Freie Universität Berlin Fachbereich Physik July 3rd 2018 Prof. Dr. Roland Netz Douwe Bonthuis Jan Daldrop Philip Loche

Statistical Physics and Thermodynamics (SS 2018)

Problem sheet 11

Hand in: Friday, July 13th during the lecture

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre/

1 Joule-Thomson process (10 points)

Consider a pipe with thermally insulated walls. A porous plug divides the pipe into two parts. The porous plug in the pipe provides a constriction to the flow of the gas (alternatively, a valve which is only slightly opened may provide such a constriction). We consider a situation where gas flows from left to right. At the left side the gas has a pressure P_1 and a volume V_1 . After the constriction the gas expands to a volume V_2 greater than the volume V_1 . The presence of the constriction results in a constant pressure difference being maintained across this constriction. Thus the gas pressure P_1 to the left of the constriction is greater than the gas pressure P_2 to the right of the constriction. Let T_1 denote the temperature of the gas on the left-hand side of the constriction. In this exercise, we derive what the gas temperature T_2 on the right-hand side will be.

- a) Write down the change of the internal energy, ΔU , and the net work W done by the floating gas. (1 point)
- b) Use the fact that no heat is exchanged during the process and your result from a) to show that $H_2 = H_1$, where H = U + PV is the enthalpy. (1 point)
- c) Use the first law of thermodynamics to show that dH(S, P) = TdS + VdP (1 point)
- d) In our case, where H is constant, dH(S, P) = 0. Use this to show that

$$C_P \,\mathrm{d}T + V \left(1 - T\alpha\right) \mathrm{d}P = 0\,,\tag{1}$$

where C_P is the heat capacity at constant pressure and α is the coefficient of expansion. (4 points) Hint: To obtain Eq. (1) calculate the total differential dS(T, P) and find a suitable Maxwell relation for $(\partial S/\partial p)_T$.

- e) Use your previous result to calculate the so called Joule-Thomson coefficient $\mu_{JT} := (\partial T / \partial P)_H$. What does this coefficient describe physically? (1 point)
- f) Calculate μ_{JT} for the ideal gas. Argue what the temperature T_2 at the right-hand side of the constriction will be. (1 point)
- g) Calculate $\mu_{\rm JT}$ for the van der Waals gas. What does this result mean for the temperature T_2 at the right-hand side of the constriction? (1 point)

2 Two interacting dipoles (10 points)

Two identical ideal dipoles are located in a two-dimensional plane with a distance r between them. The dipoles are positioned at angles θ_1 and θ_2 relative to the connecting line. The interaction energy between the dipoles is given by

$$V(r, \theta_1, \theta_2) = -\frac{d^2}{4\pi\varepsilon r^3} \left[\frac{3}{2}\cos(\theta_1 + \theta_2) + \frac{1}{2}\cos(\theta_1 - \theta_2)\right],$$

with d being the dipole moment and ε being the dielectric constant of the medium between the dipoles.

a) Calculate the average interaction potential between two dipoles, $\bar{V}(r)$, from a Boltzmann-weighted integral over all possible orientations

$$\bar{V}(r) = -\ln \int_0^{2\pi} \frac{d\theta_1}{2\pi} \int_0^{2\pi} \frac{d\theta_2}{2\pi} \exp\left[-\frac{V(r,\theta_1,\theta_2)}{k_B T}\right].$$
 (4 points)

Hint: The integral

$$\int_0^{2\pi} d\theta \exp\left[A\cos\theta\right] = 2\pi I_0(A),$$

can be written as

$$I_0(A) = \sum_{k=0}^{\infty} \frac{\frac{1}{4} (A^2)^k}{(k!)^2},$$

where $I_0(A)$ is the modified Bessel function of the first kind.

- b) Expand $\bar{V}(r)$ to leading order for large distances r, which means $r^3 > d^2/(4\pi\varepsilon k_B T)$. How does the average interaction potential depend on the distance r? (3 points)
- c) For large arguments A, the modified Bessel function scales like

$$I_0(A) \sim \frac{\exp A}{\sqrt{2\pi A}}.$$

Approximate $\overline{V}(r)$ to leading order for small distances r. How does the average interaction potential depend on the distance r? (3 points)