part c), use the definition of the Legendre transform to show that dG = −SdT +V dp+
µdN . (2 points)

2. Show that if a (continously differentiable) function f(x) is homogeneous, i.e. f(αx) = αf(x) (for all
α ∈ (0,∞)), then it fulfills the Euler relation

f(x) = x
∂f(x)

∂x
. (7)

(1 point)

3. Use the Euler relation to show that G = µN (which of the variables (T, p,N) corresponds to x from
the Euler relation?), so that dG = Ndµ+ µdN . (1 point)

4. Put 1. and 3. together to obtain the Gibbs-Duhem relation. (1 point)

2 Formation of hydrogen in the early universe (9 points)

After the Big Bang, which took place 13.8 billion years ago, it took another 377, 000 years until the first neutral
atoms formed. In this exercise we use our knowledge of the grand canonical ensemble to obtain a rough estimate
for the stability of hydrogen. Consider the combination reaction for hydrogen

p+ + e− 
 H,

where p+ are protons of mass mp, e− are electrons of mass me and H is the hydrogen atom of mass mH . All
particles are in thermodynamic equilibrium in a volume V and you can consider all species as an ideal gas.

a) Since the individual particle numbers are not conserved, we work in the grand canonical ensemble. Write
down the grand-canonical potential Ωp(T, V, µp) for the protons, Ωe(T, V, µe) for the electrons and ΩH(T, V, µH)
for the hydrogen atoms. (1 point)

b) For given T , V , µp, µe, µH calculate the respective number of particles 〈Np〉 ≡ Np, 〈Ne〉 ≡ Ne and
〈NH〉 ≡ NH (1 point)

c) Assume that in a single reaction p+ + e− → H, the energy ∆µ = µH −µp−µe is released and calculate the
law of mass action. (1 point)

d) Using your result from c), assuming charge neutrality Np = Ne as well as that the total number of particles
is conserved, N = NH +Np +Ne, express the equilibrium density of free electrons, ce = Ne/V , in terms of
the total particle density c = N/V . (1 point)

e) Is the relative concentration of electrons, ce/c, a monotonic function of c or does it have extrema? What
is the value of ce/c in the limits of low and high total particle density? Draw a schematic plot of ce/c as
a function of c. Furthermore, calculate the total particle density c at which exactly half of the hydrogen is
dissociated, given by the condition cH/c = 1/2. (4 points)

f) Based on these results check whether matter in the universe mostly existed as subatomic particles (protons
and electrons) or as neutral atoms (hydrogen) in the following epochs.

Epoch Time Temperature

Photon epoch 10 s 109 K
Recombination 380 ka 4000 K
Dark ages 150 Ma 60 K

Use that the ionization energy of hydrogen is ∆µ = 13.6 eV and assume for simplicity that the total particle
density c = 5.4× 109m−3 is constant in all epochs.
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