Advanced Statistical Physics II - Problem Sheet 11

Problem 1 – Characteristic function

Given a probability density function $\rho(\vec{x})$, the Fourier transform

$$\rho(\vec{k}) = \langle e^{i\vec{k}\cdot\vec{x}} \rangle = \int e^{i\vec{k}\cdot\vec{x}}\rho(\vec{x}) \,\mathrm{d}^N x \tag{1}$$

is called characteristic function or moment generating function.

a) (3P) Show that

$$\langle x_{i_1} \dots x_{i_m} \rangle = \left[\frac{\partial}{\partial (ik_{i_1})} \dots \frac{\partial}{\partial (ik_{i_m})} \rho(\vec{k}) \right] \Big|_{\vec{k}=0} , \qquad (2)$$

i.e. all the moments of the distribution can be calculated as derivatives of the characteristic function.

Remark: This is why it is also called moment generating function.

b) (2P) Consider the N-dimensional Gaussian distribution

$$\rho(\vec{x}) = \frac{1}{\sqrt{(2\pi)^{N} \det(\sigma)}} \exp\left[-\frac{1}{2}(\vec{x} - \vec{\alpha})^{T} \sigma^{-1} (\vec{x} - \vec{\alpha})\right],$$
(3)

where $\vec{\alpha} \in \mathbb{R}^N$ and σ is a symmetric $N \times N$ matrix whose eigenvalues are all positive. Calculate $\langle \vec{x} \rangle$, $\langle x_i x_j \rangle$ using formula (2) and use these results to calculate $\langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle$.

Hint: Remember problem 3 on sheet 3.

Problem 2 – Green's function for the Fokker-Planck equation

Consider the Fokker-Planck equation

$$\frac{\partial}{\partial t}\rho(\vec{x},t) = \mathcal{D}\rho(\vec{x},t)\,,\tag{4}$$

where the operator \mathcal{D} is defined by its action on an arbitrary function $f(\vec{x}, t)$ as

$$\mathcal{D}f = -\left(\frac{\partial}{\partial \vec{x}}\right)^T \Theta \vec{x}f + \left(\frac{\partial}{\partial \vec{x}}\right)^T B \frac{\partial}{\partial \vec{x}}f \equiv -\frac{\partial}{\partial x^i}\Theta_{ij}x_jf(\vec{x},t) + B_{ij}\frac{\partial^2}{\partial x^i\partial x^j}f(\vec{x},t)$$
(5)

with constant $n \times n$ matrices Θ, B .

We want to solve this equation for an arbitrary initial distribution $\rho_0(\vec{x}) \equiv \rho(\vec{x}, 0)$.

a) (2P) Show that if for every \vec{x}_0 we have a Green's function $G(\vec{x}, t | \vec{x}_0)$ that solves the initial value problem

$$\frac{\partial}{\partial t}G(\vec{x},t|\vec{x}_0) = \mathcal{D}G(\vec{x},t|\vec{x}_0), \qquad G(\vec{x},0|\vec{x}_0) = \delta(\vec{x}-\vec{x}_0), \tag{6}$$

then we can construct a solution to equation (4) for any initial distribution ρ_0 via

$$\rho(\vec{x},t) = \int G(\vec{x},t|\vec{y})\rho_0(\vec{y}) \,\mathrm{d}^n y \,, \tag{7}$$

i.e. show that ρ defined by equation (7) fulfills $\rho(\vec{x}, 0) = \rho_0(\vec{x})$ for all \vec{x} and solves equation (4).

Remark: The function $G(\vec{x}, t | \vec{x}_0)$ is called the propagator of equation (4) because it propagates the initial distribution forward in time.

The rest of this problem will be devoted to finding the propagator $G(\vec{x}, t | \vec{x}_0)$:

b) (3P) Take the spatial Fourier transform¹ of equation (6) to show that

$$\frac{\partial G(\vec{k},t|\vec{x}_0)}{\partial t} = k_i \Theta_{ij} \frac{\partial G(\vec{k},t|\vec{x}_0)}{\partial k^j} - k_i B_{ij} k_j G(\vec{k},t|\vec{x}_0), \qquad (8)$$

where $G(\vec{k}, t | \vec{x}_0)$ is the spatial Fourier transform of $G(\vec{x}, t | \vec{x}_0)$.

Hint: You can assume that $G(\vec{k}, t) \to 0$ as $|\vec{k}| \to \infty$.

c) To solve equation (8), we make the ansat z^2

$$G(\vec{k},t|\vec{x}_0) = \exp\left[i\vec{\alpha}(t)^T \vec{k} - \frac{1}{2}\vec{k}^T \sigma(t) \vec{k}\right], \qquad (9)$$

where $\vec{\alpha}(t), \sigma(t)$ are a vector and a matrix valued function. With this ansatz we now need to find $\vec{\alpha}(t)$ and $\sigma(t)$:

1. (2P) Show that $\vec{\alpha}, \sigma$ should fulfill

$$\frac{\partial \vec{\alpha}}{\partial t} = \Theta \vec{\alpha} \tag{10}$$

$$\frac{\partial \sigma}{\partial t} = \Theta \sigma + \sigma \Theta^T + 2B. \tag{11}$$

2. (2P) Which initial conditions do $\vec{\alpha}(t)$ and $\sigma(t)$ need to obey so that $G(\vec{x}, 0 | \vec{x}_0) = \delta(\vec{x} - \vec{x}_0)$?

Hint: Remember that $\int \exp(-i\vec{k} \cdot (\vec{x} - \vec{x}_0)) d^n k = (2\pi)^n \delta(\vec{x} - \vec{x}_0).$

- 3. (1P) Write down the solution for equation (10) with the correct initial condition.
- 4. (1P) Show that

$$\sigma(t) = 2 \int_0^t e^{(t-s)\Theta} B e^{(t-s)\Theta^T} \,\mathrm{d}s \tag{12}$$

solves equation (11) and has the appropriate initial condition.

d) (2P) Use the inverse Fourier transform to show that our solution reads

$$G(\vec{x},t|\vec{x}_0) = \frac{1}{\sqrt{(2\pi)^n \det(\sigma)}} e^{-1/2(\vec{x}-\vec{\alpha}(t))^T \sigma^{-1}(t)(\vec{x}-\vec{\alpha}(t))}.$$
(13)

Hint: Remember problem 3 on sheet 3.

e) (1P) Use the results from problem 1 to show that the mean value and the mean squared deviation of our solution obey

$$\langle \vec{x}(t) \rangle = \vec{\alpha}(t), \tag{14}$$

$$\langle \vec{x}(t)\vec{x}(t)^T \rangle = \sigma(t) + \vec{\alpha}(t)\vec{\alpha}(t)^T.$$
(15)

f) (1P) Finally, consider the 1 dimensional special case $\Theta = 0$, B = D with the initial distribution $\rho_0(\vec{x}) = \delta(\vec{x})$. How does equation (4) look in this case? What are $\langle \vec{x}(t) \rangle$ and $\langle \vec{x}(t) \vec{x}(t)^T \rangle$ in this case?

¹Remember that our convention for Fourier transforms yields in this case $G(\vec{k},t|\vec{x}_0) = \int e^{i\vec{k}\cdot\vec{x}}G(\vec{x},t|\vec{x}_0) d^nx$ and $G(\vec{x},t|\vec{x}_0) = (2\pi)^{-n} \int e^{-i\vec{k}\cdot\vec{x}}G(\vec{k},t|\vec{x}_0) d^nx$.

²The inspiration for this ansatz comes from a scheme for reducing PDEs to ODEs known as the "method of characteristics".